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SUMMARY

Homology-based search is commonly used to uncover mobile genetic elements
(MGEs) from metagenomes, but it heavily relies on reference genomes in the
database. Here we introduce a protocol to extract CRISPR-targeted sequences
from the assembled human gut metagenomic sequences without using a refer-
ence database. We describe the assembling of metagenome contigs, the extrac-
tion of CRISPR direct repeats and spacers, the discovery of protospacers, and the
extraction of protospacer-enriched regions using the graph-based approach.
This protocol could extract numerous characterized/uncharacterized MGEs.
For complete details on the use and execution of this protocol, please refer to
Sugimoto et al. (2021).

BEFORE YOU BEGIN

Hardware

This section describes the hardware specifications, operating system, and interpreters required to

execute the protocol.

1. Computer.

a. At least 128 GB of memory.

b. A hyper-threading CPU with at least 8 threads.

2. Operating system.

a. Linux distribution capable of executing scripts written in the languages of the interpreters

specified below.

3. Interpreters.

a. Python3.

b. Java.

c. Bash.

Note: The computer must have sufficient memory for metagenome assembly. A typical human

gut metagenome library ranges in size from a few GB to hundreds of GB. Therefore, assembling

a large library might require more than 128 GB of memory, which is likely unavailable for a stan-

dard desktop machine. In this case, consider using high-capacity servers in a data center.

Software

The software and python packages listed in the key resources table must be downloaded and

installed on the system accordingly.
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Data collection

Metagenomic raw reads can be downloaded from numerous sources, such as Sequence Read Archive

(SRA, https://www.ncbi.nlm.nih.gov/sra), Integrative Human Microbiome Projects (iHMP, https://

ibdmdb.org/tunnel/public/summary.html), etc. In this article, we assume that the sequences are stored

in paired short-read FASTQ files generated from whole metagenome shotgun sequencing.

Note:We suggest that at least 10 independent samples from an environment are required to

collect a sufficient number of spacers and candidate protospacers to build a versatile spacer

co-occurrence network.

KEY RESOURCES TABLE

Note: Some software versions specified in this table might not be available. In such a case, use

the latest version of the software and refer to their manuals.

MATERIALS AND EQUIPMENT

Alternatives: Our repository also includes custom Bash scripts used in the previous study to

automate the analysis pipelines. With modifications, these scripts could be used as starting

points to build the custom pipeline for the reader’s purpose.

CRITICAL: These automation pipeline scripts are mainly written in Bash language (files

ending their names with .sh) and require modifications to specify the file paths in their co-

des. The parts that require changes are noted with comments in the Bash scripts (see

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

SPAdes (Bankevich et al., 2012) https://github.com/ablab/spades/releases/
download/v3.15.4/SPAdes-3.15.4.tar.gz

BBtools (Bushnell, 2014) https://sourceforge.net/projects/bbmap/

Bedtools (Quinlan and Hall, 2010) https://github.com/arq5x/bedtools2/
releases/download/v2.30.0/bedtools-2.30.0.tar.gz

Mcl (Enright et al., 2002) https://micans.org/mcl/src/mcl-latest.tar.gz

Blast (Altschul et al., 1990) https://ftp.ncbi.nlm.nih.gov/blast/executables/
blast+/LATEST/

CRISPRDetect (Biswas et al., 2016) https://github.com/davidchyou/CRISPRDetect_2.4

Samtools (Danecek et al., 2021) https://github.com/samtools/samtools/
releases/download/1.15/samtools-1.15.tar.bz2

Cdhit (Li and Godzik, 2006) https://github.com/weizhongli/cdhit/releases/
download/V4.8.1/cd-hit-v4.8.1-2019-0228.tar.gz

Biopython (Cock et al., 2009) https://biopython.org

NumPy (Harris et al., 2020) https://numpy.org

Scipy (Virtanen et al., 2020) https://scipy.org

Portion N/A https://github.com/AlexandreDecan/portion

Our custom python scripts (Sugimoto et al., 2021) https://doi.org/10.5281/zenodo.6621424

Deposited data

Dataset from the previous study (Sugimoto et al., 2021) https://doi.org/10.5281/zenodo.6503687

Other

Linux computer N/A N/A

Custom scripts (Sugimoto et al., 2021) https://doi.org/10.5281/zenodo.6621424
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README files for details). Conversely, the python scripts used in this protocol do not

require any change.

Alternatives: We also provide FASTA and BED-formatted files, which contain spacers, proto-

spacers, CRISPR direct repeats, and CRISPR-targeted terminally redundant sequences ex-

tracted from approximately ten thousand human gut metagenome libraries in the previous

study. This dataset includes approximately two million unique spacers, ten thousand unique

CRISPR direct repeats, and approximately ten thousand CRISPR-targeted unique sequences.

The protocol described in this article does not require these files. However, for the case of hu-

man gut metagenome analysis, this previously extracted dataset could be used to skip the

processes and reduce the analysis time.

STEP-BY-STEP METHOD DETAILS

Preprocess raw paired FASTQ files

Timing: 1–2 h

This process is quality control of the input sequences.

Alternatives: A pipeline script for preprocessing, assembling, and spacer collection is pro-

vided in the repository (pipeline_scripts/assembly_pipeline.sh).

1. Trim poor-quality bases, adapters, and PhiX spikes.

2. Remove human-derived reads.

Note: We used the human genome reference FASTA file posted by the author of BBtools.

3. Correct errors in the reads.

CRITICAL: This output FASTQ file is analysis-ready and used for assembly and spacer

extraction.

Dataset from the previous study (Sugimoto et al., 2021) https://doi.org/10.5281/zenodo.6503687

$ bbduk.sh -Xmx100g t=8 in1=r1.fastq.gz in2=r2.fastq.gz out=trimmed.fastq.gz ftm=5 qtrim=rl

trimq=20 ftl=15 ref=adapters,phix ktrim=r k=23 mink=11 hdist=1 tpe tbo maq=20

$ bbmap.sh -Xmx100g t=8 ref={path to the human reference FASTA file} in=trimmed.fastq.gz

outu=decontaminated.fastq.gz interleaved=t minratio=0.9 maxindel=3 bwr=0.16 bw=12 fast=t

minhits=2 qtrim=r trimq=10 untrim=t idtag=t printunmappedcount=t kfilter=25 maxsites=1 k=14

$ tadpole.sh threads=8 -Xmx100g interleaved=t in=decontaminated.fastq.gz out=ecc.fastq.gz

mode=correct
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Metagenome assembly

Timing: 1–12 h (Varies strongly depending on library)

Assemble metagenome contigs from the preprocessed FASTQ files.

4. Assemble preprocessed FASTQ file using SPAdes.

Note: We skipped the error-correction step in the SPAdes program to avoid the occasional

endlessly running problem. Please refer to the troubleshooting section for detail.

5. Assign unique identifiers to all assembled contigs.

CRITICAL: Assigning unique identifiers is important to avoid conflicts in the later analyses.

Here, we used randomly generated strings; however, any unique readable identifier, such

as sample IDs, could be used instead.

Optional: We recommend removing contigs shorter than 1k bases to reduce the file size.

Note: The pre and assembling processes are independently conducted for each paired

FASTQ file.

Optional:We advise that the system has sufficient disk space to store all preprocessed FASTQ

and assembled FASTA files. The rest of the files, including intermediate and temporary files,

can be deleted to save the disk space.

Extraction of CRISPR direct repeats from the assembled contigs

Timing: 1–2 h

From the assembled contigs, discover CRISPR consensus direct repeats.

6. Run CRISPRDetect to discover consensus CRISPR direct repeats.

7. From the output gff file, extract direct repeats, and convert them into a FASTA file.

$ spades.py -t 8 -m 100 –meta –only-assembler –12 ecc.fastq.gz -o {path to spades output

directory}

$ cd {path to spades output directory}

$ id=$(openssl rand -hex 12)

awk -v id=${id} ’/^>/ {n++; print ">contig_"id"_"n;} !/^>/{print}’ scaffolds.fasta >

scaffolds.renamed.fasta

$ CRISPRDetect.pl -q 0 -f scaffolds.renamed.fasta -o crispr_detect_output -array_quality_

score_cutoff 2
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Note: Again, these direct repeat extractions are independently conducted for each assem-

bled FASTA file.

8. After discovering all direct repeats from each assembled FASTA file, we merge them into a single

file, assign unique identifiers, and remove redundancy.

Optional: We provided the direct repeat sequences extracted from the human gut metage-

nomes in the previous study. The sequences are stored in a FASTA formatted file located in

the supplementary folder (supplementary_data/crispr/drs/all_dr.clustered.fasta).

Extraction of CRISPR spacers from the preprocessed reads

Timing: 1 h

Alternatives: A pipeline script for the spacer collection is provided in the repository (pipeli-

ne_scripts/collect_spacers.sh).

Here, we return to the preprocessed FASTQ files. From them, we extract CRISPR spacers from reads

containing CRISPR direct repeats.

9. Extract direct repeat-containing reads. This initial filtering step significantly reduces the number

of reads, effectively speeding up the following spacer extraction processes.

10. Second filter to mask the direct repeats in the reads.

11. Extract spacers from the masked reads using our python script.

Note: The python script used above is available from our repository (pipeline_scripts/

extract_spacers.py).

$ grep ’repeat_region’ crispr_detect_output.gff | cut -f 9 | tr ’;’ ’\n’ | egrep ’^Note=’ | cut

-f 2 -d ’=’ | awk ’{n++; printf(">DR_%i\n%s\n", n, $0)}’ > crispr_dr.fasta

$ cat {all crispr dr fasta files} > merged_crispr_dr.fasta

$ awk ’/^>/ {n++; print ">dr_"n; } !/^>/ {print}’ merged_crispr_dr.fasta > merged_

crispr_dr.renamed.fasta #giving new unique identifiers

$ cd-hit-est -S 1 -c 1 -i merged_crispr_dr.renamed.fasta -o merged_crispr_dr.repr.fasta

$ bbduk.sh in=ecc.fastq.gz ref=merged_crispr_dr.repr.fasta outm=dr_containing_reads.

fastq.gz interleaved=t k=21 hdist=1 rename=t

$ bbduk.sh in=dr_containing_reads.fastq.gz ref=merged_crispr_dr.repr.fasta kmask=R k=19

hdist=1 out=dr_masked.fastq mink=15

$ {path to the virome_scripts directory}/pipeline_scripts/extract_spacers.py -s {sample

name} dr_masked.fastq > spacers.fasta
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Optional: The python program used above does not output short (<20 bp) and long (>50 bp)

sequences by default. These parameters can be changed by options (-s and -l).

Note: Spacer extraction is conducted for each preprocessed FASTQ file.

12. Merge all discovered spacers, assign unique identifiers, and remove redundancy.

Optional: It is highly advisable to make each spacer and direct repeat trackable to the original

samples, contigs, and/or associated direct repeats. This can be achieved using FASTA de-

scriptions in each record.

Optional:We provided the spacer sequences extracted from the human gut metagenomes in

the previous study. The sequences are stored in a FASTA formatted file located in the

supplementary folder (supplementary_data/crispr/spacers/all_spacers.clustered.removed_

short.fasta).

Protospacer discovery

Timing: 1–2 h

Here, we discover protospacers by aligning the spacer sequences to CRISPR-masked contigs.

13. Search CRISPR direct repeats from the contigs.

14. Mask sequences around direct repeat aligned regions.

15. Align spacers to the masked contigs.

$ cat {all spacer fasta files} > all_spacers.fasta

$ awk ’/^>/ {sub(/^[^[:space:]]+[[:space:]]/, ""); n++; printf(‘‘>spacer_"n"\t"$0);} !/^>/

{print}’ all_spacers.fasta > all_spacers.renamed.fasta #giving new unique identifiers

$ cd-hit-est -T 8 -M 10000 -d 0 -sf 1 -s 0.9 -c 0.98 -i all_spacers.renamed.fasta -o all_

spacers.repr.fasta

$ makeblastdb -dbtype nucl -in scaffolds.renamed.fasta

$ blastn -evalue 1e-5 -task ‘blastn-short’ -outfmt 6 -num_threads 8 -query merged_crispr_dr.

repr.fasta -db scaffolds.renamed.fasta > dr.blastn

$ samtools faidx scaffolds.renamed.fasta

$ awk ‘BEGIN{FS="\t"; OFS="\t"} $10<$9{t=$9; $9=$10; $10=t} {print $2,$9–1,$10}’ dr.blastn |

sort -k1,1 -k2,2n | bedtools merge -i /dev/stdin -d 60 | bedtools slop -b 60 -i /dev/stdin -g

scaffolds.renamed.fasta.fai | bedtools maskfasta -bed /dev/stdin -fi scaffolds.renamed.

fasta -fo crispr_masked.fasta

$ makeblastdb -dbtype nucl -in crispr_masked.fasta

$ blastn -evalue 1e-5 -perc_identity 93 -task ‘blastn-short’ -outfmt 6 -num_threads 8 -query

all_spacers.repr.fasta -db crispr_masked.fasta > spacers.blastn

ll
OPEN ACCESS

6 STAR Protocols 3, 101525, September 16, 2022

Protocol



Note: Protospacer search is conducted for each assembled FASTA file.

16. Merge all discovered protospacers into a single BED-formatted file.

Optional:We provided the protospacers discovered from the assembled human gut metage-

nome contigs in the previous study. The protospacers are stored in a BED-formatted file

located in the supplementary folder (supplementary_data/targeted_sequences/proto-

spacers/all_protospacers.bed).

Spacer clustering based on co-occurrence

Timing: 2–4 h

Here, we cluster spacers using a co-occurrence network calculated from the spacer alignment result.

From this network, we discover the graph communities, representing subsets of spacers that corre-

sponding protospacers co-occur together across the assembled contigs. We extract the proto-

spacer-enriched regions using these graph communities, i.e., spacer clusters. This process effec-

tively reduces the false-positive ratio by excluding lone or randomly scattered protospacers.

17. Initial clustering is based on distance.

18. Calculate a weighted graph from the spacer co-occurrence and generate an abc formatted file.

Note: The python script used above is available in our repository (graph_clustering/

generate_abc_edgefile.py).

19. Convert the abc file into an mci format.

20. Run an mcl program to discover graph communities.

21. Convert the mcl output to a tabular format.

$ cat {all spacer blastn output files} | awk ‘BEGIN{FS="\t"; OFS="\t"} $10<$9{t=$9; $9=$10;

$10=t} {print $2,$9–1,$10,$1}’ | sort -k1,1 -k2,2n > all_protospacers.bed

$ bedtools cluster -d 50000 -i all_protospacers.bed | awk ‘BEGIN{FS="\t"; OFS="\t"} {print

$1"_cluster_"$5,$2,$3,$4}’ > initial_cluster.bed

$ {path to the virome_scripts directory}/graph_clustering/generate_abc_edgefile.py

initial_cluster.bed > protospacers.abc

$ mcxload -abc protospacers.abc –stream-mirror -write-tab data.tab -o protospacers.mci

$ mcl protospacers.mci -I 4 -pi 0.4 -te 8
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CRITICAL: Each tab-delimited line within this output file consists of a spacer cluster.

22. Mark CRISPR-targeted regions using the clustering result and the merged protospacer bed file.

Note: The python script used above is available in our repository (graph_clustering/

mark_crispr_targeted.py).

Note: The fourth column in the output file is formatted as {cluster id}:{protospacer count in the

region}.

23. Merge the regions to rescue the fragmented clusters.

24. Extract CRISPR-targeted regions from the assembled contigs.

Note: The extraction of CRISPR-targeted sequences is conducted for each assembled FASTA

file.

Optional: We provided the CRISPR-targeted terminally redundant sequences extracted from

the assembled human gut metagenome contigs in the previous study. The sequences are

stored in a FASTA formatted file located in the supplementary folder (supplementary_data/

targeted_sequences/tr/tr_sequences.fasta).

EXPECTED OUTCOMES

The final output FASTA files contained CRISPR-targeted sequences. These sequences typically

range in size between a few hundred and several hundred thousand bases. The output sequences

likely contain multiple kinds of MGEs (Figure 1).

QUANTIFICATION AND STATISTICAL ANALYSIS

� Sequence clustering should be conducted to remove redundancy and fragmentations from the

final output sequences.

� Genomic completeness could be investigated by checking terminal redundancy or inverted termi-

nal repeats. In the repository, we provided python scripts that extract terminally redundant or

$ mcxdump -icl out.protospacers.mci.I40pi04 -tabr data.tab > protospacers_cluster.tab

$ {path to the virome_scripts directory}/graph_clustering/mark_crispr_targeted.py all_

protospacers.bed protospacers_cluster.tab > crispr_targeted.bed

$ sort -k1,1 -k2,2n crispr_targeted.bed > crispr_targeted.sorted.bed

$ bedtools merge -d 1000 -i crispr_targeted.sorted.bed -o collapse -c 4 > crispr_targeted.

merged.bed

$ samtools faidx scaffolds.renamed.fasta

$ cut -f 1,2 scaffolds.renamed.fasta.fai | sort -k 1,1 | join -t $’\t’ - <(sort -k 1,1 crispr_

targeted.merged.bed) | awk ’BEGIN{OFS="\t"; FS="\t"} $4>$2{$4=$2} {print $1,$3,$4,$5}’ |

bedtools getfasta -fi scaffolds.renamed.fasta -bed /dev/stdin -fo crispr_targeted.fasta

ll
OPEN ACCESS

8 STAR Protocols 3, 101525, September 16, 2022

Protocol

https://doi.org/10.5281/zenodo.6621424


inverted repeat sequences from a FASTA file (utils/circular_contigs.py and utils/inverted_repeat_

contigs.py).

� CRISPR-Cas systems target various elements, including viruses, plasmids, transposons, and chro-

mosomes. A protein homology search is a common method to classify the novel genomes. We

suggest using a high-sensitivity homology search method based on hidden Markov models.

LIMITATIONS

It is possible to predict the CRISPR-targeting hosts by searching protospacer-associated direct re-

peats in the reference genome database. However, CRISPR undergoes intense horizontal gene

transfer. Therefore, combining it with other methods, such as tRNA alignment, is highly advisable

to predict the infecting host.

TROUBLESHOOTING

Problem 1

Genome assembly takes time (step 4).

Potential solution

The time metagenome assembly takes strongly varies between libraries. If an assembly takes longer

than a day, and the library size is very large (>100 Gb), one can downsample the FASTQ file by

randomly selecting pairs from the original files or normalizing the depth in silico. Both approaches

can reduce the file size and potentially the assembling time.

Problem 2

Why did you skip the error-correction step in the SPAdes program (step 4)?

Potential solution

We found that the SPAdes program is sometimes trapped in the error-correction step and seems to

endlessly run for more than four or five days. This phenomenon is sporadic, hard to replicate, and

might depend on the system specifications. Such a problem was highly problematic when we

were analyzing more than a thousand samples. To avoid this issue, we skipped the error-correction

Figure 1. Classification results of CRISPR-targeted terminally redundant sequences from the human gut metage-

nome

The most popular elements among the large (>20 kb) CRISPR-targeted sequences in the human gut metagenome

were tailed phages. Conversely, ssDNA viruses, plasmid-like elements, and many unclassified sequences were

common among the small (<20 kb) sequences. This result was obtained from our previous study (Sugimoto et al.,

2021).
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step in the SPAdes program and instead used the tadpole program for the preassemble error correc-

tion. We compared the statistics between the assembled contigs, using SPAdes or tadpole, and

found no significant difference between them.

Problem 3

Assembled contigs are short (step 4).

Potential solution

The less populated organisms in the sample are likely to be shallowly sequenced, leading to highly

fragmented and partial contigs. Therefore, they might require deeper sequencing to assemble the

complete genome. Conversely, the metadata of SRA recorded libraries could be wrong sometimes.

For example, we encountered several libraries likely produced from 16S amplicon sequencing but

recorded as a whole genomic sequencing. It is advisable to avoid such libraries and/or refer to

the experimental method described in the original article if necessary.

Problem 4

The constructed spacer co-occurrence network is small and fragmented (step 21).

Potential solution

In the original study, we used millions of spacers extracted from thousands of human gut metage-

nome datasets to construct a network. A significant number of spacers and spacer-aligned contigs

are required to build a versatile network and predict graph communities. If you are attempting to

analyze other than the human gut metagenome using a few materials, it might be advisable to

skip the network building process entirely and manually check each protospacer containing contigs.

Problem 5

Protein homology searches do not hit the database (quantification and statistical analysis).

Potential solution

Many MGE encoded protein sequences such as capsids and polymerases are extremely diversified,

therefore it is often difficult to detect their homology to known sequences using the pairwise align-

ment-based method which is adopted by such as the BLAST program. In order to overcome this

issue, hidden Markov models (HMMs) based programs such as HMMER (Eddy, 2011) or HH-suite

(Steinegger et al., 2019) could be used for the higher sensitivity homology search. Using the

predicted protein sequences from the discovered CRISPR-targeted sequences as seeds, one could

iteratively search the bulk of metagenome-derived protein sequence databases such as Metaclust

(Steinegger and Söding, 2018). The aligned sequences were used to build an HMM, which is used

as a query to search a curated protein database such as Protein Data Bank.

RESOURCE AVAILABILITY

Lead contact

Ituro Inoue: itinoue@nig.ac.jp.

Materials availability

CRISPR spacers and direct repeats extracted in the previous study are available from our repository.

Data and code availability

The source codes used in this protocol are available from our repository.
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