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Abstract

Epithelial-mesenchymal transition (EMT) is a fundamental process that occurs during 

embryogenesis and tissue repair. However, EMT can be hijacked by malignant cells, where it 

may promote immune evasion and metastasis. Classically considered a dichotomous transition, 

EMT in cancer has recently been considered a plastic process whereby malignant cells display 

and interconvert among hybrid epithelial/mesenchymal (E/M) states. Epithelial-mesenchymal 

plasticity (EMP) and associated hybrid E/M states are divergent from classical EMT with unique 

immunomodulatory effects. Here, we review recent insights into the EMP-immune crosstalk, 

highlighting possible mechanisms of immune evasion conferred by hybrid E/M states and roles of 

immune cells in EMP.

Introduction

Approximately 90% of cancer-associated deaths are due to metastatic disease (1), and 

accordingly, 5-year disease-free survival in patients with metastatic disease compared to 

locoregional disease is greatly reduced across most cancer types (2). Metastatic cancer 

often displays resistance to systemic therapies including chemotherapy, immunotherapy, and 

targeted biologics (3). The advent of immunotherapy, namely immune checkpoint blockade 

(ICB) has dramatically advanced treatment of metastatic disease for a fraction of patients in 

select cancer types, including melanoma and lung cancer (4). Unfortunately, of the 43% of 

cancer patients eligible for ICB, only 14% are estimated to respond (5). Thus, a major focus 

of cancer research is addressing the low response rates of ICB by elucidating mechanisms 

underlying ICB resistance and identifying opportunities for combination therapies that may 

overcome resistance (1,4).

Epithelial-mesenchymal transition (EMT) has emerged as a potential contributor to 

immunotherapy resistance (6). EMT describes the transitional process of an epithelial cell 

becoming a mesenchymal cell and occurs in embryogenesis and development. However, 

cancer cells may hijack EMT to drive therapy resistance, invasion, metastasis, and thus, poor 
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outcomes in cancer (7). Although classically described as a binary switch between epithelial 

and mesenchymal states, EMT in cancer is now understood to be a plastic process in 

which cells interconvert between hybrid epithelial/mesenchymal (E/M) states with varying 

degrees of both epithelial and mesenchymal features, referred to as epithelial–mesenchymal 

plasticity (EMP) (8). The hybrid E/M state has recently been found to modulate the 

immune system to support cancer invasion and metastasis (1,7), and attention has been 

given to the role of hybrid E/M states in ICB resistance (7,9). Understanding the hybrid 

E/M-immune crosstalk in cancer is now proving useful in the development of prognostic 

markers, therapeutic indications, and novel therapy combinations (7,9–11). Here, we review 

the relevant literature to highlight mechanisms of immune evasion conferred by hybrid E/M 

states, emphasize the role of the immune system in promoting the hybrid E/M phenotype, 

and propose areas of investigation that may advance our understanding of EMP in tumor 

immune evasion.

The Plasticity of EMT

Initial hypotheses addressing EMT were generated in the 1960s by Elizabeth Hay, and 

EMT has since been attributed important roles in embryogenesis, wound healing, and 

cancer (8,12–16). The plasticity of EMT, or EMP, and its intra-tumoral and inter-tumoral 

heterogeneity is a recent major discovery in oncology with clinical relevance (7–9,17–21). 

Indeed, hybrid E/M states are associated with poor prognosis in several cancers (22–25) and 

have been shown to promote therapy resistance (26) and local and distant metastases (27). 

Metastable hybrid E/M states exhibiting plasticity were predicted through computational 

modeling of EMT (9,28–33). RNA sequencing and histological staining of primary tumors 

corroborated these in silico findings, demonstrating hybrid E/M states in several cancers 

(10,11,17,22,23,27,28,34–46). Moreover, recent pan-cancer studies using single cell RNA 

sequencing (scRNA-seq) have highlighted that the EMP gene program is conserved across 

cancer types, although their constituent genes are variable and correlate with the tissue of 

origin (10,34,45,46).

While EMP induction is heterogeneous across tumors (10), some signals appear conserved. 

These include extracellular ligands such as transforming growth factor β (TGFβ), tumor 

necrosis factor α (TNFα), and vascular endothelial growth factor (VEGF), environmental 

factors like hypoxia, dysregulated intracellular signaling in MAPK or p53 pathways, 

biophysical properties of the extracellular matrix (ECM), genetic mutations, and epigenetic 

alterations (10,47–50) (Figure 1). Downstream canonical transcription factors (TFs) that 

mediate EMP include SNAIL1/2, TWIST1/2, and ZEB1/2 (51). However, others TFs such 

as JUNB, FOSB, and KLF4/6 are also associated with EMP (10). The inducing signals 

of EMP interface with a dynamic balance of intracellular inducing and inhibiting signals 

occurring epigenetically, transcriptionally, post-transcriptionally by microRNA (miRNA) 

and long non-coding RNA (lncRNA), and post-translationally by regulatory circuits and 

signaling pathways that dictate the relative expression of epithelial and mesenchymal 

features (9,17,32,47,52,53). A classic example of post-translational regulation is the balance 

between the interconnected miR-34/SNAIL negative feedback loop and miR-200/ZEB 

negative feedback loop, in which SNAIL and ZEB promote EMP while the miRNAs inhibit 

EMP (30,54,55).
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EMP in Tumor Immunology and Cancer Immunoediting

The dynamic relationship between the immune system and tumors is directly influenced 

by the cancer immunoediting hypothesis (56). Classically, cancer immunoediting is a three-

stage model including elimination, equilibrium, and escape. In the elimination phase, cancer 

cells are recognized by the immune system as foreign due to expression of tumor-associated 

antigens (TAAs). TAAs are released to the extracellular environment following cancer cell 

death, and these antigens are taken up by antigen presenting cells (APCs) that present these 

neoantigens to a cytotoxic T lymphocyte (CTL) with a T cell receptor (TCR) specific to 

the TAA, triggering CTL activation. Although dendritic cells (DCs) are the prototypical 

APC, all nucleated cells – including cancer cells – express major histocompatibility complex 

(MHC) class I that serves to primarily present endogenous antigens to the immune system 

and activate CTLs. Activated CTLs home to the tumor, bind to a TAA presented on MHC 

class I, and lyse the cancer cell in combination with initiating a local immune response via 

inflammatory cytokines and chemokines (57). The cycle of immune recognition of cancer 

cells via MHC class I and their subsequent lysis results in either tumor elimination or 

an equilibrium phase. In the equilibrium phase, the persistent immune response acts as a 

selective pressure that, in combination with tumor heterogeneity and cancer cells’ DNA 

repair malfunctions, enriches tumor clones with an immune escape phenotype. The immune 

escape tumor phenotype is characterized by enrichment of immunosuppressive cell types 

such as regulatory T cells (Tregs) or myeloid-derived suppressor cells (MDSCs), expression 

of immune checkpoint proteins including programmed death-ligand 1 (PD-L1), defective 

antigen presentation, and/or dysregulated cytokine and metabolism regulation that promotes 

immune suppression (58). Tumor clones that enter the escape phase resist immune cell 

cytotoxicity and grow despite the anti-tumor immune response.

Spatial and Temporal Features of EMP-Tumor Immune Modulation

Advances in single cell technologies and the use of genetically engineered animal models 

have allowed for increased granularity in evaluating the roles of malignant, stromal, 

and immune cells of the tumor microenvironment (TME) in promoting EMP (23,27,38). 

Single cell sequencing has also helped to elucidate the heterogeneity in EMP, defining 

commonalities and differences in the EMT gene signature from tumor to tumor within 
and across primary cancer sites (10,34,45,59). Pastuschenoko et al. (2018) were among 

the first to demonstrate that malignant cells with varying expression of epithelial and 

mesenchymal markers existed within the same tumor and formed neighborhoods with the 

most mesenchymal cells in close proximity to a fibrovascular niche composed of endothelial 

cells and cancer-associated fibroblasts (CAFs) (23). Our group used scRNA-seq in head and 

neck squamous cell carcinoma (HSNCC) patient samples and found that cells enriched for a 

hybrid E/M signature localized to the leading edge of tumors adjacent to immune cells of the 

stroma and engaged with CAFs via TGFβ signaling (27). More importantly, we found that 

tumors enriched for this hybrid E/M signature were associated with worse clinical outcomes 

(22). Additionally, histological evidence of expression of classical EMT markers at the 

tumor-stroma interface has been associated with poor prognosis in several cancer types, such 

as breast, lung, prostate, pancreatic, colorectal, and HNSCC (27,40,60–63). The mechanism 

underlying this spatial localization is unresolved. However, a selective advantage of the 
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hybrid E/M state in resisting stromal cytotoxic immune cells while coopting other stromal 

cells to promote EMP via soluble and contact signaling at the tumor-stroma interface likely 

contributes.

The hybrid E/M state is associated with immune evasion and suppression that may mediate 

such a selective advantage at the tumor leading edge. Immune evasion mechanisms include 

decreased expression of MHC class I and other antigen presentation proteins, which 

may be directly regulated by the hybrid E/M TF SNAIL2 and prevent recognition of 

hybrid E/M cells by CTLs (64–66) (Figure 1). Additionally, autophagy induction and the 

activity of EMT TFs brachyury and mucin 1 (MUC1) mediate resistance to natural killer 

(NK) and CTL-meditated cytotoxicity (67–69) (Figure 1). EMP is also associated with 

increased expression of immunosuppressive proteins, such as PD-L1, CD73, and CD276 

(35,66) (Figure 1). The microRNA miR-200 has a dual role in both inhibiting EMP and 

PD-L1 expression; however, the EMT TF ZEB1 is activated in EMP, suppresses miR-200, 

and thereby increases PD-L1 expression (33,70–72). Interestingly, compared to epithelial 

cells, hybrid E/M cells and full mesenchymal cells upregulate PD-L1 to a similar extent, 

suggesting that hybrid E/M states adopt immunosuppressive features of a mesenchymal cell 

without losing the plasticity advantageous for metastasis (33). Due to increased immune 

checkpoint protein expression and alterations in adhesion proteins in hybrid E/M states, CTL 

activation is attenuated in the immunological synapse with an EMP-induced cell compared 

to a non-EMP-induced cell (73–75) (Figure 1).

In addition to immune evasion, hybrid E/M malignant cells trigger immune suppression 
through secreted factors upregulated in this state, such as TGFβ, IL-8, colony stimulating 

factor 1 (CSF1), and CCL18, and support immunosuppressive cell recruitment and 

polarization of Tregs, tumor associated macrophages (TAMs), and MDSCs (76–78) (Figure 

2). Leveraging a multi-omics approach incorporating scRNA-seq, spatial transcriptomics, 

and multiplex ion beam imaging, Ji et al. (2020) identified a population of “tumor-specific 

keratinocytes” (TSKs) in human cutaneous squamous cell carcinoma with striking overlap 

with the hybrid E/M signature identified in HNSCC (27,35). These TSKs co-localized 

with CAFs, endothelial cells, macrophages, and Tregs. In addition, both TSKs and CAFs 

were found to express CD276 (B7-H3), an immune checkpoint protein that dampens the 

anti-tumor immune response (79). Notably, TSK cells expressed integrins ITGA3 and 

ITGB1, which serve as receptors for ligands expressed by TAMs and MDSCs (35). Hybrid 

E/M cells’ secreted factors can polarize TAMs and MDSCs to a pro-tumor phenotype that 

promotes immunosuppressive polarization of other immune cells as well as EMP induction, 

tumor growth, and invasion (62,80–83) (Figure 2). Tumor immune evasion and suppression 

mechanisms conferred by the hybrid E/M state are consistent with the observation that 

non-small cell lung cancer (NSCLC) and breast cancer tumors with more mesenchymal-

like features show decreased infiltration of CTLs and increased immunosuppressive cell 

infiltration (66,84–86).

The spatial localization of hybrid E/M cells to the tumor invasive front may also arise 

due to modulation of non-immune cells, including CAFs and normal epithelium. Indeed, 

CAFs have been shown to contribute to induction and maintenance of EMP in malignant 

cells via their secretion of latent TGFβ binding proteins (LTBPs), stromal cell-derived 
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factor 1 (SDF1, or CXCL12), fibroblast growth factor (FGF), and TGFβ (27,85–87) (Figure 

2). Additionally, hybrid E/M cells in HNSCC have been shown to promote lateral tumor 

invasion by secreting TGFβ and TNFα that acts on adjacent normal epithelium to induce 

EMT, which represents a selective advantage of hybrid E/M cells to invade that is permitted 

by their localization at the tumor-stroma interface (88).

The Role of EMP in Immune Evasion by Circulating Tumor Cells

Along with disrupting the basement membrane and local invasion of tissue, EMP is believed 

to confer circulating tumor cells (CTCs) with increased potential for distant metastasis 

(1). CTCs are considered a metastatic precursor that disseminate from the primary tumor 

mass, travel through the circulatory system, and seed distant sites to establish a metastatic 

niche that supports secondary tumors. EMP is implicated in CTC-mediated metastasis in 

several cancer types including breast cancer (89), NSCLC (90), prostate cancer (91), gastric 

cancer (92), and colorectal cancer (CRC) (93). Hybrid E/M cells travel as CTC clusters 

and decrease expression of NK cell activating ligands, which may shield CTC clusters 

from NK cell-mediated lysis when in circulation (94) (Figure 1). While in transit, CTCs of 

colon and breast cancer cell lines in vivo were shown to be coated in platelets that release 

TGFβ thereby promoting a mesenchymal phenotype, decreasing NK cell recognition, and 

increasing survival during transit to a metastatic site (1,95) (Figure 1). Upon seeding 

a metastatic site, a mesenchymal shift within the hybrid E/M state, or a mesenchymal-

epithelial transition (MET), is essential for cancer cell seeding and outgrowth (47,96–101). 

The epithelial shift has been shown to be regulated by key TFs. For instance, Prrx1 promotes 

EMT and is suppressed to enable metastatic colonization (100), and the TFs OVOL1 

and OVOL2 inhibit EMT and promote MET (102,103). The molecular mechanism of an 

epithelial shift at a metastatic site is likely distinct from the mechanism of a mesenchymal 

shift at the primary tumor site. Indeed, hysteresis regulation of EMP, in which the paths 

of epithelial and mesenchymal shifts are distinct, was found to have increased metastatic 

potential compared to non-hysteresis regulation in a breast cancer mouse model (104). 

For disseminated hybrid E/M malignant cells that seed a distant site, cell extrinsic factors 

likely contribute to the epithelial shift. For example, evidence in mouse models of breast 

cancer suggests that MDSCs facilitate a reversion to a more epithelial state, enhance survival 

of metastatic cells, and promote outgrowth (105). Thus, understanding the EMP-immune 

crosstalk in metastatic colonization may reveal immune interactions that are uniquely 

associated with MET and not observed at the primary tumor.

Cancer Stem Cells and Hybrid E/M Cells Similarly Modulate the Immune System

Cancer stem cells (CSCs) comprise a fraction of hybrid E/M cells and have the ability to 

differentiate into diverse cell types, self-renew, and both evade and suppress the immune 

system (106–108). Strikingly, cancer stemness is molecularly and functionally associated 

with EMP. For instance, the EMT TFs TWIST1 and ZEB1 increase cancer cell stemness, 

which has been shown to be associated with the enhanced metastatic potential of the hybrid 

E/M state (24,25,33,109–112). Indeed, a full EMT state in which a cell fully differentiates 

into a mesenchymal cell is unable to colonize a metastatic site due to loss of stemness 

(99,100). Thus, EMP, in which cells do not fully differentiate, is proposed to be compatible 

with maintenance of stemness, tumor initiating capacity, and metastatic seeding (24,98,108).
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Similar to hybrid E/M states, CSCs also display immune evasion and suppression tactics 

(107,113,114). For instance, CSCs display MHC class I downregulation (115), and CSCs 

may evade NK cells through downregulation of the NK cell-activating ligand NKG2D 

(116). In addition, through secreted cytokines such as TGFβ, IL-10, and periostin, CSCs 

suppress and polarize local immune cells into a pro-tumor phenotype (117–119). For 

example, CSCs induce macrophages into a pro-tumor phenotype associated with secretion 

of cytokines that further promote stemness (120,121). However, in contrast to EMP, the 

transcriptional profiles characteristic of cancer stemness negatively correlate with PD-L1 

expression in several cancer types (122). Although CSCs and hybrid E/M cells appear 

to share mechanisms of immune evasion and suppression, their similarity in underlying 

signaling remains incompletely understood; however, a more complete characterization of 

these cell states has the potential to reveal converging hubs suitable for pharmacologic 

inhibition.

Direct and Indirect EMP-Immune Crosstalk

EMP is involved in immunosuppression as result of soluble mediators that recruit and 

promote immunosuppressive immune cells as well as direct inhibition of immune cells 

(Figure 2). Many malignant tumors with an immunosuppressive phenotype also demonstrate 

an enrichment of EMP markers (84,123). These tumors feature decreased CTL infiltration 

and increased expression of immune checkpoint molecules, often portending a poor 

prognosis (124). In a study of lung cancer patients, a strong correlation between a “tumor 

EMT score” (based on the expression of 76 classical EMT signature genes) and expression 

of the immune checkpoint PD-L1 expression was identified (125). A similar result was 

found using a pan-cancer EMT signature spanning 11 different cancer types: Tumors with 

a high EMT score also had high expression of immune checkpoint proteins, including 

programmed cell death protein 1 (PD-1), PD-L1, cytotoxic T-Lymphocyte associated protein 

4 (CTLA-4), and PD-L2. In patients with metastatic melanoma, an upregulation of E/M-

related genes in the primary tumor was associated with primary resistance to anti-PD-1 

therapy (126). A similar observation has been noted in CTCs, where classical EMT markers 

N-cadherin and vimentin were enriched in the CTCs of NSCLC patients with recurrence 

following anti-PD-L1 therapy (127). While these studies strongly suggest an association 

between EMP and markers of immunosuppression, mechanistic studies underlying the EMP-

immune signaling axes are needed to better understand the link between hybrid E/M states 

and immune resistance.

Factors with Dual Roles in EMP Induction and Immunomodulation

Many of the soluble factors known to induce EMP also contribute to immune suppression 

in the TME (Figure 2). TGFβ is perhaps the most well-studied EMP-inducing soluble 

factor with additional immunomodulatory effects (128). TGFβ can be secreted by malignant, 

immune, and stromal cells. Induction of EMP by TGFβ is mediated by upregulation of key 

EMT TFs SNAIL (129), SLUG (15), and ZEB1/2 (130,131), as well as other TFs associated 

with EMP including HMGA2 (132) and ETS1 (133). In addition to modulating malignant 

cell phenotypes, TGFβ drives immune suppression in the TME by multiple mechanisms. 

For instance, EMP driven by TGFβ1 in hepatocellular carcinoma (HCC) cells resulted in 
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increased expression of immune checkpoint proteins PD-L1 and B7-H3 (CD276), and the 

coordinate expression of TGFβ1 with PD-L1 and B7-H3 correlated with poor prognosis in 

HCC patients (134). In gastric carcinoma cell lines, EMP triggered by TGFβ1 resulted in 

increased expression of PD-L1 through activation of nuclear factor kappa B (NF-κB) (135). 

NF-κB is a known transcriptional regulator of several EMT TFs including TWIST1, SLUG, 

and ZEB2 in several cancer types, such as NSCLC and pancreatic cancer (136,137). Indeed, 

inhibition of NF-κB signaling has been shown to decrease the migratory capacity of gastric 

carcinoma cells and abrogate TGFβ1-mediated expression of PD-L1 (135).

Similar to TGFβ, IL-8 has a dual role in EMP and immune modulation by signaling 

through its G-protein coupled receptors, CXCR1 and CXCR2. The resulting acquisition of 

mesenchymal features, namely increased expression of vimentin, fibronectin, and classical 

EMT TFs, promotes cell migration and invasion (138). Interestingly, in addition to EMP 

induction, IL-8 has also been shown to drive immunosuppression in the TME by recruiting 

and enhancing the function of MDSCs (80,81) (Figure 2). MDSCs are known to play a 

critical role in facilitating tumor immune escape by inhibiting immune cells that are required 

for the anti-tumor immune response, such as CTLs, NK cells, and DCs (139). However, 

it is unclear whether the induction of EMP and immunosuppression by IL-8 are parallel 

pathways or interconnected. Most often, EMP displays a positive feedback loop whereby 

malignant cells exhibiting EMP produce the very factors that induce a further transition 

towards this state. In line with this positive feedback loop model, IL-8 has been shown to 

be upregulated upon induction of EMP by TNFα or TGFβ in colon cancer (140) and by 

epidermal growth factor (EGF) in breast cancer (141) (Figure 2). In turn, the transcription of 

IL-8 can be promoted by the EMT TFs SNAIL and brachyury. SNAIL was shown to induce 

IL-8 production in vivo in a NSCLC model (142) and directly regulate IL-8 production by 

binding to E-box regions within the IL-8 promoter in CRC cells (143). Additionally, IL-8 

was one of the most upregulated secretory molecules in human carcinoma cells induced to a 

mesenchymal state by brachyury expression (144).

The tyrosine receptor kinase AXL is another well studied common inducer of both EMP 

and tumor immune evasion. In cancer, AXL signaling can become aberrantly activated 

due to membrane alterations of a mesenchymal-like cell that increase expression of AXL, 

EGFR, HER2, and Met (65). AXL expression positively correlates with expression of EMT 

genes in several cancers, including HER2+ breast cancer (145) and esophageal squamous 

cell carcinoma (146). Furthermore, in pancreatic cancer cells, AXL has been shown to 

regulate the expression of EMT TFs SNAIL, SLUG, and TWIST (147). AXL was also 

shown to mediate resistance to NK cell- and CTL-mediated killing through NF-κB and 

MAPK signaling in lung cancer clones derived from NSCLC patient tumors and induced to 

a mesenchymal phenotype by hypoxia (148). In keeping with the positive feedback cycle of 

EMP, the expression of AXL seems to be positively regulated by EMT TFs. For instance, 

in non-malignant human breast epithelial cells, stable expression of TWIST, ZEB2, SNAIL, 

or SLUG induced AXL expression along with an EMP phenotype (149). Thus, expression 

of the very inducers of EMP and tumor immune suppression, such as TGFβ, IL-8, and 

AXL, by malignant cells exhibiting EMP indicates their capacity to both sustain this EMP 

phenotype and further promote immune suppression.
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Transcriptional Regulation of EMP-Mediated Immune Suppression

The EMT TFs SNAIL and ZEB1 play important roles in promoting tumor immune 

suppression. In murine and human melanoma cells, SNAIL transduction induced EMP, 

and these E/M-induced clones demonstrated immunosuppressive features both in cancer-

immune cell co-culture experiments in vitro and experiments performed in vivo (150). 

In these hybrid E/M clones, SNAIL mediates the immunosuppressive function of Treg 

cells, resistance to CTL lysis, and decreases the function of DCs through TGFβ and 

thrombospondin 1 (TSP1) signaling (150). In an in vivo model of ovarian cancer, SNAIL 

was also found to have important immunomodulatory effects whereby SNAIL knockdown 

reduced tumor growth, increased CTL tumor infiltration, and decreased tumor-infiltrating 

MDSCs (77). Dongre et al. (2017) developed a model of EMP in mouse mammary tumor 

virus (MMTV) breast cancers using a SNAIL-driven yellow fluorescent protein (YFP) to 

identify SNAIL-high and SNAIL-low cells, which were labelled “quasi-mesenchymal” (akin 

to hybrid E/M) and epithelial, respectively (85). While the epithelial cells in this study were 

immunogenic, quasi-mesenchymal cells promoted an immunosuppressive TME associated 

with CTL exclusion from the tumor core, M2-like pro-tumor macrophage polarization, and 

decreased response to anti-CTLA-4 therapy. Interestingly, only a small percentage of quasi-

mesenchymal cells (10%) in mixed tumors was needed to cross-protect the surrounding 

epithelial malignant cells from immune attack, suggesting a potent immunosuppressive 

effect of the hybrid E/M state. A subsequent study from the same group identified genes that 

were enriched in quasi-mesenchymal cells yet did not affect hybrid E/M status to identify 

downstream mediators of immune suppression in the hybrid E/M state (66). Among these 

genes, CD73, CSF1, secreted phosphoprotein 1 (SPP1), galectin-3, MBL associated serine 

protease 1 (MASP1), and CXCL12 all negatively regulated the number and function of 

CTLs (Figure 2). However, knockdown of only CD73, CSF1, or SPP1 could mobilize CTLs 

into the tumor core. Of these, CD73 was the only gene that upon knockdown led to tumor 

regression and decreased metastasis in anti-CTLA-4 therapy. This is one of the first studies 

establishing a causal role of the hybrid E/M state in immune modulation and resistance to 

ICB therapy (66).

Like SNAIL, ZEB1 has also been shown to confer immune resistance. In a K-Ras model 

of lung adenocarcinoma, ZEB1 expression specifically in invading cancer cells directly 

upregulated the expression of immune checkpoint proteins PD-L1 and CD47, a surface 

protein that promotes TAM polarization to a tumor-promoting phenotype (78). The resultant 

PD-L1 induction and CD47-dependent polarization of TAMs created a protective niche for 

invading cancer cells that was deficient in CTLs. This study demonstrates a direct link 

between EMP and immune resistance (78). Regulation of PD-L1 by ZEB1 was also found in 

an experiment implementing the K-ras LA1/+p53R172HΔg/+ (KP) mouse model of NSCLC 

that demonstrated ZEB1 increases PD-L1 expression by repressing miR-200, a miRNA that 

binds PD-L1 mRNA (125) (Figure 3).

EMP and Macrophage Polarization

Macrophages play a key role in EMP, and in a mouse model of skin squamous cell 

carcinoma, macrophage depletion by anti-CSF1R and anti-CCL2 blocking antibodies 

decreased tumor formation and caused a shift of malignant cell states toward more 
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epithelial-like phenotypes (135). Positive feedback loops between malignant cells and TAMs 

promoted the induction of EMP and ultimately facilitated intravasation. In a breast cancer 

mouse model, macrophages induced EMP via CCL18 while malignant cells with an EMP 

phenotype could induce macrophage secretion of CCL18 through GM-CSF along with 

environmental factors of the TME including lactate (62) (Figure 2). The expression of 

this GM-CSF and CCL18 positive feedback loop was associated with metastasis in mouse 

models and worse outcomes in patients. Similar to the GM-CSF and CCL18 positive 

feedback loop, macrophage-secreted IL-6 has been shown to modulate EMP through 

activating signal transducer and activator of transcription 3 (STAT3) signaling in cancer 

cells, which increases metastasis and macrophage recruitment through CCL2 (151) (Figure 

2). In a separate study focusing on NSCLC, TAMs were found to create a pro-tumor niche, 

including induction of EMP and recruitment of Tregs in early tumorigenesis and seeding 

of a NSCLC cell line injected through the tail vein (152). These studies illustrate that 

the hybrid E/M phenotype promotes macrophage polarization into a phenotype that both 

sustains hybrid E/M phenotypes and the tumor-promoting macrophage phenotype itself, 

ultimately contributing to tumor progression.

Opposing Roles of NK Cells in EMP

Evidence for the role of EMP in regulating NK cells is controversial due to pleotropic, 

even conflicting, observations across studies. In melanoma cells, induction of EMP was 

found to increase resistance to NK cell cytotoxicity, which the authors attributed to increased 

surface expression of MHC class I – a suppressive signal to NK cells – along with decreased 

expression of ligands that activate NK cells (153) (Figure 2). Interestingly, no significant 

difference was observed in the surface expression of the NK cell activating ligand NKG2D 

upon EMP induction (153). Increased NK cell resistance was also shown in mesenchymal 

subclones from lung adenocarcinoma (compared to epithelial subclones) via sustained 

hypoxic stress of IGR-Heu cells established from primary NSCLC tumor samples (74). 

Increased resistance to NK cell cytotoxicity in the mesenchymal clones was associated with 

reduced tyrosine phosphorylation in contact areas of NK cells with mesenchymal subclones 

indicative of decreased NK cell activation. Hybrid E/M states facilitated this resistance – 

inhibiting EMP in the hypoxia-driven mesenchymal subclones increased their susceptibility 

to NK cell-mediated killing.

While some studies show decreased susceptibility of malignant cells to NK cell killing 

associated with EMP (153), others show increased susceptibility of malignant cells to 

NK cell cytotoxicity upon induction of EMP. For instance, in human lung cancer cell 

lines, TGFβ-mediated EMP induction triggered the initiation of metastasis yet increased 

susceptibility to NK cell-mediated killing by both a human NK cell line and NK cells 

isolated from healthy donors, which acted as a rate limiting step in EMP-driven metastasis 

(154). In this study, spontaneous metastasis of lung cancer cells was observed upon NK 

cell depletion in RAG1−/− mice, which lack T and B cells but retain functional NK cells. 

In addition to the findings in lung cancer, this study showed a similar effect of increased 

NK cell susceptibility in EMP-induced estrogen receptor positive breast cancer cell lines 

(154). A potential mechanism for these findings is that EMP induces the expression of 

the NK cell activating ligand cell adhesion molecule 1 (CADM1), while downregulating 
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type 1 E-cadherin ligand that inhibits NK cells (154). Interestingly, while EMP induction 

in this study was associated with increased expression of NKG2D ligands, namely UL16 

Binding Protein 1 (ULBP1) and ULBP4, blocking NKG2D on NK cells did not affect 

NK cell-mediated lysis. However, another study has shown that inhibition of the NKG2D 

receptor with blocking antibodies decreased NK cell cytotoxicity against EMP-induced 

malignant cells (155). The contrasting findings of these studies may be due to differences 

in disease models and/or heterogeneity of EMP across cancer types. Further investigation 

of EMP and NK cell interactions will be critical to resolve these seemingly contradictory 

results and might reveal context-specific cues for these observations.

Although prior studies have provided limited insight into how malignant cells may leverage 

EMP to manipulate the surrounding immune cells, a recent study explored the role of 

NK cell-mediated cytotoxicity towards CTCs in a single cell form compared to CTCs in 

clusters using an in vivo mammary tumor model (94). Interestingly, CTC clusters had 

higher expression of an epithelial-related gene set (specifically genes which are suppressed 

by ZEB1 during EMT) and CDH1-related genes (whose low expression indicates a 

downregulation of E-cadherin). These more epithelial-like CTC clusters showed relatively 

decreased susceptibility to NK cell-mediated cytotoxicity relative to CTCs travelling as a 

single cell, which provided a metastatic advantage to the CTC clusters. Perturbation of 

EMP by the ZEB1 inhibitory miRNA, miR-200c, led to a more epithelial-like phenotype 

in the mammary cancer cells accompanied by a switch from single-cell dissemination to a 

collective dissemination as CTC clusters. Increased susceptibility of single cell CTCs to NK 

cell cytotoxicity upon induction of EMP was dominantly mediated by the NKG2D signaling 

pathway (Figure 2). Thus, this study suggests that EMP may confer mesenchymal features 

at the primary site to promote invasion while subsequently inducing epithelial features in 

circulation within CTC clusters to protect from NK cell cytotoxicity.

EMP and the Antigen Presentation Pathway

Signaling events associated with EMP contribute to decreased MHC class I presentation 

and result in an immune evasion phenotype (Figure 3). Peptides presented on MHC 

class I are generated in the proteasome or the immunoproteasome, the latter of which 

is the primary producer of MHC class I binding peptides and is induced by interferon 

gamma (IFNγ) (156). The immunoproteasome is defined by inclusion of catalytic subunits 

PSMB8, PSMB9, and PSMB10 (157). Increased expression of PSMB8 and PSMB9 has 

been associated with improved patient survival and slower disease progression in several 

cancers, including NSCLC (64) and melanoma (156). In melanoma, PSMB8 and PSMB9 

expression was the most predictive marker of a response to anti-CTLA-4 or anti-PD-1 

therapy, more so than an IFNγ gene signature, mutational load, or CTL infiltration (156). 

A clinical association between EMP and the immunoproteasome has been described in 

patient-derived samples of NSCLC, in which an intermediate mesenchymal phenotype 

(akin to hybrid E/M) with dual expression of epithelial and mesenchymal markers showed 

decreased immunoproteasome expression (64) (Figure 3). Similarly, EMP induced by TGFβ 
in NSCLC cell lines was associated with decreased protein levels of PSMB8 and PSMB9 

(64) (Figure 3). These mesenchymal-like, hybrid E/M NSCLC cell lines showed increased 

levels of phospho-STAT3 and decreased levels of phospho-STAT1 relative to epithelial-like 
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NSCLC cell lines. STAT1 is activated by IFNγ and is a main promoter of NLR family 

CARD domain containing 5 (NLRC5) protein, a key promoter of genes in the MHC class 

I antigen presentation pathway including the immunoproteasome subunits (158,159). Thus, 

as expected, treatment of mesenchymal NSCLC cell lines with IFNγ increased phospho-

STAT1 levels, immunoproteasome subunit expression, and lysis by CTLs (64). However, 

a pathway connecting EMP explicitly with STAT1 and NLRC5 in their regulation of 

antigen presentation has yet to be well defined, representing an opportunity to uncover 

new pharmacologic targets.

The EMT inducer AXL is implicated in downregulating MHC class I presentation genes 

in several cancer types, including NSCLC and melanoma (160) (Figure 3). AXL signaling 

mechanistically links EMP to an immune evasion phenotype. In the MMTV breast cancer 

model, a radiation therapy-resistant cell line was found to exhibit an EMP state along with 

increased AXL expression and decreased MHC class I expression relative to a radiation-

sensitive cell line (161). AXL knockdown promoted a more epithelial state, restored MHC 

class I expression, and promoted tumor elimination in vivo (161). A role of EMP in 

decreased MHC class I expression has also been noted in melanoma tumor samples, in 

which SNAIL was the highest expressed gene in HLA-low tumors (162). In this study, 7 out 

of the 16 melanoma tumor samples with anti-PD-1 resistance had downregulation of MHC 

class I, which was associated with an increase in EMP and its associated gene expression 

and pathway activation, including AXL, SNAIL, and TGFβ signaling.

Using the MMTV breast cancer model and a SNAIL-YFP reporter in malignant cells, 

Dongre et al. also identified a link between the hybrid E/M phenotype, SNAIL, and the 

antigen presentation machinery (66). In this study, cells in the quasi-mesenchymal state 

(akin to hybrid E/M) had lower expression of PSMB9 and STAT1 (Figure 3). Additionally, 

relative to epithelial-like cells, the quasi-mesenchymal cells showed downregulation of 

proteins in the MHC class I antigen presentation pathway, including transporter associated 

with antigen processing 1 (TAP1), TAP binding protein (TABP), and immunoproteasome 

subunit PSMB9. A chromatin immunoprecipitation sequencing (CHIP-seq) assay identified 

that SNAIL binds DNA in proximity to these MHC class I presentation genes, suggesting 

SNAIL may inhibit transcription of these genes (66). Collectively, these studies suggest 

that a more mesenchymal phenotype is associated with decreased MHC class I antigen 

presentation, which mechanistically may be explained by aberrant AXL signaling, STAT1/

STAT3 signaling, and SNAIL activity.

The Immunologic Synapse and EMP

The immunological synapse is an organized clustering of membrane-bound signaling and 

adhesive proteins between a T cell and any cell presenting an antigen, including malignant 

cells. Immunologic synapse disruptions have been observed in vitro between CTLs and 

mesenchymal malignant cells, namely decreased TCR signaling and reduced CTL killing 

of malignant cells with mesenchymal features (73–75). Adhesive proteins in the interaction 

of a CTL with an APC, including malignant cells, play an important role in effecting 

the tumor lysis capacity of CTLs. The interaction of CD103 (ITGAE) on CTLs with 

E-cadherin on malignant cells is one such adhesive interaction (Figure 4). The CD103-E-
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cadherin interaction mediates polarization of cytolytic granules and subsequent exocytosis 

to the surrounding cancer cells that mediates cancer cell lysis (163). CD103 expression is 

upregulated in CTLs by TGFβ signaling, and CD103+ CTLs have increased anti-cancer 

activity compared to CD103− CTLs as well as increased secretion of TGFβ in the TME, 

which self-sustains their CD103 expression (164). Interestingly, the CD103+ population 

of CTLs has been shown to include the vast majority of tumor-specific CTL clones in 

several malignancies (164,165). Moreover, CD103+ CTLs exhibit localization to cancer 

cells expressing E-cadherin in lung cancer samples, and in vitro CTL migration toward 

cancer cell lines expressing E-cadherin was inhibited by an anti-CD103 blocking antibody 

(164). It stands to reason that hybrid E/M malignant cells are uniquely suited to induce 

CD103 expression on CTLs due to their increased TGFβ expression and their localization 

to the tumor-stroma border, while their mesenchymal features prevent CTL-mediated 

lysis. Furthermore, sustained E-cadherin expression in a hybrid E/M state may promote 

recruitment of CD103+ CTLs to hybrid E/M cells at the tumor-stroma border that in turn 

contributes to the induction of a hybrid E/M state via CD103+ CTL secretion of TGFβ, 

a major inducer of EMP (7) (Figure 4). As immune cells are often excluded from the 

tumor core and positioned at the tumor-stroma interface adjacent to hybrid E/M malignant 

cells, investigation of adhesive interactions and associated signaling between hybrid E/M 

malignant cells and CTLs may reveal determinants of immune exclusion from the tumor 

core.

EMP and its Modulation of CTL Motility

Structural proteins within the ECM may be specifically secreted or regulated by hybrid E/M 

malignant cells, representing an additional layer of interaction with the immune system. For 

example, laminin-332 is a structural protein enriched in the hybrid E/M state and serves 

as an archetypal example, contributing to decreased CTL migration and effector functions 

(166). This heterotrimeric protein consists of laminin α3, laminin β3, and laminin γ2 and 

can be secreted to the apical surface to promote migration via interactions with α3β1 and 

α6β1 integrin receptors located at the apical surface of cancer cells (167,168). Laminin-332 

subunit enrichment at the leading edge has been observed in several cancer types, 

such as NSCLC, HCC, lung adenocarcinoma, and esophageal squamous cell carcinoma 

(27,166,169,170). Additionally, in three studies characterizing hybrid E/M states in primary 

samples or cancer cell lines, laminin-332 subunits were specifically enriched in the hybrid 

E/M state (27,35,171). Laminin γ2 expression can be induced by TGFβ through JNK/AP1 

signaling (166). Importantly, the laminin γ2 subunit of laminin-332 has been shown to 

decrease T cell chemotaxis, downregulate TCR expression, and be a predictor of poor 

response to anti-PD-1 therapy in NSCLC and esophageal squamous cell carcinoma patients 

and cancer models (166). Although the precise effect of laminins expressed by cancer cells 

on immune cell functions is not well understood, given that immune cells express a variety 

of integrins capable of binding laminins (172), the laminin-immune interactions appear to be 

an important source of immune modulation by hybrid E/M malignant cells.

A major limitation in existing knowledge related to EMP and immune interactions is the use 

of approaches that merely capture a “snapshot” of in vitro CTL-hybrid E/M malignant cell 

interactions. In vivo studies of CTL-tumor interactions have found that CTLs remain motile 
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while on a target cell, have heterogenous killing rates ranging from zero to twelve target 

cells per day, and that malignant cells are more likely to die with multiple CTL interactions 

(173–175). Thus, assessing CTL killing in vitro as a snapshot of functional synapses as 

has been done in EMP and CTL interaction studies to date does not capture the complex 

cellular dynamics essential to tumor elimination. Indeed, CTL migration and scanning for 

antigens across the tumor-stroma border is important for CTL-mediated lysis: A study of 

CD44-knockout CTLs showed that these CTLs were less efficient in tumor killing due to 

decreased ability to migrate across the tumor despite retaining antigen-TCR interactions 

(176). Given that CTL motility across a tumor is crucial for tumor elimination and hybrid 

E/M malignant cells are localized at the tumor edge, investigation into the relation of hybrid 

E/M states and CTL interactions may reveal insights into mechanisms of tumor immune 

evasion that are associated with EMP.

EMP Confers Resistance to CTL Cytotoxicity

Cancer cells that retain MHC class I expression and antigen presentation for recognition 

by CTLs have mechanisms related to EMP that may prevent CTL-mediated lysis, including 

resistance to caspase- or mitochondrial-dependent apoptosis and the induction of autophagy. 

The EMP-associated TFs brachyury and MUC1 mediate CTL resistance (67,68,177) (Figure 

3). Death ligands expressed on CTLs, such as Fas ligand (FASL) and TNF-related apoptosis 

inducing ligand (TRAIL), bind death receptors on target cells to induce intracellular 

signaling pathways in the target cell that lead to cell death (178). CTL cytotoxicity is also 

mediated by perforins that perforate the membrane and serine proteases called granzymes 

that enter the target cell (178). Brachyury has been shown to prevent caspase-mediated 

nuclear laminin degradation through CDK1 in the death receptor/death ligand pathway 

of CTL cytotoxicity in pancreatic, breast, lung, and colon cancer cell lines (177) (Figure 

3). In CRC cell lines, brachyury has been shown to stabilize MUC1 mRNA, which 

in turn conferred increased resistance to mitochondrial-induced apoptosis and perforin- 

and granzyme-mediated lysis (67) (Figure 3). While EMP can support an anti-apoptosis 

phenotype in malignant cells, the anti-apoptotic proteins can also, in turn, induce EMP. For 

instance, the anti-apoptotic Bcl-2 family of proteins are involved in the induction of E/M 

states in cancer while also functioning to prevent granzyme-mediated apoptosis in malignant 

cells (179–181). Additionally, though classically described as anti-tumor interactions, the 

FAS/FASL interaction and the TRAIL-R1 and -R2 receptors that are implemented in CTL 

tumor killing also play important roles in modulating EMP in malignant cells (182,183).

Autophagy is a mechanism of CTL resistance that acts by neutralizing granzymes as seen 

in breast cancer cell lines exposed to hypoxia, a known inducer of hybrid E/M states (184). 

The breast cancer cell line MCF-7 transfected with the EMP TF SNAIL displayed greater 

resistance to CTL lysis than the parental, epithelial-like MCF-7 cells due to autophagy 

induction (73). A role for autophagy induction in CTL resistance was also identified in a 

CRISPR screen using several mouse and cancer cell lines involving 19,069 protein-coding 

genes (185). In both the CRISPR screen and SNAIL transfection studies, pharmacologic 

inhibition of autophagy increased CTL-mediated lysis of cancer cells. While EMP and 

autophagy are associated with CTL resistance, the mechanistic links between these two 

processes and signaling pathways are still undetermined. For instance, while the induction of 
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autophagy resists CTL-mediated lysis in hybrid E/M-induced MCF-7 cells, the induction of 

autophagy can also inhibit EMP through destabilization of EMT TFs (69). As the autophagy 

pathways involve stabilization or degradation of EMT TF proteins, we suspect there may 

be relevant post-translational interactions between the autophagy pathway and EMT TFs 

contributing to broader EMP regulation and CTL resistance.

Clinical Trials Coupling Immune Checkpoint Blockade with Agents 

Targeting EMP

As studies elucidate the critical signals mediating EMP and immune escape, there has 

been a corresponding increase in clinical trials addressing these pathways. Targeting 

EMP immune escape via inhibition of TGFβ, AXL, or IL-8 in combination with ICB 

is being evaluated in 88 clinical trials ranging from phase I to III in several solid 

cancer types. Most notably due the prominent role of TGFβ in EMP, 70 clinical trials 

– including phase I to phase III – feature TGFβ inhibition combined with ICB. These 

anti-TGFβ agents include small molecule inhibitors of TGFβ signaling including vactosertib 

(NCT03724851, NCT03732274, and NCT04064190) and LY3200882 (NCT02937272 and 

NCT04158700), the anti-PD-L1/TGFβ decoy receptor fusion proteins bintrafusp alfa (e.g., 

NCT04220775) and SHR-1701 (e.g., NCT04856774), and anti-TGFβ antibodies including 

BCA101 (NCT04429542), NIS793 (NCT04390763 and NCT02947165), and SAR439459 

(NCT04524871). AXL inhibition combined with ICB is in 13 clinical trials ranging from 

phase I to phase III. AXL inhibitors include multi-tyrosine kinase inhibitors that inhibit 

AXL including cabozantinib (e.g., NCT04471428), INCB081776 (NCT03522142) and 

sitravatinib (NCT03941873 and NCT03666143), the AXL-specific inhibitor bemcentinib 

(NCT03654833 and NCT03184571), and the decoy receptor batiraxcept (NCT04004442 

and NCT04019288) that binds the AXL ligand Gas6. Inhibitors of IL-8 being used in 

combination with ICB include the anti-IL-8 antibody BMS-986253 (NCT03689699 and 

NCT04572451) and SX-682 (NCT04599140, NCT04477343, and NCT03161431), which 

inhibits the IL-8 receptors CXCR1 and CXCR2.

The results of these clinical trials and mechanistic study of these combination therapies 

have yet to be completed. As such, the efficacy and mechanisms related to targeting the 

hybrid E/M cell-immune crosstalk from these combination therapies remain uncertain but 

will provide critical insight into the role of targeting EMP to improve ICB efficacy and 

patient outcomes. Given that even a small percentage (10%) of hybrid E/M cells can provide 

immune evasion to a tumor, identifying these mechanisms of immune evasion may reveal 

novel therapeutic targets to enhance ICB (85). Indeed, Dongre et al. (2021) found that CD73 

expressed specifically in hybrid E/M cells supported tumor immune evasion, and upon 

knockdown, increased efficacy of ICB in a pre-clinical model of breast cancer (66). Future 

research that focuses on identifying hybrid E/M-specific mechanisms of tumor immune 

evasion may similarly define potential novel targets to increase ICB efficacy.

Conclusion

The study of EMP and immune interactions is an exciting field due to expanding evidence 

of a spectrum of hybrid E/M states with unique effects on the anti-tumor immune response 
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and therapeutic interventions. The spatial localization of malignant cells with a hybrid E/M 

phenotype at the tumor-stroma interface and in CTCs physically positions hybrid E/M cells 

in proximity to immune cells. EMP confers resistance to cytotoxicity from the anti-tumor 

immune response, while capitalizing on immune cell plasticity to polarize immune cells 

to an immunosuppressive phenotype that further promotes EMP. Indeed, this arrangement 

supports both soluble and contact signaling in the crosstalk between EMP and immune 

cells, which in general leads to immune suppression. Moreover, the spatial proximity to 

immune cells and the immunomodulatory effects of hybrid E/M malignant cells indicates 

that targeting the hybrid E/M state may overcome tumor immune evasion, especially in 

combination with ICB. Many studies to date have focused on classical EMT pathways in 

immune evasion and have identified associations between EMT and immune resistance. The 

distinction between a complete EMT and a hybrid E/M state and their presence in patient 

tumors are not always clear in prior studies. We believe that future investigations focused 

on establishing the mechanistic, causal roles of more subtle and distinct hybrid E/M states 

and their comparison to full mesenchymal states on immune evasion will be critical for 

advancing our understanding of tumor immunology and improving cancer treatment.
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Figure 1. Induction of EMP promotes tumor immune escape.
EMP is induced by environmental and genomic factors that canonically activate SNAIL, 

ZEB, and TWIST transcription factor families. Hybrid E/M states mediate tumor immune 

escape through evading immune cell cytotoxicity and polarizing immune cells to an 

immunosuppressive phenotype.
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Figure 2. Crosstalk between hybrid E/M malignant cells and stromal cell populations.
MDSCs and TAMs are recruited and polarized to a pro-tumor phenotype by secreted factors 

from hybrid E/M malignant cells, and in turn, the polarized MDSCs and TAMs secrete 

factors that promote EMP. Additionally, CAFs promote EMP through their secreted factors. 

At the same time, hybrid E/M malignant cells resist NK cell- and CTL-mediated cytotoxicity 

via membrane bound proteins and secreted factors.

Mullins et al. Page 27

Cancer Res. Author manuscript; available in PMC 2023 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. The hybrid E/M state prevents immune recognition and anti-tumor cytotoxicity of 
cancer cells by CTLs.
The hybrid E/M state prevents CTL recognition due to downregulation of the antigen 

presentation pathway. The tumor killing mechanisms of CTLs, including granzymes, FAS/

FASL, and TRAIL/TRAILR, are blocked by hybrid E/M-associated signaling pathways 

including increased PD-L1 expression, autophagy induction, and inhibition of caspase-

dependent cell death.
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Figure 4. Potential regulation of the immunological synapse by hybrid E/M cells.
Hybrid E/M cells resist CTL-mediated cytotoxicity yet maintain adhesion proteins, such as 

E-cadherin, that are implemented in the immunological synapse with CD103+ CTLs, which 

secrete TGFβ and thereby may promote the hybrid E/M state.
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