Skip to main content
. 2022 Jun 22;16:878146. doi: 10.3389/fnins.2022.878146

TABLE 4.

The hyper parameters of the proposed BC-DA-RCNN model.

Layer type Size Stride Output shape
1 Input 32 × 32 None
2 Convolution layer 32 filters size of (3 × 3 or 5 × 5 or 7 × 7) 1 32 × 32 × 32
3 Residual block 1 32 filters size of (3 × 3 or 5 × 5 or 7 × 7) 1 32 × 32 × 32
4 Residual block 2 64 filters size of (3 × 3 or 5 × 5 or 7 × 7) 1 32 × 32 × 64
5 Residual block 3 128 filters size of (3 × 3 or 5 × 5 or 7 × 7) 1 32 × 32 × 128
6 Dense layer 1 1,024 units with dropout rate: 0.2 1024
7 Dense layer 2 512 units with dropout rate: 0.2 512
8 SoftMax 4 or 2