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Abstract

A number of molybdopterin enzymes, including xanthine oxidoreductase (XOR), aldehyde 

oxidase (AO), sulfite oxidase (SO), and mitochondrial amidoxime reducing component (mARC), 

have been identified as nitrate and nitrite reductases. Of these enzymes, XOR has been the 

most extensively studied and reported to be a substantive source of nitric oxide (NO) under 

inflammatory/hypoxic conditions that limit the catalytic activity of the canonical NOS pathway. 

It has also been postulated that XOR nitrite reductase activity extends to red blood cell (RBCs) 

membranes where it has been immunohistochemically identified. These findings, when combined 

with countervailing reports of XOR activity in RBCs, incentivized our current study to critically 

evaluate XOR protein abundance/enzymatic activity in/on RBCs from human, mouse, and rat 

sources. Using various protein concentrations of RBC homogenates for both human and rodent 

samples, neither XOR protein nor enzymatic activity (xanthine → uric acid) was detectable. 

In addition, potential loading of RBC-associated glycosaminoglycans (GAGs) by exposing RBC 

preparations to purified XO before washing did not solicit detectable enzymatic activity (xanthine 

→ uric acid) or alter NO generation profiles. To ensure these observations extended to absence of 

XOR-mediated contributions to overall RBC-associated nitrite reduction, we examined the nitrite 

reductase activity of washed and lysed RBC preparations via enhanced chemiluminescence in 

the presence or absence of the XOR-specific inhibitor febuxostat (Uloric®). Neither addition of 

inhibitor nor the presence of the XOR substrate xanthine significantly altered the rates of nitrite 

reduction to NO by RBC preparations from either human or rodent sources confirming the absence 

of XO enzymatic activity. Furthermore, examination of the influence of the age (young cells 

vs. old cells) of human RBCs on XO activity also failed to demonstrate detectable XO protein. 

Combined, these data suggest: 1) that XO does not contribute to nitrite reduction in/on human and 
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rodent erythrocytes, 2) care should be taken to validate immuno-detectable XO by demonstrating 

enzymatic activity, and 3) XO does not associate with human erythrocytic glycosaminoglycans or 

participate in nonspecific binding.
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1. Introduction

Xanthine oxidoreductase (XOR) catalyzes the final two steps in purine catabolism 

(hypoxanthine → xanthine → uric acid). XOR is a homodimer with each monomer 

consisting of four redox centers: a molybdenum cofactor (Mo-co), one FAD site, and two 

Fe/S clusters. The Mo-co is the site of purine oxidation while NAD+ and O2 reduction 

occur at the FAD [1–3]. The two Fe/S clusters operate to transfer electrons between 

the Mo-co and the FAD. The enzyme is translated as xanthine dehydrogenase (XDH) 

where purine-derived electrons reduce NAD+ to NADH. Under inflammatory conditions 

post-translational modification of XDH produces xanthine oxidase (XO) where affinity for 

NAD+ is diminished while affinity for O2 is enhanced resulting in oxidant generation. This 

capacity to reduce O2 has positioned XO as a critical source of oxidants in a variety of 

inflammatory processes [4–10].

While elevation in XO levels has long been associated with oxidant production, recent 

reports have described a salutary function for both XDH and XO whereby their catalytic 

activity can be utilized to reduce nitrate (NO3
−) to nitrite (NO2

−) and NO2
− to nitric 

oxide (NO) [11–18]. Several in vitro studies clearly demonstrate the capacity for XO 

to generate NO from NO2
− under inflammatory conditions [19–24]. Importantly, these 

hypoxic/ischemic conditions limit NO generation from endothelial nitric oxide synthase and 

have incentivized the supposition that XO- and XDH-mediated NO generation provides 

compensation [14]. Numerous in vivo reports validate the in vitro findings and demonstrate 

a clear XOR-dependence on beneficial outcomes associated with nitrite treatment in various 

inflammatory processes including those associated with the vasculature where vascular-

associated XOR has been contributory [11,12,25–29]. However, the details regarding micro-

environmental conditions requisite for XOR-mediated NO generation are not completely 

understood and may involve cooperation with alternative agents such as sulfide to afford 

maximal benefit [30].

While a detailed accounting of factors describing the biological relevance of XOR-mediated 

NO formation is ongoing, XOR’s mobility may play a key role in its overall impact as 

a NO source. For example, XDH can be released from cells (e.g. hepatocytes) to the 

circulation, rapidly converted to XO by plasma proteases, and bind avidly to the glycocalyx 

of endothelial cells affording XO capacity to impact vessel homeostasis via alteration of NO 

levels [31–33]. Recently, immunocytochemical analysis of human RBCs demonstrated the 

presence of XO on the membrane where it was suggested to participate in NO2
− reduction 
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to NO [34,35]. Incentivized by these findings, we examined the extent of XO protein 

abundance, activity, and nitrite reductase activity in human and rodent RBCs.

2. Materials and methods

Animals, Blood collection and Processing-

Both male and female rodents (Sprague Dawley rats and C57Bl/6 J mice, ages 28–42 weeks) 

were used for experiments in compliance with WVU IACUC-approved protocols. Blood was 

collected at time of euthanasia and kept on ice until spun at 1,100×g for 10 min at 4 °C. 

Plasma was collected and placed in a separate tube while the RBC pellet was washed 3x in 

a 1:1 ratio with ice-cold potassium phosphate buffer (KPi, 50 mM and pH 7.4) by gentle 

inversion. RIPA buffer was added and pellets homogenized by needle aspiration. Human 

blood samples were collected according to the WVU IRB-approved protocol (1303023857). 

Blood from healthy human subjects (3 men and 3 women, ages 20–50) was collected by 

venipuncture in tubes coated in potassium EDTA and processed as above. For experiments 

testing young and old RBCs, blood was collected from healthy volunteers (2 males and 

3 females) according to UAB IRB-approved protocol (090504006) by venipuncture and 

centrifuged (1500×g, 4 °C, 10 min) to pellet RBCs. Blood was collected from 2 male and 

3 female volunteers (age range 25–48 years old). Human RBCs were then separated into 

young and old fractions as previously described [36].

XOR Activity-

Plasma and RBC homogenates were assessed for XO and/or XDH activity as previously 

described using reverse phase HPLC coupled to electrochemical (CoulArray) detection of 

uric acid [37]. One unit of activity (U) is defined as 1 μmole urate formed per min at 37 °C 

and pH 7.4. The lower limit of detection is 300 nM.

Nitric oxide detection-

Nitric oxide was detected using chemiluminescence (Sievers Nitric Oxide Analyzer). 

Reaction chamber contained the following at the indicated concentrations using 5 mL KPi, 

pH 7.0: xanthine (25 μM) and RBC homogenate (5 mg). Reactions were initiated by adding 

NaNO2
− (500 μM). Authentication of NO was accomplished by addition of cPTIO (200 

μM). Initial rates of NO generation were used for quantification.

Western Blotting-

Electrophoresis used 4–12% Bis Tris gradient Criterion™ XT Precast Gels (Bio Rad, 

#3450123). Samples were resolved by SDS-PAGE and transferred to nitrocellulose. 

Membranes were blocked with Tris-Buffered Saline (TBS)-based LiCOR Intercept blocking 

buffer (LiCOR, 927–80001). The primary antibody was xanthine oxidase A-3 mouse 

monoclonal antibody (Santa Cruz, #398548), 1:500 dilution. Secondary antibody was 

LiCOR, 926–32210. Blots were imaged with the LiCOR Odyssey CLX.
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3. Results

XO activity in plasma-

Plasma from human, mouse, and rat was collected as described in the methods. Data shown 

in Fig. 1A demonstrates robust XO activity in the plasma from rodents as well as XO 

activity values for human plasma. XDH activity was not detected in any of the plasma 

samples which was expected due to plasma protease-mediated partial proteolysis resulting in 

conversion to XO.

XO activity in RBC homogenates-

RBC homogenates (0.8 mg total protein) were assayed for XO activity as shown in Fig. 

1B. Rodent samples contained oxonic acid (100 μM) to eliminate potential contributions of 

urate oxidase. In the mouse samples, some positive XO activity was indicated whereas in 

rat and human samples activity was not detected. The presence of XO activity in the 0.2, 

0.4 and 1.6 mg of murine RBC homogenate was not detectable suggesting contamination by 

existing UA to be responsible for the positive value in the 0.8 sample. In all cases, statistical 

analysis demonstrated no difference between the three groups. Analysis of XDH activity 

also revealed no detectable enzymatic activity in any of the groups.

XO binding to RBC GAGs-

In order to fully explore the potential for XO to bind RBC-associated GAGs, purified XO 

(50 mU) was added to the isolated RBCs (50 mM KPi, pH 7.4) and allowed to incubate 

with gentle inversion for 15 min. Following this incubation, the RBCs were subjected to 

gentle washing as described in the methods. In a control experiment, 25 mU of purified 

XO was added to a suspension of heparin-Sepharose 6B beads (HS6B-XO) and incubated 

and washed in the same manner as the RBCs. As seen in Fig. 2, RBCs with and without 

exposure to purified XO did not demonstrate XO activity whereas HS6B-XO showed 

abundant activity indicative of robust binding to the HS6B. Furthermore, addition of 100 

μM allopurinol only partially diminished HS6B-XO activity while febuxostat-mediated 

inhibition was not affected by XO-HS6B binding, a limitation of allo/oxypurinol-based 

inhibition of GAG-bound XO that we have previously reported [38,39].

XOR protein analysis of RBC homogenates and impact of cellular age-

To determine if XOR protein was present in/on RBC preparations from human, mouse, and 

rat samples, Western blot analysis was performed using a commercially-available mouse 

monoclonal antibody (Santa Cruz) as described in the methods. As seen in Fig. 3A, the 

dominate band, migrating at ~150 kD and representing a full monomer of the ~300 kD 

XOR homodimer, is detectable in the positive control (purified XO) lane whereas this band 

is absent in the lanes containing RBC homogenates. To further validate this monoclonal 

antibody we probed murine hepatocytes, rat liver homogenates and performed XDH cellular 

knockdown with siRNA (Suppl. Fig. 1).

Any preparation of human RBCs will comprise cells of different ages spanning the 120d 

lifespan. Moreover, older RBCs which are destined for clearance typically have altered 

cell surface characteristics that may allow more or less XO binding. To determine if 
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cellular, age-related alterations impact the content of XO in/on human RBCs, using the 

same monoclonal antibody, Western blot analysis was conducted on five human samples 

that were either of young or old cellular age. The positive control band (purified XO) is 

present at ~150 kD whereas it is not detectable in any other lane indicating the absence of 

immuno-detectible XO in the patient samples regardless of age, Fig. 3B.

XOR-mediated nitrite reductase activity-

Mouse, rat, and human samples were next analyzed for contributions of XOR to overall 

NO2
− reductase activity, Fig. 4. Samples were prepared in the reaction chamber with 100 

μL of RBC homogenate (5 mg total protein) in KPi pH 7.0 with or without xanthine (20 

μM) and with or without febuxostat (10 μM). Reactions were initiated by the addition of 

NaNO2
− (500 μM) and authentication of NO was determined by addition of the NO spin trap 

carboxy-PTIO. As seen in an example of a typical experiment in Fig. 4A, NO formation was 

detected following addition of NO2
− in human samples that was not altered by the presence 

of febuxostat. Quantitation revealed that neither the presence of xanthine nor febuxostat 

altered NO generation indicating the absence of XO-catalyzed NO2
− reduction, Fig. 4B.

4. Discussion

As sources of NO alternative to the canonical NOS-mediated pathway are beginning to 

be more clearly understood, a significant role for XOR is becoming apparent. It has been 

proposed that RBC-associated XOR is contributory to NO2
− reduction to NO [34,35]. 

In these studies, XOR protein was reported to be present in/on the RBC membrane and 

a portion of the RBC-mediated NO2
− reductase activity sensitive to the XOR inhibitor, 

allopurinol. While these studies did not assess enzymatic activity, they referenced previous 

publications that did report XOR activity in RBCs [40–42]. However, these reports are 

problematic in supporting RBC-associated XOR activity as they: 1) did not describe or 

reference their methods of XO activity assessment [41], 2) utilized approaches that did not 

account for existing uric acid (absence of controls with an XO inhibitor, [40,42], and 3) 

report levels of XO activity for human RBCs (mU/mg Hb or U/mL) that are greater than 

those seen in rat liver [40,42]. A potential explanation for the magnitude of the reported 

XO activity values in the studies described above is the absence of controls accounting for 

existing uric acid. Without this control, only variations in existing uric acid are realized 

unless there is pronounced XO activity. Herein, we accounted for existing uric acid by using 

sister tubes loaded with allopurinol and report no detectable XO activity in human and 

rodent RBCs. This is in agreement with a report showing the absence of XO activity in 

RBCs from humans using radio-labeled xanthine (8- [14]C) as a substrate and radiolabeled 

uric acid (14C) as the detected product [43]. In addition, we can also conclude that human 

RBCs do not bind and sequester XO via interaction with GAGs as seen in Fig. 2. While this 

experiment focused on binding to the artificial GAG, heparin-Sepharose, it also served to 

confirm the absence of observable non-specific binding to RBCs.

Whereas the absence of XO activity in RBCs seems conclusive, it does not dismiss the 

presence of XO protein as demonstrated previously [34]. This report clearly shows an 

abundance of immuno-detectable protein associated with the membrane of human RBCs 
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using a rabbit polyclonal anti-XOR antibody. We used a mouse monoclonal anti-XOR 

antibody (Santa Cruz) that has demonstrated, in our experience, the greatest specificity 

among those commercially available; yet, we did not detect XO protein, Fig. 3. Similar, yet 

inconclusive, results were obtained with an alternative rabbit polyclonal anti-XO antibody 

(Rockland), a notoriously nonspecific antibody (Suppl. Fig. 2). A plausible answer to 

why our findings oppose the immunocytochemistry findings reported previously lies in 

appreciating the literature describing why, with regard to XOR, immunocyto/histochemistry 

often countervails enzymatic activity results. In 1991, Clare and Lecce described the 

presence of antibodies (IgG, IgA, and IgM) in commercially-available purified XO 

preparations and concluded that antisera raised against these preparations would give rise 

to antibodies recognizing epitopes on these contaminant antibodies and thus could indicate 

the presence of XO where none existed [44]. This may also explain why we see faint 

hints of bands migrating near the 145 kD XO control band when using the above-described 

nonspecific rabbit polyclonal anti-XO antibody, Suppl. Fig. 2.

To further validate our findings, the NO2
− reductase capacity of human and rodent RBCs 

was assessed for XO-mediated contributions. RBC homogenates were analyzed for NO2
− 

reductase activity using xanthine as a reducing substrate for XO as seen in Fig. 4. Whereas 

the addition of NO2
− to the reaction chamber induced some NO formation, the presence of 

xanthine and/or febuxostat did not alter the rate of generation. These results counter those 

reported previously that demonstrated a measurable component of RBC-associated, XOR-

mediated NO2
− reduction to NO [34]. This report differed slightly from our experiment 

as XOR-mediated contributions were apparent at pH 6.8 and not significant at pH 7.4. 

We also endeavored to favor acidic conditions similar to those encountered in vivo under 

hypoxia/inflammation and thus our study was conducted at pH 7.0. This is an important 

concept as pH plays a critical role in the capacity of XOR to catalyze NO2
− reduction [14]. 

While the difference between 6.8 and 7.0 may be considered small, we must consider this 

discrepancy as a potential explanation for the difference between the previous report and 

our observations. However, when combined with the absence of detectable XO protein and 

enzymatic activity, we conclude that this slight difference in pH does not account for the 

absence of XO-mediated NO2
− reductase activity. In fact, our results are in agreement with 

a previous report demonstrating the absence of XO-dependent NO2
− reduction to NO in 

RBCs as evidenced by the absence of an effect of the XO inhibitor allopurinol on several 

readouts including: 1) nitrosyl-hemoglobin formation after addition of NO2
− to red cells 

as measured by electron paramagnetic resonance, 2) NO release from a red cell/nitrite 

mixtures as measured by chemiluminescence and 3) platelet activation [45]. In addition, 

this report demonstrated that carbon monoxide (CO), which inhibits heme-mediated NO 

production from NO2
− while not affecting XO activity, abrogated nitrosyl-hemoglobin 

formation measured by EPR.

In summary, data herein demonstrate the absence of XO protein, enzymatic activity, and 

NO2
− reductase activity in human and rodent RBCs as well as the inability of these RBCs 

to bind purified XO. In addition, the cellular age of the RBCs does not affect XO content. 

While these findings affirm the concept that immuno-detectible protein does not equate to 

enzymatic activity, they are limited to the models tested herein and thus do not rule out all 

potential for a circumstance whereby XO may be present in or associated with RBCs.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Human, mouse, and rat RBCs do not demonstrate XO activity. Human, mouse, and rat 

plasma (A) and washed RBC homogenates (B) were analyzed for XO activity as described 

in the methods. The volume of RBC homogenate used was 16 μL which corresponds to 0.8 

mg protein. Data represent the mean ± standard deviation, n = 6 for human, n = 3 mice, and 

n = 4 for rat samples.
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Fig. 2. 
RBCs do not bind XO. A) Cartoon depiction of XO bound to heparin-Sepharose 6B. B) 

Purified XO (50 mU) was added to human blood for 15 min and then the samples washed 

under identical conditions as in Fig. 1 and in the methods. Samples were then assessed for 

XO enzymatic activity as in Fig. 1. Control samples were exposed to either the XO inhibitor 

allopurinol (Allo) or febuxostat (Febux) as indicated. Data represent the mean ± standard 

deviation n = 4.
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Fig. 3. 
Assessment of RBC-associated XOR protein abundance and impact of cellular age. A) 

Western blot analysis was performed on human, mouse, and rat RBC homogenates using a 

monoclonal anti-XOR antibody (Santa Cruz) as described in the methods. Purified XO was 

used as a positive control and electrophoresed using 0.5 μg total protein. A total of 30 μg 

of protein was electrophoresed for each homogenate (human, mouse, and rat). Shown is a 

representative of 3 independent blots representing a total of 3 mice, 3 rats and 3 humans. 

B) Western blot analysis was performed on five different human RBC homogenates, either 

young or old, using the same mouse monoclonal anti-XOR antibody as described above. 

Purified XO was used as a positive control and electrophoresed using 0.5 μg total protein. 

(HV = healthy volunteer/Y = young/O = old).
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Fig. 4. 
Human and Rodent RBCs do not demonstrate XO-catalyzed nitrite reductase activity. 

Human, mouse, and rat samples were analyzed for XOR-dependent contributions to overall 

NO2
− reductase activity using the Sievers Nitric Oxide Analyzer (NOA) as detailed in the 

methods. Samples were prepared in the reaction chamber with 50 μL of RBC homogenate 

(5 mg total protein) in KPi pH 7.0 with or without xanthine (25 μM) and with or without 

febuxostat (10 μM). Reactions were initiated by the addition of NaNO2
− (500 μM). A) 

Representative NO generation profiles from human RBC homogenates + xanthine with 

or without addition of febuxostat (Febux). B) Human, mouse, and rat RBC homogenate 

values (alone or with xanthine or with xanthine and febuxostat). Authentication of NO was 

determined by diminution of the signal by the presence of the electron spin resonance NO 

spin trap carboxy-PTIO. Data represent the mean ± SD of n = 4.
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