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Abstract

Much debate has concerned the separability of executive function abilities and intelligence, 

with some evidence that the two constructs are genetically indistinguishable in children and 

adolescents but phenotypically and genetically distinct in older adolescents and adults. The 

current study leveraged data from twin and adoption studies to examine executive function’s 

genetic structure in adulthood (M=33.15 years, SD=4.96) and its overlap with intelligence. 1238 

individuals (170 MZ twin pairs, 154 DZ twin pairs, 95 biological sibling pairs, 80 adoptive 

sibling pairs, and 240 unpaired individuals) completed 6 executive function tasks as well as the 

Weschler Adult Intelligence Scale-III as part of the Colorado Adoption/Twin Study of Lifespan 

behavioral development and cognitive aging (CATSLife). Results replicated the unity/diversity 

model of executive function that distinguishes general executive function abilities (Common 

EF) from abilities specific to working memory updating (Updating-specific) and mental set 

shifting (Shifting-specific). In the final model, broad-sense heritability was high for Common 

EF (h2=.72), Updating-specific (h2=1.0), and Shifting-specific (h2=.60) factors, as well as for 

full-scale intelligence (h2=.74). Intelligence was phenotypically and genetically correlated with 

Common EF (r= .49, broad-sense rg= .44) and Updating-specific (r= .60, rg= .69) abilities. This 

study represents the first executive function study to apply the adoption design. Leveraging the 

combined twin and adoptive design allowed us to estimate both additive and nonadditive genetic 

effects underlying these associations. These findings highlight the commonality and separability 

of executive function and intelligence. Common EF abilities are distinct from intelligence in 

adulthood, with intelligence also strongly associated with Updating-specific abilities.
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Executive functions (EFs) are a set of domain-general cognitive control processes that 

enable goal-directed behavior (Miyake & Friedman, 2012; Miyake et al., 2000). EFs are 

typically assessed with measures of distinct yet correlated abilities, including prepotent 

response inhibition, working memory updating, and mental set shifting (Miyake et 

al., 2000). A Common EF factor captures the general covariation across multiple EF 

components. The constructs of intelligence or general cognitive ability (g) were developed 

earlier to account for the variance across a much broader range of cognitive tasks (Neisser 

et al., 1996; Spearman, 1904). For many years, researchers have debated whether EFs and 

intelligence represent truly distinct abilities, or if the cognitive control abilities captured 

by EFs are encapsulated by the general abilities reflected in measures of intelligence or g 
(Kyllonen & Christal, 1990; Salthouse, 2005). Genetic studies can inform this debate by 

quantifying construct similarity at different levels of analysis: genetic and environmental.

Here, we address the commonality and separability of EFs and intelligence at the phenotypic 

and genetic/environmental levels by leveraging latent variable analyses of data from a 

combined twin and adoption study of adults. We test the hypothesis that Common EF 

abilities are only moderately correlated with intelligence measures in adulthood, with 

additional correlations between intelligence and variance specific to working memory 

updating ability. Combining twin and adoption samples provides a unique opportunity to 

simultaneously quantify two sources of genetic influences (additive, dominance) and two 

sources of environmental influences (shared and nonshared within families), as well as how 

these influences on EFs and intelligence covary (c.f., Matteson, McGue, & Iacono, 2013; 

Plomin & DeFries, 1985). Specifically, in addition to the additive genetic and nonshared 

environmental influences that are consistently observed for both EFs and intelligence, we 

evaluate the hypothesis that intelligence has some small shared environmental influences 

whereas EFs are instead influenced by dominance (nonadditive) genetic influences.

Unity and Diversity Framework of Executive Function

The term EF is used to capture a wide range of abilities that contribute to the regulation 

of thoughts and behavior. The most frequently studied EFs in latent variable models are 

stopping automatic or dominant responses (response Inhibition), Updating working memory, 

and Shifting between mental sets (Miyake & Friedman, 2012; Miyake et al., 2000). Miyake 

et al. (2000) demonstrated that latent factors for Inhibition, Updating, and Shifting share 

considerable variance, referred to as the “unity” of EFs. However, they also represent 

separable processes (rs=.42 to .63, significantly less than 1.0), demonstrating the “diversity” 

of EFs. The more recent unity and diversity framework of EFs is a reparameterization of the 

original correlated-factors approach in which variance across EF tasks is decomposed into 

three orthogonal latent factors: Common EF, Updating-specific ability, and Shifting-specific 

ability (Friedman et al., 2008). As yet, there is no evidence for inhibition-specific variance, 

Gustavson et al. Page 2

J Exp Psychol Gen. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



suggesting that all the EF-relevant individual differences in response inhibition are captured 

by Common EF.

Common EF is thought to reflect the ability to create, maintain, and use goals to bias 

ongoing cognitive processes, as these general goal-management processes are needed across 

multiple situations. Updating-specific ability is thought to reflect the selective gating of 

information in to and out of working memory, as well as memory retrieval. Shifting-specific 

ability is thought to reflect the ability to flexibly replace goals that are no longer necessary 

(Friedman & Miyake, 2017; Miyake & Friedman, 2012). Researchers have demonstrated 

that Common EF is associated with a wide range of important cognitive, personality, and 

mental health traits (Friedman, du Pont, Corley, & Hewitt, 2018; Gustavson et al., 2019; 

Gustavson, Miyake, Hewitt, & Friedman, 2015; Ito et al., 2015). In contrast, Updating-

specific and Shifting-specific abilities are typically not strongly associated with these other 

traits, supporting the idea that the Common EF factor captures the aspects of EF most 

relevant to everyday cognitive control, self-restraint, and goal management (Gustavson et al., 

2015).

Executive Functions and Intelligence

Early views of EFs and intelligence highlighted that EF-related traits such as inhibition-

related processes are important components of intelligence (Dempster, 1991) and 

demonstrated especially strong correlations between working memory capacity and 

intelligence (Carpenter, Just, & Shell, 1990; Colom, Rebollo, Palacios, & Juan-Espinosa, 

2004; Engle, Tuholski, Laughlin, & Conway, 1999; Kyllonen & Christal, 1990). Others, 

using a neuropsychological approach, highlighted the fact that patients with frontal lobe 

damage (often associated with EF deficits) also showed impaired fluid intelligence, but 

not crystallized intelligence (Duncan, Burgess, & Emslie, 1995; Duncan et al., 1996). 

Since Miyake et al.’s (2000) study, more individual differences work has focused on the 

overlap between EFs and intelligence using individual measures or latent variables capturing 

Inhibition, Shifting, and Updating. This work has confirmed that intelligence measures are 

correlated with each of these aspects of EF (Friedman et al., 2006; Salthouse, Atkinson, & 

Berish, 2003; Unsworth et al., 2009).

Genetic studies have also been useful in understanding individual differences in EFs and 

their relations to intelligence. For example, in late adolescence, genetic influences appear to 

explain the vast majority of the variance in Common EF (98%), Updating-specific (99%), 

and Shifting-specific (79%) latent variables, with considerable genetic correlations between 

Common EF and full scale intelligence (additive genetic correlation [ra]=.57) and between 

Updating-specific ability and intelligence (ra=.56) (Friedman et al., 2008). The Friedman et 

al. (2008) study was important in demonstrating that the genetic influences on intelligence 

are not identical to those on Common EF. Rather, intelligence was also associated with 

Updating-specific variance, in line with earlier proposals that intelligence appears tightly 

linked with working memory capacity (Kyllonen & Christal, 1990) but not necessarily 

other EF abilities. In other words, working memory capacity and updating ability may 

be most strongly associated with intelligence because it is a combination of Common 

EF and Updating-specific processes: Common EF is necessary to establish a strong task 
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representation and focus attention, and Updating-specific ability is necessary to support 

working memory operations such as addition of new information or removal of irrelevant 

information. Both processes are strongly – yet independently – associated with intelligence.

Similar results were recently observed in a middle-aged sample (Gustavson et al., 2018b). 

A latent Common EF factor based on seven EF tasks was phenotypically correlated 

with a measure of general cognitive ability (r=.54, ra=.59), but so was a latent factor 

capturing variance specific to working memory (r=.09, ra=.24). The smaller correlation with 

working memory-specific processes in this study compared to the Friedman et al. (2008) 

study was likely due to the reduced demands on updating in neuropsychological working 

memory tasks (Gustavson et al., 2018b), consistent with earlier research demonstrating 

stronger associations with intelligence as demands on working memory updating (vs. 

working memory span) increase (Engle et al., 1999). Nevertheless, this work demonstrates 

independent associations between intelligence, Common EF, and working memory abilities. 

Across both studies, the strong genetic correlations but weak environmental correlations 

indicate that EFs and intelligence share considerable genetic influences but are differentiated 

by environmental influences.

Shifting-specific ability has only been examined in relation to intelligence in one earlier 

investigation (Friedman et al., 2008). In contrast to the results for Updating-specific, 

Shifting-specific was weakly negatively associated with concurrent intelligence in this study 

at the genetic level (ra= −.20). These findings were intriguing in that they suggest that the 

flexibility thought to be captured by Shifting-specific factor — the ease of transitioning to 

new task-set representations (Goschke, 2000; Miyake & Friedman, 2012) — could be at 

odds with Common EF processes or intelligence tests that require individuals to strongly 

engage a task set and maintain this task representation. However, studies have not yet 

replicated this result, and it is possible that Shifting-specific ability and intelligence are 

simply unrelated.

A twin study of children and adolescents (mean age 11 years) demonstrated strong 

phenotypic and genetic overlap between a latent Common EF factor and full-scale 

intelligence (r=.71; ra=.92) (Engelhardt et al., 2016). Although these findings suggest 

that Common EF and intelligence are nearly indistinguishable at the genetic level, this 

hierarchical model did not distinguish Common EF from Updating-specific variance. In fact, 

their Common EF factor had higher factor loadings on their Updating (.92) and Working 

Memory span (.80) subfactors compared to the Inhibition (.52) and task Switching (.73) 

factors). Another study of similarly aged children (mean age 10 years), including twins, 

from the Adolescent Brain and Cognitive Development study also found a high genetic 

correlation between Common EF and intelligence (r=.64; ra=.86) which did not significantly 

differ from 1.0 (Freis et al., 2021). However, this study also found that intelligence was 

correlated with the small amount of variance specific to working memory updating tasks in 

that sample (r=.81; ra=.36), over and above its relation to Common EF.

The factor structure of EFs appears to be unitary in children before about age 10–12 

(Brydges, Fox, Reid, & Anderson, 2014; Hartung et al., 2020), suggesting that potentially 

independent genetic associations between intelligence and Common EF versus Updating-
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specific ability may only emerge in late adolescence and adulthood. Such findings are 

consistent with another phenotypic study demonstrating strong associations of a unitary EF 

factor with fluid and crystallized intelligence in children (Brydges, Reid, Fox, & Anderson, 

2012).

A key way that genetic studies can be utilized to understand the difference between EFs and 

intelligence is by examination of shared environmental versus dominance genetic influences. 

Although shared environmental influences are small for intelligence, they reliably explain 

10–25% of the variance (Engelhardt et al., 2016; Friedman et al., 2008; Lyons et al., 2009; 

Rowe, Vesterdal, & Rodgers, 1998). In contrast, studies of EF have found little evidence 

for shared environmental influences on Common EF or EF-specific factors in adolescents or 

young adults (Engelhardt et al., 2016; Friedman et al., 2016; Friedman et al., 2008). Instead, 

twin correlations from these studies suggest there may be both additive and dominance 

genetic variance on EF abilities (i.e., the within-trait correlations among monozygotic [MZ] 

twin pairs are greater than 2 times the correlation among dizygotic [DZ] twin pairs). An 

exception is that in one sample of middle-aged adults, shared environmental influences 

on Common EF were observed and correlated with those for general cognitive ability 

(Gustavson et al., 2018b). However, twin correlations for individual EF tasks in this sample 

showed some evidence for dominance genetic influences at both waves (mean age 56 & 62 

years; Gustavson et al., 2018a).

Unfortunately, with a classic twin design involving only MZ and DZ twin pairs, it 

is impossible to estimate both shared environmental influences and dominance genetic 

influences in the same model. Researchers typically chose ACE models (i.e., Additive 

genetic, shared/Common environment, and nonshared Environmental influences) over ADE 

models (with Dominance genetic influences instead of common environmental influences) 

because dominance genetic influences are inconsistently suggested by twin correlations and 

their detection is underpowered even in large samples (Martin, Eaves, Kearsey, & Davies, 

1978). However, twin correlations are imperfect indicators of these influences, because if 

both dominance genetic variance and shared environmental variance influence a trait and 

only one is estimated, these two influences actually cancel one another out in the estimates 

of C only or D only. This cancelling out occurs because shared environmental influences 

tend to make DZ twin correlations larger, whereas dominance genetic influences tend to 

make DZ twin correlations smaller, in comparison to MZ twin correlations.

Estimating a full ADCE model requires an extended family design that includes another 

group with a different degree of relatedness, with a group of unrelated adopted siblings 

providing the greatest increase in power (Plomin & DeFries, 1985). Indeed, even though 

twin correlations typically support shared environmental influences on intelligence, when an 

extended family design is used there is evidence for weak dominance genetic variance as 

well (Keller et al., 2013). Because EFs and intelligence measures are both highly heritable, 

but may differ in the magnitude of their dominance genetic and shared environmental 

influences, being able to estimate all four variance components in the context of a single 

model will shed more light on the commonality and separability of these constructs.
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As a final point, genetic studies of EFs in adulthood are almost entirely absent. Quantifying 

the heritability of EF factors and their overlap with intelligence in this adult period (late 20s 

to late 40s), when frontal lobes have fully developed but cognitive decline may have not yet 

begun, will provide an important data point in the development of this relationship. It will 

also shed light on whether shared environmental influences for Common EF begin to reveal 

themselves earlier than middle age (Gustavson et al., 2018a).

Hypotheses of the Current Study

We examined phenotypic and genetic/environmental associations of Common EF, Updating-

specific, and Shifting-specific factors with intelligence in combined twin and adoption 

studies from the Colorado Adoption/Twin Study of Lifespan behavioral development and 

cognitive aging (CATSLife) project (Wadsworth et al., 2019). We predicted that intelligence 

would be associated with both Common EF and Updating-specific abilities, and that these 

associations would be primarily driven by genetic correlations. Given the high heritability 

estimates from earlier twin samples, we expected EF factors would be explained by both 

additive and dominance genetic variance, especially Updating-specific ability, which was 

almost entirely explained by genetic influences (Friedman et al., 2016). An open question 

concerned whether there would be unique genetic/environmental variance on intelligence 

after accounting for those genetic and environmental influences on Common EF and 

Updating-specific ability.

Method

Participants

Analyses were based on 1238 individuals (M=33.15 years, SD=4.96) who completed 

measures of EF and intelligence as part of the ongoing Colorado Longitudinal Twin Study 

(LTS) EF-MRI (Corley et al., 2019) and CATSLife projects (Wadsworth et al., 2019). This 

total included 700 individuals from same-sex twin pairs from the LTS (M=29.33 years, 

SD=1.27) and 538 individuals from the Colorado Adoption Project (CAP; M=38.12 years, 

SD=3.27), and included EF data collected for LTS EF-MRI study or CATSLife between 

2014–2020 and intelligence data collected in CATSLife between 2015–2020. These studies 

were approved by the institutional review board at the University of Colorado Boulder.

The LTS subsample was originally recruited through the Colorado Department of Health 

based on twins born between 1984 and 1990 and is representative of the population of 

Colorado at that time. Participants identified as White (91.6%), Hawaiian, Pacific islander, 

American Indian, or Alaskan (1.6%), more than one race (5.4%), or unknown or unreported 

race (1.4%). Hispanic individuals comprised 9.7% of the sample. For more information on 

the sample characteristics, see Corley et al. (2019). Genetic analyses included 170 full MZ 

twin pairs, 154 full DZ twin pairs, and 52 unpaired twins.

The CAP subsample was recruited beginning in 1975 through two Denver adoption agencies 

(Plomin & DeFries, 1983). Parents were recruited with a one-to-one ratio of adoptive and 

nonadoptive parents. Initially, the first younger sibling in the family was also enrolled, but 

later studies expanded to include other siblings. Participants identified as White (92.2%), 
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Asian (5.0%), American Indian or Alaskan (1.3%), Black or African American (0.6%), 

or more than one race (0.9%). Hispanic individuals comprised 0.9% of the sample. For 

preliminary phenotypic analyses and data harmonization, all siblings were included. For 

genetic/environmental models, we chose siblings to pair with each proband based on the 

order of enrollment (i.e., first male or female sibling). If they had both a male and female 

sibling, we chose the sibling with the most data. If both had complete data, we chose the 

same-sex sibling. In these analyses, we had 95 biological sibling pairs, 80 adoptive sibling 

pairs, and 188 unpaired siblings (including 21 individuals excluded in genetic analyses for 

being the 3rd sibling in a family or different type of relationship [i.e., half-sibling]).

Procedure

Participants completed the study in one of two ways: All individuals from the CAP and a 

subset of LTS completed EF and intelligence measures as part of the first wave of CATSLife 

(collected from 2015 to 2020). The remaining LTS participants (n=485) completed 3 of 

the EF tasks (antisaccade, keep track, number-letter switching) in an MRI scanner and the 

remaining 3 EF tasks outside the scanner as part of a separate assessment (LTS EF-MRI) 

M=0.17 years (SD=.77) before the primary CATSLife assessment (Corley et al., 2019). 

These individuals did not redo the EF tasks during CATSLife because the assessments were 

close in time. Some individuals completed EF tasks as part of both assessments (n=175) 

when EF-MRI and CATSLife were completed more than 1 years apart, so scores on the MRI 

and non-scanner versions of these 3 EFs tasks were harmonized based on these individuals 

(see Data Analysis). For these 175 individuals, we analyzed data based on their CATSLife 

assessment, which was completed M=1.75 years (SD=.89) after the EF-MRI assessment. 

The exception was the letter memory task, which showed evidence for practice effects, 

t(170)=8.50, p<.001, so we kept the first assessment (typically, EF-MRI). Intelligence was 

assessed during the CATSLife assessment for all subjects.

Measures

The measures reported here represent a subset of those available from the EF-MRI and 

CATSLife studies, which are both large-scale studies of cognition and health that build 

on decades of longitudinal assessments. In this section, we describe only those measures 

related to EF and intelligence (and only those collected at the most recent assessment for 

CATSLife), as all other measures were outside the scope of this investigation.

Executive function.—Six EF tasks, two per latent construct (Inhibition, Updating, and 

Shifting), were selected from the original set of nine tasks used in prior studies with the 

LTS sample (see Friedman et al., 2016). These six tasks were selected because they had 

the highest factor loadings on their respective factors. The scanner versions of the tasks 

were similar to the laboratory versions, in that they were designed to elicit individual 

differences in performance, but also to enable MRI analysis (i.e., including jittered timings 

and comparison conditions).

Inhibition.: The two inhibition tasks required participants to stop a dominant or prepotent 

response. The color-word Stroop task (Stroop, 1935) required participants to avoid the 

dominant tendency to read words, and instead name the colors in which the words were 
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printed (on a black background). This task, which was completed in the laboratory for all 

participants, was the same one used at the age 23 LTS assessment (Friedman et al., 2016). 

On each trial, a 750 ms blank period was followed by a 250 ms white fixation cross, then 

a colored target, which remained on the screen until the participant reported the color. 

RTs were collected by using voice key, and stimuli disappeared as soon as the voice key 

detected the response. The task began with 10 practice and 42 actual neutral trials (colored 

strings of 3–5 asterisks), followed by a block of 10 practice and 42 actual congruent trials 

(RED, BLUE, and GREEN printed in the congruent color), and ended with two blocks of 

42 incongruent trials (color words printed in incongruent colors). Each block included two 

warm-up trials that were not included in the analyses. The dependent measure was reaction 

time (RT) interference, obtained by subtracting mean RT for correct asterisks trials from 

mean RT correct incongruent trials.

In the antisaccade task (Roberts, Hager, & Heron, 1994), participants had to avoid a 

reflexive tendency to saccade to a cue stimulus and instead immediately look to the 

opposite side of the screen in time to identify a digit (1–9) that appeared briefly before 

being masked. The non-scanner version was a shortened version of the one used at the 

age 23 LTS assessment (Friedman et al., 2016). Participants completed 12 practice and 18 

actual prosaccade trials to familiarize themselves with the task and reinforce the prepotent 

response, followed by 12 practice antisaccade trials then two blocks (36 antisaccade trials 

each) that increased in difficulty. Each trial began with a centered fixation cross that 

remained on the screen for one of nine durations from 1,500 to 3500 ms (in 250-ms 

increments). The subsequent cue was a black 1/8 in. square (inner edge 3.375 in. from the 

center), which appeared on the left or right of the screen with equal probability. The cue 

remained on the screen for 233 ms in the first antisaccade block and 200 ms in the second 

antisaccade block and the initial prosaccade blocks. Once it disappeared, a numeric target 

(a digit 1–9, 26 pt Helvetica font, presented in a 7/16 in. square with its inner edge 3.25 in. 

from the fixation) appeared for 150 ms before being masked, on the same side as the cue 

(prosaccade block) or on the opposite side (antisaccade blocks). The mask remained on the 

screen until the participant verbalized the target number (or guessed), and the experimenter 

entered the response, initiating the next trial. Each block contained two warm up trials that 

were not included in the analyses.

The scanner version of the antisaccade task consisted of shorter blocks (20 s each) of 

antisaccade trials that were intermixed with comparison prosaccade and fixation trials (24 

blocks of each; 5 trials per block for the prosaccade and antisaccade blocks). Each block 

was preceded by an instruction (TOWARD, AWAY, or FIXATION) indicating the trial type. 

Each trial began with a fixation lasting 1,000–3,000 ms (in 500 ms intervals), and the 

cue lasted for 233 ms, however, the duration of this cue was changed to 283 ms after the 

first 276 participants as we noticed low average performance in an interim analysis for 

another project. Targets were digits 0–9, and masks lasted 1650 ms, during which time 

the participant was instructed to vocalize the target. The dependent measure was the total 

accuracy across 72 antisaccade trials in the laboratory version and 60 antisaccade trials in 

the fMRI version.1
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Shifting.: The two shifting tasks required participants to switch between categorization 

dimensions according to a cue that appeared 350 ms before the stimulus and remained 

on the screen along with the target stimulus until the participant entered the response. In 

the category-switch task (Mayr & Kliegl, 2000), subjects judged whether words described 

something living or non-living or something bigger or smaller than a soccer ball, based 

on a cue symbol (a heart or a cross) that appeared above the word. This task, which was 

completed in the laboratory for all participants, was the same one used at the age 23 LTS 

assessment (Friedman et al., 2016). In the number–letter task (Rogers & Monsell, 1995), 

participants used two buttons on a ms-accurate button box to indicate whether number–letter 

or letter–number pairs contained a vowel or consonant or contained an odd or even number, 

based on where the stimulus appeared in a quadrant of a square on the screen (top or 

bottom). The cue was the darkening of the border around the quadrant in which the target 

would appear. The dependent measures for both tasks were local switch costs based on 

blocks in which the two tasks were intermixed: The mean RT during trials that required a 

switch between categorization rules minus the mean RT during trials where the same rule 

was repeated (64 trials per condition in the behavioral tasks, 96 per condition in the scanner 

version of the number–letter task).

The category switch task and the laboratory version of the number–letter task consisted of 

12 practice then 32 actual task 1 trials (living/nonliving or number), 12 practice then 32 

actual task 2 trials (small/big or letter), then 24 practice and 2 blocks of 64 actual mixed 

task trials (50% required a task switch). There was a 350 ms response to cue interval, and 

a 200-ms buzz sounded for errors (buzzes were removed for the scanner version). Each 

block included two (single-task blocks) or four (mixed blocks) warm-up trials that were 

not included in the analyses. In the scanner version of the number-letter task, the trials 

were arranged in shorter blocks of 13 trials (12 trials + 1 warm-up trial) each, which were 

intermixed with 20-s rest blocks. Each block was preceded by an instruction indicating 

the trial type (TOP, BOTTOM, MIXED, or FIXATION). In mixed blocks, half the trials 

were switch trials. The task contained 16 mixed blocks, 8 single-task blocks, and 8 fixation 

blocks.

Updating.: The two updating tasks required participants to monitor and continuously 

manipulate the contents of working memory. The letter memory task (Morris & Jones, 1990) 

was completed in the laboratory for all participants and was the same one used at the age 

23 LTS assessment (Friedman et al., 2016). Participants saw a list of letters presented one 

at a time for 3 seconds. With each letter, participants said aloud the four most recent letters 

that appeared. The dependent measure was the proportion of sets correctly rehearsed across 

12 trials (four trials each of length 9, 11, or 13 letters; 132 total sets). Points were given for 

rehearsing only the correct letters in the correct serial order.

In the keep-track task (Yntema, 1963), participants saw a list of 15 (laboratory) or 16 

(scanner) words presented one at a time on the screen at a rate of 2 seconds per word. 

1This was a speeded version of the antisaccade task, for which individual differences arise in the accuracy score. Because performance 
is typically at ceiling for prosaccade trials, prosaccade trials are not included in the performance score, consistent with the dependent 
measures used in previous work validating this model (Friedman et al., 2008; Miyake et al., 2000).
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The words were drawn from a list of 36 words, 6 words in each of 6 categories (animals, 

colors, countries, distances, metals, and relatives). They were instructed to remember only 

the most recent word presented from the target specified categories (displayed on the bottom 

of the screen during the entire trial) and respond at the end of the trial when a prompt 

appeared (“???”). In the scanner version, the response period lasted for 10 s during which 

the participant vocalized answers. In the laboratory version, participants also vocalized their 

answers, but there was no time limit. Recall trials were intermixed with fixation blocks and 

comparison READ trials in which participants were instructed to read words without trying 

to remember them. The dependent measure was the proportion of total words recalled across 

all 9 trials (36 words in the laboratory version: three trials each of three, four, and five 

categories; 33 words in the scanner version: three trials of three categories and six trials of 

four categories).

Intelligence.—Intelligence was assessed with the Wechsler Adult Intelligence Scale, third 

edition (WAIS-III; Wechsler, 1997). We used the full-scale intelligence quotient (IQ) score 

in all analyses.

Harmonization and Controlling for Demographic Characteristics

To create harmonized scores for the n=485 individuals who completed the antisaccade, keep 

track, and number-letter tasks in the MRI scanner only, we leveraged data from n=175 

individuals who completed both the MRI and behavioral versions of the task (M=1.75 years 

between assessments). First, we fit a linear model predicting behavioral task performance 

from MRI task performance. The regression weights from this model were then applied to 

the remaining 485 subjects who only completed the MRI version of the task (e.g., predicted 

keep track accuracy was 36.0 + 45.7*MRI accuracy). Laboratory and MRI versions of the 

tasks were highly correlated with one another (rs=.52 to .88; see supplement Table S1).

For genetic analyses, we also created residualized versions of all EF and intelligence 

measures by regressing out age, sex, race (White vs. all other groups), and ethnicity 

(Hispanic vs. non-Hispanic). Residualization procedures were conducted separately in each 

subsample (LTS and CAP), then the unstandardized residuals were combined for analysis.

Sample Size and Power Considerations

No a priori power calculations were conducted because we planned to include all individuals 

from the EF-MRI and CATSLife studies with available data at the time of analysis. 

Our sample size within LTS had already exceeded that from a previous study when the 

twins were in adolescence, which demonstrated Common EF and Updating-Specific were 

significantly genetically correlated with intelligence (Friedman et al., 2008). The addition 

of 538 individuals from CAP only increased power, especially the adopted sibling pairs 

(Plomin & DeFries, 1985). This study was not preregistered.

Sample Overlap with Prior Work

Some similar research questions have been examined using earlier data from these subjects. 

Most notably, Friedman et al. (2008) examined genetic associations between EFs and 

intelligence using data from only the LTS subjects (i.e., MZ and DZ twins) when they 
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completed the EF tasks for the first time at mean age 17 years, and Friedman et al. (2006) 

had reported phenotypic associations with intelligence in an earlier subset of this same 

dataset. LTS subjects returned at mean age 23 years to complete the EF tasks again. At this 

wave, we reported on the heritability of EF factors and their associations with personality 

constructs such as procrastination, impulsivity, and goal management ability (Friedman et 

al., 2020; Friedman et al., 2016; Gustavson et al., 2015), but not on associations with 

intelligence. The data examined here represent the complete third and most recent wave of 

EF data collection for LTS subjects (mean age 29 years). Although the complete age 29 

EF results have not been reported in any prior work, data available partway through data 

collection were included in prior studies. Specifically, phenotypic relationships between EF 

factor scores and neuroimaging measures were examined in the first 251 individuals tested 

(Reineberg et al., 2018; Smolker, Friedman, Hewitt, & Banich, 2018), and longitudinal 

phenotypic and genetic relationships between EFs and stressful life events were examined in 

the first 587 individuals tested (Morrison et al., 2021).

CAP subjects (i.e., biological and adopted siblings) completed the EF tasks for the first time 

during CATSLife, so this also represents the first study to examine EFs or their overlap with 

intelligence. Finally, some publications have reported on intelligence using earlier waves of 

LTS and/or CAP (Reynolds et al., 2019), including only one preliminary investigation that 

incorporated CATSLife data collected prior to 2018 (Reynolds et al., 2017). However, none 

of this work examined associations between EFs and intelligence (aside from the Friedman 

et al., 2006 and 2008 papers noted above).

Data Analysis

Data screening and trimming followed the same procedures as prior studies with this sample 

(e.g., Friedman et al., 2008; 2016). RT data excluded errors. Trials after errors were also 

excluded for the two shifting tasks, as switch vs. repeat trial types are ambiguous if they 

follow errors. For all RT-based tasks, a within-subject trimming procedure was applied 

within conditions prior to averaging RTs to obtain the best measures of central tendency 

(Wilcox & Keselman, 2003).2 To reduce the influence of extreme between-subject scores, 

we replaced task scores farther than three standard deviations from the group mean with 

values three standard deviations from the mean (<2.5% of observations for any one task). 

This trimming procedure was conducted separately within LTS-MRI and CATSLife sub-

groups (LTS subjects who were not included in the MRI study were included with CAP 

subjects in the CATSLife sub-group). Scores for the RT measures (i.e., Stroop, both switch 

costs) were multiplied by −1 in all analyses so higher numbers reflected better performance. 

Tasks were excluded for participants whose accuracy on that task was not significantly better 

than chance criteria (<2.5% for any given EF task). When possible, this criterion for each 

task was determined as the score at which the binomial p<.01 for achieving that score by 

chance.

2EF tasks elicit individual differences in both accuracy and RTs, and we include a mix of both in the task battery depending on what is 
most commonly done in previous studies. When RT is examined, there is a control condition that adjusts for the speed of performance 
(e.g., color-naming on the Stoop, single-task blocks for switching tasks) as there are ample individual difference in baseline processing 
speed. Control conditions are not used for accuracy tasks for which the control conditions (e.g., prosaccade) would be at ceiling.
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Phenotypic analyses were conducted using Mplus version 8.3 (Muthén & Muthén, 1998–

2017) and genetic analyses were conducted using the OpenMx package in R version 4.1.1 

(Neale et al., 2016). Both programs account for missing observations using full-information 

maximum likelihood. Model fit was determined based on chi-square tests (χ2), the root 

mean error of approximation (RMSEA), and the Comparative Fit Index (CFI). Models with 

the best fit had nonsignificant χ2 or χ2 < two times the degrees of freedom, RMSEA < 

.06, and CFI > .95 (Hu & Bentler, 1998). Significance of individual parameter estimates 

was established using standard error-based 95% confidence intervals (CIs) in phenotypic 

analyses and likelihood-based CIs in genetic analyses (Neale et al., 1989). 95% CIs are 

reported in the main text, but we also confirmed that p<.05 values reported in the tables were 

accurate with χ2 difference tests. Phenotypic analyses accounted for the clustering by family 

in the data with the “type=complex” command in Mplus, which yields standard errors and 

a χ2 statistic that are adequately adjusted for non-independence of twin data (Rebollo, de 

Moor, Dolan, & Boomsma, 2006; Satorra & Bentler, 2001).

Genetic analyses.

Genetic models were based on standard assumptions in twin and adoptive study designs 

(Neale & Cardon, 1992; Plomin & DeFries, 1983). Variance of a phenotype is separated 

into proportions attributable to additive genetic influences (A), dominance (non-additive) 

genetic influences (D), common or shared environmental influences (C), and nonshared 

environmental influences (E). Additive genetic influences correlate 1.0 in MZ twin pairs, 

0.5 in DZ twin pairs and biological siblings, and 0.0 in adoptive siblings because MZ twins 

share 100% of their alleles identical-by-descent, DZ twins and siblings share (on average) 

50% of their alleles identical-by-descent, and adoptive siblings are genetically unrelated. 

In contrast, dominance genetic influences correlate 1.0 in MZ twin pairs, 0.25 in DZ twin 

pairs and biological siblings, and 0.0 in adoptive siblings. Common/shared environmental 

influences (C) correlate 1.0 for all sets of sibling pairs (MZ twins, DZ twins, biological 

siblings, and adoptive siblings) because they are environmental factors that make siblings 

more similar to one another. Nonshared environmental influences (E) do not correlate 

because they are defined as environmental factors that make siblings uncorrelated.

We also assume equal means and variances within pairs and across zygosity. Indeed, in 

the basic genetic model used to estimate latent variable cross-twin cross-trait correlations 

(supplement Table S2), we confirmed that we could constrain means and variances 

for all cognitive tasks across sibling number and across zygosity (MZ/DZ within LTS, 

biological/adopted pairs within CAP) without a decrement in fit, χ2(84)=85.82, p=.424. 

The standard assumptions for univariate twin analyses described here also extend to 

multivariate analyses, including situations where covariances are decomposed into their 

additive genetic (ra), dominance (nonadditive) genetic (rd), shared environmental (rc), and 

nonshared environmental components (re).

In addition to calculating heritabilities and genetic correlations for additive (a2 and ra) 

and dominance (d2 and rd) genetic influences, we also computed broad-sense heritabilities 

(h2) and broad-sense genetic correlations (rg) by summing the contributions of additive 

and dominance genetic influences within the model (and generating respective 95% CIs). 
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Specifically, broad-sense heritabilites are computed with: h2 = a2 + d2. Broad-sense 

correlations between trait 1 (T1) and trait 2 (T2) are computed with: (apathT1 * ra * apathT2 

+ dpathT1 * rd * dpathT2) / sqrt((a2
T1 + d2

T1) * (a2
T2 + d2

T2)) where the apath and dpath 

are the paths from the additive and dominance latent variables (respectively) to the EF 

latent variables or full-scale intelligence measure (in Figures 1 and 2). These estimates are 

interpreted as the total variance (or covariance) explained by all genetic influences and are 

estimated with much greater precision than the individual additive and dominance estimates.

The latent variable models and univariate heritabilities for individual EF measures were 

validated in earlier work using the LTS (Friedman et al., 2008). When estimating genetic 

and environmental correlations between EF factors and intelligence, we did not estimate 

correlations for variance components estimated at zero, as it does not make sense to 

calculate a covariance for a variable with no variance (e.g., c2 has typically been estimated 

at zero for Updating-specific and Shifting-specific abilities and e2 has been estimated at 

zero for Updating-specific ability in previous work using the LTS; Friedman et al., 2016)3. 

We also removed residual (task-specific) ACE influences that were estimated at zero to aid 

model convergence for large models.

Finally, because residual variances could not be equated across twin and biological/adoptive 

sibling subsamples, we did not estimate dominance genetic influences in residual variances 

for EF tasks. Additionally, we fit two models: (i) a model where all residual variances 

were freed across subsample (ACE), and (ii) a model where only nonshared environmental 

residual variances were freed across subsample (E only). For the models focusing on EFs 

(i.e., not including intelligence), freeing only the E residual variances across subsamples did 

not fit significantly worse than freeing the A, C, and E residual variances, χ2(12)=10.85, 

p=.540, indicating that nonshared environmental residual variances were sufficient to 

account for sample differences at the task level. In the final model with intelligence, we 

also verified that freeing only the E residual variances did not fit worse than freeing both 

A and E residual variances, χ2(6)=9.49, p=.148 (all C residual variances had already been 

removed because they were estimated at zero in the EFs only model).

Data Availability

All stimulus materials and data are available upon request. Additionally, input and 

output scripts for all phenotypic invariance analyses (in Mplus) and genetic analyses (in 

R Markdown) are available at the following webpage https://osf.io/rk6yv/ (Gustavson, 

Reynolds, & Friedman, 2021).

3In the case of Updating-specific, where the additive genetic variance was also estimated to be a2=.00, we retained both additive and 
dominance genetic correlations in the subsequent model with intelligence because a dominance-only genetic model is biologically 
implausible. Moreover, the additive genetic correlation between IQ and Updating-specific ability could not be removed from the 
model without significant decrease in model fit, χ2(1)=8.03, p=.005.
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Results

Descriptive Statistics

Descriptive statistics for all EF tasks and intelligence in both subsamples are displayed 

in Table 1. Phenotypic correlations among all measures are displayed in Table 2. 

Additionally, the supplement displays cross-twin cross-trait correlations between individual 

study measures (Table S3 and S4) and between EF latent factors and intelligence (Table S2).

Phenotypic Results

EF task intercorrelations were similar in the LTS (rs = .12 to .53) and CAP subsamples (rs = 

.11 to .52), as were the correlations between intelligence and individual EF tasks (see Table 

2). To confirm whether data from both samples could be collapsed in a single analysis we 

conducted invariance analyses, displayed in Table 3a (for EF tasks only) and Table 3b (for 

EF and intelligence measures together). Multi-group models with factor loadings and means 

constrained across groups (Model 4) had acceptable fit, but residual variances could not be 

constrained across groups (Model 5). Therefore, we evaluated subsequent genetic models 

with residual variances freed across subsample. We also estimated a single group model (i.e., 

with LTS vs. CAP as a covariate; Model 1) which had comparable fit to the best-fitting 

multi-group models (Model 4).

Results of the best-fitting multi-group model of EFs and intelligence (Model 4 in Table 3b) 

indicated that intelligence was moderately correlated with the Common EF (r=.48, 95% CI 

[.38, .59], χ2(1)=83.78, p<.001 for LTS; r=.50, 95% CI [.40, .60], χ2(1)=271.84, p<.001 for 

CAP) and Updating-specific latent factors (r=.60, 95% CI [.48, .72], χ2(1)=59.28, p<.001 

for LTS; r=.59, 95% CI [.47, .71], χ2(1)=122.57, p<.001 for CAP). Intelligence was not 

significantly correlated with the Shifting-specific latent factor (r= −.05, 95% CI [–.15, .05], 

χ2(1)=1.02, p=.311 for LTS; r= −.03, 95% CI [–.14, .08], χ2(1)=0.33, p=.567 for CAP).

Most covariates were not systematically associated with study measures in either sample 

(see Table 2). However, because some associations were observed, all subsequent genetic 

analyses were based on unstandardized residuals for all EF measures and intelligence after 

removing variance due to sex, age, race, and ethnicity.

Unity and Diversity Model of Executive Function Measures

The genetic and environmental model of EFs is displayed in Figure 1a, which decomposes 

total variance in Common EF, Updating-specific, and Shifting-specific factors into additive 

genetic (A), dominance genetic (D), shared environmental (C), and nonshared environmental 

(E) variances. Figure 1b displays the same model, except the A and D estimates have been 

collapsed to show the estimate of the broad-sense heritabilities for each factor (h2; the sum 

of the additive and dominance genetic influences).

Genetic influences, considering additive and dominance together, explained the majority 

of the variance in the Common EF (broad-sense heritability; h2=.71, 95% CI [.52, .94], 

χ2(2)=47.50, p<.001), Updating-specific (h2=1.0, 95% CI [.65, 1.0], χ2(2)=23.54, p<.001), 

and Shifting-specific factors (h2=.61, 95% CI [.20, .87], χ2(2)=8.86, p=.012). All EF 
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factors were explained primarily by dominance genetic influences rather than additive 

genetic influences, but these estimates were nonsignificant due to low power to differentiate 

dominance from additive genetic influences (i.e., 95% CIs of broad-sense heritabilities are 

narrow because they combine both a2 and d2, but individual 95% CIs for a2 and d2 are 

wide for all EF latent factors). Shared environmental influences were nonsignificant for all 

EF latent factors, but were estimated at nonzero for Common EF (c2=.19, 95% CI [.00, 

.36]) and Shifting-specific factors (c2=.08, 95% CI [.00, .40]). Indeed, dominance genetic 

influences, χ2(3)=6.21, p=.102, or shared environmental influences, χ2(3)=2.24, p=.524, on 

all latent factors could be removed without impacting model fit. Nonshared environmental 

influences explained 10% of the variance in the Common EF factor (e2=.10, 95% CI [.04, 

.19], χ2(1)=10.56, p=.001) and 31% of the variance in the Shifting-Specific factor (e2=.31, 

95% CI [.13, .52], χ2(1)=12.21, p<.001).

Factor loadings on the three latent EF factors were moderate, and the remaining variance 

in each EF task was primarily explained by nonshared environmental influences (which 

includes measurement error at the task level). Some EF tasks had significant residual 

genetic influences (number–letter and letter memory). Shared environmental influences were 

estimated at 0 for all EF tasks, so these estimates were fixed to zero in subsequent analyses.

Genetic and Environmental Associations Between Executive Function and Intelligence

The ADCE model of EFs and intelligence is displayed in Figure 2a (see supplement Table 

S5 for 95% CIs of all estimates). Figure 2b visually displays the same model, but with the 

additive (A) and dominance (D) genetic influences collapsed into broad-sense heritability (H 

= A+D) and broad-sense genetic correlations (rg).

There were moderate to strong genetic correlations between intelligence and the Common 

EF factor (broad-sense genetic correlation; rg=.44, 95% CI [.28, .59], χ2(2)=27.81, p<.001) 

and the Updating-specific factor (rg=.69, 95% CI [.59, .80], χ2(2)=95.65, p<.001). For 

Common EF, neither the additive nor dominance genetic correlations were individually 

significant (ra=.29, 95% CI [–.75, .81], χ2(1)=0.05, p=.823; rd=.98, 95% CI [–1.0, 1.0], 

χ2(1)=1.79, p=.181). For Updating-specific ability, the genetic correlation with intelligence 

was driven by additive genetic influences (ra=.95, 95% CI [.56, 1.0], χ2(1)=8.03, p=.005). 

Consistent with the lack of phenotypic associations, the Shifting-specific factor was not 

genetically correlated with intelligence (additive, dominance, or broad-sense). In total, 

genetic influences accounted for 65% of the phenotypic correlation between Common EF 

and intelligence and 100% of the phenotypic correlation between Updating-specific and 

intelligence.

Shared environmental correlations were nonsignificant between EF factors and intelligence, 

χ2(1)<1.41, p>.235. The nonshared environmental influences on intelligence were 

correlated with those for Common EF (re=.60, 95% CI [.33, .94], χ2(1)=19.26, p<.001), 

explaining 16% of their phenotypic correlation, but were not correlated with the other EF 

factors.

Finally, after accounting for genetic associations with the EF factors, the remaining variance 

in intelligence was estimated to be zero for additive genetic influences (a2 = .00, 95% 

Gustavson et al. Page 15

J Exp Psychol Gen. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CI [.00, .30]), dominance genetic influences (d2 = .00, 95% CI [.00, .16]), and shared 

environmental influences (c2 = .00, 95% CI [.00, .12]). Nonshared environmental influences 

unique to intelligence remained statistically significant, (e2 = .10, 95% CI [.01, .15], 

χ2(1)=4.20, p=.040).

Discussion

This study examined the genetic and environmental overlap among 3 EF latent factors and 

full-scale intelligence in a combined sample of twins, biological siblings, and unrelated 

adopted siblings. This was the first genetic study of Common EF of adults in this age range 

(late 20s to early 40s) and the first genetic study of Common EF to utilize an extended 

family design. Results confirmed that both Common EF and Updating-specific ability were 

moderately to strongly correlated with intelligence, whereas Shifting-specific ability was 

unrelated to intelligence.

The genetic design revealed multiple findings relevant to our understanding of EFs, 

intelligence, and their overlap. First, associations between intelligence and Common EF 

were explained by both genetic influences (total broad-sense genetic correlation; rg=.44) and 

nonshared environmental influences (re=.60). The broad-sense genetic correlation (rg=.44, 

95% CI [.28, .59]) was similar in magnitude to the additive genetic correlations observed in 

older adolescents (age 17; ra=.57; CIs not reported; Friedman et al., 2008) and middle-aged 

adults (age 56; ra=.59, 95% CI [.56, 1.00]; Gustavson et al., 2018b), but was smaller 

than those observed in younger adolescents (age 10: ra=.86; 95% CI [.45, 1.27]; Freis 

et al, 2021; age 11: ra=.92; 95% CI [.72, 1.11]; Englehardt et al. 2016). Even with the 

extended family design employed here, there was still low power to detect whether the 

strong genetic correlation was driven by additive genetic influences and dominance genetic 

influences. However, consistent with twin correlations from earlier work (e.g., Friedman et 

al., 2008), and with earlier extended family approaches (Keller et al., 2013), there was little 

evidence for nonadditive genetic influences on intelligence (d2=.11), whereas the dominance 

genetic influences estimated for Common EF (d2=.65), updating-specific (d2=.45), and 

shifting-specific (d2=.60) were nominally higher, suggesting a larger role of nonadditive 

genetic influences on EFs than intelligence that should be explored using larger datasets.

Second, all factors (except Updating-specific) had some estimated shared environmental 

influences (c2=.10 to .18). These estimates were not significant in this sample, but they were 

similar in magnitude to estimates from earlier studies of adults for intelligence (e.g., Keller 

et al., 2013; Lyons et al., 2017). Additional analyses revealed that removing dominance 

influences from the model (i.e., ACE model) reduced the shared environmental estimate 

on Common EF (c2=.18 in Figure 2 vs. c2=.03 in Figure S1). This pattern suggests that 

dominance genetic influences may mask the contribution of shared environment influences 

on EFs in the standard twin design, although that dominance variance was not statistically 

significant.

Third, the phenotypic correlation between Updating-specific ability and intelligence was 

driven entirely by genetic influences (broad-sense rg=.69). These findings suggest that 

intelligence is strongly genetically associated with Updating-specific ability in addition to 
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Common EF ability, consistent with decades-old proposals regarding the strong link between 

intelligence and working memory processes (Colom et al., 2004; Kyllonen & Christal, 

1990). Recall that performance on any given working memory updating task is influenced 

by both Common EF and Updating-specific processes. These findings demonstrate that 

working memory tasks are most strongly associated with intelligence because both processes 

are independently genetically correlated with intelligence (with an environmental correlation 

through Common EF as well). In fact, in these data, there were no genetic influences 

remaining for intelligence after accounting for both Common EF and Updating-specific 

abilities. Therefore, although both EF abilities are genetically distinct from intelligence, 

when combined they may explain all the genetic variance in intelligence, with only some 

(nonsignificant) residual shared and nonshared environmental influences on intelligence.

The above conclusions would account for the fact that phenotypic and genetic associations 

between Common EF and intelligence approach unity in childhood and early adolescence 

(Brydges et al., 2012; Engelhardt et al., 2016; Freis et al., 2021) but weaken somewhat 

in later adolescence and adulthood (Friedman et al., 2008; Gustavson et al., 2018b). The 

factor structure of EFs appears to be unitary in children before about age 10–12 (Brydges 

et al., 2014; Hartung et al., 2020; Xu et al., 2013). By late adolescence and into adulthood, 

however, the genetic correlation between Updating-specific abilities and intelligence can 

be observed in addition to the genetic correlation between common EF and intelligence 

(Friedman et al., 2008). It will be interesting to see if a similar pattern emerges in old age, as 

some have argued that EF processes may again converge in old adults, especially cognitively 

impaired older adults (de Frias, Dixon, & Strauss, 2009). If this is the case, Common EF 

and intelligence may again be difficult to disentangle (especially genetically) in older and/or 

impaired samples.

Figure 3 summarizes existing studies that have examined the heritability of Common EF, 

including our new results. Our findings fit between those from LTS subjects at mean age 23 

(Friedman et al., 2016) and those of middle-aged adults in the Vietnam Era Twin Study of 

Aging at mean age 56 (Gustavson et al., 2018a). Shared environmental influences appear to 

be re-emerging as individuals approach middle age, and nonshared environmental influences 

appear to stay relatively stable throughout young adulthood into midlife. However, as noted 

earlier, an alternative interpretation is that some shared environmental influences exist in 

adolescence and young adulthood, but are masked by the presence of dominance genetic 

variance that cannot be simultaneously estimated with shared environmental influences in a 

standard twin design.

Still other factors besides age may have impacted our estimates of the genetic and 

environmental influences on EF and their overlap with intelligence compared to earlier 

work. Results may have been affected by sampling differences (e.g., socioeconomic status), 

including those differences between CAP and LTS described in the limitations section. They 

may also be explained by the fact that we administered only two tasks per EF domain, 

whereas more measures were administered in adolescent samples (Engelhardt et al., 2016) 

including our earlier investigation of the LTS sample (Friedman et al., 2008). Results may 

also be impacted by modeling differences, though there was little evidence that our choice 
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of using full-scale IQ instead of a latent variable for general cognitive ability impacted the 

results (see supplement Figure S2).

Shifting-specific ability was not correlated with intelligence phenotypically or at the genetic/

environmental levels. Previously, Friedman et al., (2008) found a small negative correlation 

between intelligence and Shifting-specific ability in the LTS sample assessed in late 

adolescence. This negative association was interpreted as reflecting a stability-flexibility 

tradeoff (Goschke, 2000; Miyake & Friedman, 2012), wherein individuals that are able to 

strongly engage a task-set representation may have difficulty flexibly switching away to new 

task-sets. Our findings do not rule out a weak negative correlation between Shifting-specific 

ability and intelligence but are more consistent with intelligence being simply uncorrelated 

with Shifting-specific ability in adulthood. Nevertheless, because intelligence measures are 

typically positively correlated with all other cognitive abilities, it is interesting that it may be 

entirely unrelated to Shifting-specific ability, potentially reflecting entirely separable brain 

circuitry.

Strengths and Limitations

This study examined EFs and intelligence data from combined twin and adoptive/biological 

sibling datasets, greatly increasing power to detect shared environmental influences 

compared to traditional twin methods (Plomin & DeFries, 1985). However, even with 

this large sample we did not have sufficient power to distinguish between additive and 

dominance (nonadditive) genetic influences in many analyses (Martin et al., 1978). Twin 

correlations for EF tasks often suggest dominance (within-pair rMZ > 2*rDZ), whereas 

twin correlations for intelligence typically suggest (weak) shared environmental influences 

(within-pair rMZ < 2*rDZ). Modeling additive and dominance genetic influences alongside 

shared and nonshared environmental influences using the extended family design is 

therefore useful in obtaining unbiased estimates (e.g., for investigation in larger samples).

The CAP sample was also slightly older, which may have contributed to the fact that 

we could not collapse residual variances across subsamples. Moreover, both samples were 

predominantly White, which impacts the generalizability of findings. However, both samples 

were representative of the Colorado population at the time of recruitment. Additionally, 

although some assumptions of the twin/family design were supported (e.g., equal means 

and variance across sibling number and zygosity within each sample), violation of other 

assumptions could influence our results. Specifically, the same-sex, same-aged twins from 

LTS may share larger proportions of their shared environment than biological or adopted 

siblings from CAP.

CAP subjects also completed all EF tests in the laboratory, whereas most LTS subjects 

completed 3 of the 6 EF tasks in the scanner. However, the remaining 3 tasks were 

completed in the same laboratory setting as the remaining subjects, and we were able to 

harmonize the 3 scanner tasks using data from the n=175 subjects who completed both sets 

of tasks. Indeed, reanalysis excluding data from the 3 MRI tasks revealed similar patterns of 

results to those displayed in Figure 2 (see supplemental Figure S3).
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Genetic and environmental variances were obtained by estimating paths on latent ADCE 

factors (i.e., estimating the square roots of the variances). This model specification means 

that variance components cannot be negative. Although a negative variance component is not 

interpretable, it is possible for a parameter whose true value is zero to be negative due to 

sampling error, and imposing a boundary on this parameter could lead to biased estimates 

for remaining parameters (Verhulst et al., 2019). However, the likelihood-based confidence 

intervals in OpenMx include an adjustment for parameters that are estimated close to a 

boundary.

Finally, our analyses of the overlap between EF and intelligence was based on the WAIS-III 

full-scale IQ score, which combines across measures of verbal and performance intelligence. 

Full scale IQ (or equivalent combined scores) are the most widely used in this research area 

(Engelhardt et al., 2016; Friedman et al., 2008; Gustavson et al., 2018b), and prior work with 

the LTS sample suggests that the associations of EFs with full scale IQ are highly similar to 

those with a general factor extracted from the WAIS subtests (Friedman et al., 2008). Indeed, 

in the current sample, we found similar results when modeling intelligence as a latent factor 

with the verbal and performance intelligence scores as indicators (supplement Figure S2). 

Prior work with the LTS sample also suggests that Inhibiting, Updating, and Shifting latent 

variables show similar relationships to latent factors for fluid and crystallized intelligence 

in this neuropsychologically intact sample (Friedman et al., 2006; Salthouse et al., 2003; 

Unsworth et al., 2009), although associations with EFs may differ across these different 

aspects of intelligence in samples with brain lesions (Duncan et al., 1995; Duncan et al., 

1996).

Summary and Conclusions

For decades, researchers have debated whether EFs and intelligence truly represent distinct 

constructs. Using a combined twin and extended family design of adults, our data suggest 

that intelligence is distinct from both Common EF and Updating-specific abilities, but 

that together these two components of EF may account for all of the genetic influences 

on intelligence. Intelligence and EFs may be further distinguished by different patterns 

of genetic and environmental influences: Intelligence has stronger evidence for shared 

environmental variance whereas EFs have stronger evidence for dominance genetic variance, 

though a larger extended twin and family design would be needed to estimate these variance 

components with precision. These findings highlight the utility of genetic designs in better 

understanding the structure and separability of cognitive abilities, as the association between 

EFs and intelligence at the genetic level is much stronger than that at the environmental 

level. They also highlight the utility of the unity and diversity model of EF as a way 

of understanding why working memory processes have historically been closely related 

to (and difficult to distinguish from) intelligence. Such working memory processes reflect 

a combination of Common EF and Updating-specific processes, which are independently 

moderately related to intelligence.

Context

The unity and diversity model of executive functions (EFs), which posits that EFs can be 

delineated into general (Common EF) and specific (Updating-specific, Shifting-specific) 
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abilities, was developed in adolescents and validated in studies of children, young adults, 

and middle aged adults. The separability of EFs (particularly Common EF) from intelligence 

continues to be debated in the field. The authors saw an opportunity to examine these 

associations in an adult sample (late 20s to early 40s), which both (i) fills a gap in the age 

demographic of existing studies of EFs, and (ii) allows for evaluation of the hypothesis that 

intelligence is separately genetically correlated with Common EF and Updating-specific 

abilities, which may only be sufficiently separable constructs starting in adolescence. 

Furthermore, the availability of biological and adopted siblings allowed for a genetic 

investigation of EFs and intelligence in a sample that did not rely solely on twins. Results 

are consistent with the hypothesis that EFs may also differ from intelligence by being more 

strongly influenced by dominance genetic variance, and that intelligence is related to both 

Common EF and Updating-Specific abilities. Together, these results suggest that although 

they share genetic and environmental influences, EFs and intelligence have different genetic/

environmental structures.
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Figure 1: 
Genetic model of executive functions (EFs). Panel B displays the same model, but results are 

plotted for broad-sense heritabilities (H = additive + dominance genetic variance).

Variance explained by latent variables (ovals) can be computed by squaring the factor 

loadings on measured variables (rectangles) or EF subfactors. Most paths were equated 

across subsample, but because residual nonshared environmental influences were allowed 

to differ, standardized estimates of factor loadings and residual A influences also differ 

across Longitudinal Twin Study subsample (LTS; left) and the Colorado Adoption 

Project subsample (CAP; right). Significant paths are displayed in black text, with solid 

black arrows (p<.05). Model fit: χ2(307)=464.09, p<.001, RMSEA=.026, CFI=.912. A = 
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Additive genetic influences; C = Shared/common environmental influences; E = Nonshared 

environmental influences.
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Figure 2: 
Genetic model of executive functions (EFs) and intelligence. Panel B displays the same 

model, but results are plotted for broad-sense heritabilities (H = additive + dominance 

genetic variance) and broad-sense genetic correlations (rg). Variance explained by latent 

variables (ovals) can be computed by squaring the factor loadings on measured variables 

(rectangles) or EF latent factors. Genetic and environmental correlations with IQ were 

computed from the statistically-equivalent Cholesky decomposition. Most paths were 

equated across subsample, but because residual nonshared environmental influences were 

allowed to differ, standardized estimates of factor loadings and residual A influences also 

differ across Longitudinal Twin Study subsample (LTS; left) and the Colorado Adoption 

Project subsample (CAP; right). Significant paths are displayed in black text, with solid 
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black arrows (p < .05). See supplement Table S5 for 95% confidence intervals for 

this model. Model fit: χ2(413)=659.02, p<.001, RMSEA=.029, CFI=.907. A = Additive 

genetic influences; D = Dominance (nonadditive) genetic influences; C = Shared/common 

environmental influences; E = Nonshared environmental influences; WAIS-III IQ = 

Weschler Adult Intelligence Scale full-scale intelligence quotient.
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Figure 3: 
Summary of additive genetic (A), dominance genetic (D), shared environmental (C) and 

nonshared environmental (E) influences on Common EF based on age of assessment across 

existing studies. All studies assessed Common EF using latent factors (or a composite of 5 to 

9 tasks in the case of the Fujisawa et al., 2017 & 2019 studies). The current study (outlined 

with a grey box) is also the only study to estimate D influences. Therefore, C estimates 

could be suppressed in other studies. Individual EF tasks differed across samples; thus, 

it is also possible that modeling and measurement differences contribute to the variability 

in ADCE estimates. However, there is some fluctuation in ACE across samples that are 

overlapping in subjects and measures. Subjects from Fujisawa, Todo, and Ando (2017) 

and Fujisawa, Todo, and Ando (2019) may be overlapping (Tokyo Twin Cohort Project). 

Subjects are also overlapping within Friedman et al. (2016) (Colorado Longitudinal Twin 

Study) and within Gustavson et al. (2018a) (Vietnam Era Twin Study of Aging). Data from 
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the current project is partially overlapping with Friedman et al. (2016) (LTS, but not CAP 

subjects).
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Table 2

Correlations Among All Study Measures

Measure N 1 2 3 4 5 6 7

Longitudinal Twin Study

1. Antisaccade (% correct) 676 1

2. Stroop (RT Interference) 696 0.24 1

3. Number Letter (RT Switch Cost) 682 0.29 0.26 1

4. Category Switch (RT Switch Cost) 692 0.38 0.31 0.53 1

5. Keep Track (% correct) 696 0.34 0.24 0.15 0.23 1

6. Letter Memory (% correct) 697 0.40 0.32 0.12 0.23 0.51 1

7. WAIS Full-Scale IQ 684 0.32 0.26 0.07 0.22 0.53 0.55 1

8. Sex (Female / Male) 700 0.18 −0.11 −0.05 0.05 −0.08 −0.03 0.03

9. Age (at EF assessment) 700 0.04 −0.08 −0.05 −0.08 −0.07 −0.11 −0.02

10. Race (Non-White / White) 700 0.00 −0.02 0.04 0.05 −0.10 −0.08 −0.11

11. Ethnicity (Non-Hispanic / Hispanic) 700 0.02 0.03 0.05 0.06 −0.05 −0.06 −0.14

Colorado Adoption Project

1. Antisaccade (% correct) 533 1

2. Stroop (RT Interference) 537 0.33 1

3. Number Letter (RT Switch Cost) 534 0.22 0.25 1

4. Category Switch (RT Switch Cost) 537 0.32 0.31 0.44 1

5. Keep Track (% correct) 534 0.31 0.26 0.13 0.18 1

6. Letter Memory (% correct) 527 0.39 0.34 0.11 0.14 0.52 1

7. WAIS Full-Scale IQ 534 0.36 0.31 0.06 0.21 0.61 0.49 1

8. Sex (Female / Male) 538 0.26 0.03 −0.11 0.03 −0.05 0.02 0.13

9. Age 538 −0.07 0.04 −0.11 −0.10 −0.04 0.04 0.03

10. Race (Non-White / White) 538 −0.04 −0.01 0.01 0.00 −0.06 −0.01 −0.06

11. Ethnicity (Non-Hispanic / Hispanic) 538 0.06 0.00 0.00 −0.02 0.02 0.09 0.02

Note: Stroop and switch cost scores based on reaction times (RTs) were reverse scored prior to analyses so that higher numbers indicate better 
performance on all measures.
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Table 3

Tests of Invariance Across LTS and CAP Subsamples

Model χ2 df p RMSEA CFI

A. EF data only

Single-Group Model

1. LTS vs. CAP as a covariate 49.22 7 <.001 0.070 0.971

Multi-Group Models

2. No constraints 57.25 14 <.001 0.071 0.968

3. Constrain factor loadings across groups 62.11 19 <.001 0.061 0.968

4. Model 3 + constrain intercepts 78.78 22 <.001 0.065 0.960

5. Model 4 + constrain residual variances 236.65 31 <.001 0.104 0.847

6. Model 5 + constrain latent variable variances 299.21 34 <.001 0.112 0.903

B. EF and Intelligence

Single Group Model

1. LTS vs. CAP sample as a covariate 67.31 10 <.001 0.068 0.972

Multi-Group Models

2. No constraints 109.01 20 <.001 0.085 0.954

3. Constrain factor loadings across groups 118.93 25 <.001 0.078 0.952

4. Model 3 + constrain intercepts 137.96 32 <.001 0.073 0.946

5. Model 4 + constrain residual variances 268.44 38 <.001 0.099 0.882

6. Model 5 + constrain latent variable variances 343.71 42 <.001 0.108 0.846

Note: All models included regression terms for age, sex, race (White vs. Non-White), and ethnicity (Hispanic vs. Non-Hispanic) separately for each 
subsample. The models in bold indicate acceptable fit after constraining factor loadings and intercepts across the Longitudinal Twin Study (LTS) 
and Colorado Adoption Project (CAP) subsamples, indicating they could be collapsed for genetic analyses. EF = Executive function.
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