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Abstract

We consider Bayesian high-dimensional mediation analysis to identify among a large set of 

correlated potential mediators the active ones that mediate the effect from an exposure variable 

to an outcome of interest. Correlations among mediators are commonly observed in modern 

data analysis; examples include the activated voxels within connected regions in brain image 

data, regulatory signals driven by gene networks in genome data, and correlated exposure data 

from the same source. When correlations are present among active mediators, mediation analysis 

that fails to account for such correlation can be suboptimal and may lead to a loss of power 

in identifying active mediators. Building upon a recent high-dimensional mediation analysis 

framework, we propose two Bayesian hierarchical models, one with a Gaussian mixture prior 

that enables correlated mediator selection and the other with a Potts mixture prior that accounts 

for the correlation among active mediators in mediation analysis. We develop efficient sampling 

algorithms for both methods. Various simulations demonstrate that our methods enable effective 

identification of correlated active mediators, which could be missed by using existing methods 

that assume prior independence among active mediators. The proposed methods are applied to the 

LIFECODES birth cohort and the Multi-Ethnic Study of Atherosclerosis (MESA) and identified 

new active mediators with important biological implications.
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1 | INTRODUCTION

Mediation analysis attempts to explain the intermediate mechanism through which an 

exposure affects an outcome, and quantify the indirect effect transmitted by the mediator 

variable between the exposure and the outcome.1

To formally define the direct and indirect effects, a causal approach to mediation analysis 

based on the counterfactual framework has been proposed, with the key assumptions for 

identification and causal interpretation being specified.2,3 This framework further gave rise 

to other extensions in mediation analysis, such as exposure-mediator interaction,4 survival 

data,5 and so on.

The fast development in high-throughput biological technology has provided tremendous 

opportunities for mediation analysis with large-scale omics data. Modern omics studies 

often collect a large number of mediators with the goal for identifying active mediators 

that mediate the effect from an exposure variable to an outcome variable. In many of these 

modern data applications, there often exists a substantial correlation among mediators. For 

example, in functional MRI (fMRI) studies, the brain images are composed of a large 

number of voxels/regions and true signals usually represent connected regions. Our study 

is particularly motivated by two large-scale data, one in environmental science and one in 

genomics. The first is the LIFECODES birth cohort, one of the nation’s largest pregnancy 

cohorts aimed at advancing care and improving outcomes in high-risk pregnancies.6 This 

study collected data on a large group of endogenous biomarkers of lipid metabolism, 

inflammation, and oxidative stress. These biomarkers are hypothesized to mediate the effects 

of prenatal exposure to environmental contamination on adverse pregnancy outcomes.7 

Moderate to strong correlations across those biomarkers are observed, and such correlations 

occur not only for biomarkers within the same biological pathways but also for biomarkers 

between different pathways. The second is the Multi-Ethnic Study of Atherosclerosis 

(MESA) data.8 In this study, high-dimensional DNA methylation (DNAm) are hypothesized 

to mediate the effect of neighborhood factors on blood glucose level, which is a critical 

variable linked to diabetes and heart diseases. Like the first study, these DNAm data are 

also correlated with each other. Performing mediation analysis with a high-dimensional 

set of mediators that may be correlated with each other is an important first step toward 

understanding the molecular basis of complex diseases and subsequent development of 

prevention and treatment strategies.

Several mediation analysis methods have been recently developed to accommodate high-

dimensional mediators obtained from large-scale genomic data. For example, Zhang et 

al9 propose sure independent screening and minimax concave penalty techniques to study 

how the high-dimensional DNAm mediate the effect of smoking on lung function; Zhao 

and Luo10 develop a new convex, Lasso-type penalty on the indirect effects to identify 

brain pathways from the language stimuli to the outcome region activity. In addition to 

the frequentist methods, Song et al11 propose a Bayesian variable selection method with 

separate shrinkage priors on the exposure-mediator effects and mediator-outcome effects, 

respectively. Song et al12 further replace the two separate priors with relevant joint priors 

for a direct target on the nonzero indirect effect in mediator selection. Those methods enable 
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a joint analysis of high-dimensional mediators and a valid procedure for the identification 

of active mediators. However, to the best of our knowledge, none of the existing methods 

for high-dimensional mediation analysis has accounted for the possible correlation structure 

among active mediators. As explained in the above paragraph, such correlation is highly 

prevalent. When the truly active mediators are correlated with one another, then the existing 

methods that fail to account for such correlation may lead to a loss of power. A more 

effective mediation analysis will require methods that can incorporate the useful correlation 

information of high-dimensional mediators into the model building process. We attempt to 

fill this gap in the literature.

Our proposed methods are based on a recently developed high-dimensional mediation 

analysis framework,12 which introduced a Gaussian mixture model (GMM) as a joint 

prior on the exposure-mediator and mediator-outcome effect to allow for a targeted 

penalization on the indirect effect. This method has been shown to enjoy excellent and 

robust performance for mediator selection and effect estimation. GMM assumes that each 

mediator can be independently categorized into one of the four components based on 

association pattern, and its group indicator follows the same multinomial distribution as 

the other mediators. With the goal of utilizing the correlation structure among mediators 

in the modeling process, we aim to replace the independent priors on the mediators’ 

group indicators with two priors that introduce coordinated selection on active mediators 

that may be correlated with each other. One prior is based on the Potts distribution,13 

a generalization from the Ising distribution, which allows for more than two groups and 

complex dependency between correlated neighboring variables. The other prior is based 

on a jointly modeling of the mediator-specific mixing probabilities via a logistic normal 

distribution,14 with the group probabilities reflecting the underlying correlation structure. 

Both methods allow for high-dimensional mediation analysis with the possible coordinated 

selection of active mediators via another layer in the Bayesian hierarchy. Both methods are 

built off the GMM proposed in Song et al,12 and thus inherit the merits of the GMM method 

for high-dimensional mediation analysis. Furthermore, the proposed methods incorporate 

the structural information into a prior that favors selection of correlated mediators, and 

are expected to allow the identification of correlated active mediators that could be missed 

otherwise. Our methods rely on exact posterior sampling to provide estimates of quantities 

of interest and characterize uncertainty in estimation. The proposed methods will also 

facilitate the interpretation of the results, particularly for the selected mediators with high 

correlations.

We note that our methods are built upon a long history of similar methods in other related 

statistics areas. Indeed, Bayesian variable selection with covariate structural information 

has received much interest over the years. Bayesian group Lasso15 and Bayesian sparse 

group selection method16 allow for the inclusion of grouping effects and lead to more 

parsimonious models with reduced estimation error compared with standard Lasso. Yuan 

and Lin17 also develop a correlation prior on the binary selection indicators to distinguish 

models with the same size. Bayesian graphical models represent another stream of work 

on structural variable selection. Cai et al18 utilize the graph Laplacian matrix to encode the 

network information into the regression coefficients. Stingo et al19 propose the simultaneous 

selection of pathways and genes, using the pathway summaries of the group behavior 
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and structure dependency within pathways to inform the selection. Along with the above 

methods, emerging literature considers the extension of the “spike-and-slab” type of mixture 

prior20 in combination with Markov random field (MRF) prior to incorporate graph 

information. Ising prior, a binary spatial MRF, and its variations have been effectively 

applied to induce sparsity and accommodate selection dependency. Li and Zhang21 and 

Chekouo et al22 show that the structural information through Ising priors can greatly 

improve selection and prediction accuracy over the independent priors. In addition to 

smoothing over the latent selection indicators, recent studies deploy different types of “slab 

distribution,” such as the Dirichlet Process,23 the group fused Lasso prior,24 and so on, 

to include the grouping and smoothing effect in the nonzero regression coefficients due 

to local dependence or high correlation. Those methodologies have illustrated how the 

structural or correlated information can be incorporated into Bayesian framework to deliver 

better variable selection. However, these existing approaches are not designed specifically 

for mediation models with multivariate mediators and thus not directly applied to high-

dimensional mediation analysis.

The rest of the article is organized as follows. In Section 2, we first define the causal 

effects of interest for the multivariate mediation analysis with the counterfactual framework. 

Then we review the mediation estimands under the linear regression models with multiple 

mediators and one continuous outcome. In Section 3, we propose two novel methods to 

explicitly incorporate correlation structure among mediators while jointly analyzing them. 

Simulation studies are carried out and discussed in Section 4. We illustrate our methods by 

applying them to LIFECODES and MESA cohort in Section 5, and conclude the article with 

a discussion in Section 6.

2 | NOTATIONS, DEFINITIONS, AND MODELS

We adopt the counterfactual framework for causal mediation analysis in a high-dimensional 

setting. Consider a study of n subjects and for subject i, i = 1, …, n, we collect data on 

one exposure Ai, p potential mediators Mi = Mi
(1), Mi

(2), … , Mi
(p) ⊤

, one outcome Yi, and 

q covariates Ci = Ci
(1), … , Ci

(q) ⊤
. In particular, we focus on the case where Yi and Mi are 

all continuous variables. We define Mi(a) = Mi
(1)(a), Mi

(2)(a), … , Mi
(p)(a)  as the ith subject’s 

counterfactual value of the p mediators if he/she received exposure a, and define Yi(a, m) 

as the ith subject’s counter factual outcome if the subject’s exposure were set to a and 

mediators were set to m. The effect of an exposure can be decomposed into its direct effect 

and effect mediated through mediators, that is, indirect effect. The natural direct effect 

(NDE) of the given subject is defined as Yi(a, Mi(a⋆)) − Yi(a⋆, Mi(a⋆)), where the exposure 

changes from a⋆ (the reference level) to a and mediators are hypothetically controlled at the 

level that would have naturally been with exposure a⋆. The natural indirect effect (NIE) of 

the given subject is defined by Yi(a, Mi(a)) − Yi(a, Mi(a⋆)), the change in counterfactual 

outcomes when mediators change from Mi(a⋆) to Mi(a) while fixing exposure at a. The 

total effect (TE), Yi(a, Mi(a)) − Yi(a⋆, Mi(a⋆)), can then be expressed as the summation of 

the NDE and the NIE: Yi(a, Mi(a)) − Yi(a⋆, Mi(a⋆)) = Yi(a, Mi(a)) − Yi(a, Mi(a⋆)) + Yi(a, 

Mi(a⋆)) − Yi(a⋆, Mi(a⋆)) = NIE + NDE.
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The counterfactual variables are useful concepts to formally define causal effects, but 

they are not necessarily observed. In order to estimate the average NDE and NIE from 

observed data, further assumptions are required, including the consistency assumption and 

four nonunmeasured confounding assumptions.25 We elaborate those assumptions in Section 

1 of the supporting information (SI). It has been shown that under those assumptions, the 

average NDE and NIE can be identified by modeling Yi|Ai, Mi, Ci and Mi|Ai, Ci using 

observed data.11 Therefore, we can work with the two conditional models for Yi|Ai, Mi, 

Ci and Mi|Ai, Ci, and subsequently propose two linear models for these two conditional 

relationships. For the outcome model, we assume

Y i = Mi
⊤βm + Aiβa + Ci

⊤βc + ϵY i, (1)

where βm = (βm1, …, βmp)⊤, βc = (βc1, …, βcq)⊤, and ϵY i N 0, σe2 . For the mediator model, 

we consider a multivariate regression model that jointly analyzes all p potential mediators 

together as dependent variables:

Mi = Aiαa + αcCi + ϵMi, (2)

where αa = (αa1, …, αap)⊤; αc = αc1
⊤ , … , αcp⊤ ⊤

 , αc1, …, αcp are q-by-1 vectors; ϵMi 

~ MVN(0, Σ), with Σ capturing the residual error covariance. ϵYi and ϵMi are assumed 

to be independent of each other and independent of Ai and Ci. Under the identifiability 

assumptions discussed in SI and the modeling assumptions (linearity, no exposure-mediator 

interaction in the outcome and mediator model) in (1)–(2), we can express causal effects 

with the model coefficients as below.11 In the rest of the article, we refer to NDE as direct 

effect and NIE as indirect/mediation effect.

NDE = E Yi a, Mi a⋆ − Yi a⋆, Mi a⋆ ∣ Ci = βa a − a⋆ .

NIE = E Yi a, Mi(a) − Yi a, Mi a⋆ ∣ Ci = a − a⋆ αa⊤βm = a − a⋆ ∑
j = 1

p
αajβmj .

TE = E Yi a, Mi(a) − Yi a⋆, Mi a⋆ ∣ Ci = βa + αa⊤βm a − a⋆ .

3 | METHOD

Recent application of univariate mediation analysis methods at genome-wide scale26,27 

recognizes the need for decomposing the null hypothesis of zero indirect effect into three 

null components: zero exposure on mediator effect, zero mediator on outcome effect, and 

both. Such composite structure of the null hypothesis in the univaraite mediation analysis 

can be naturally captured by the four-component Gaussian mixture model developed in 
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the presence of high-dimensional mediators.12 Following Song et al,12 we also consider a 

four-component Gaussian mixture for the effects of the jth mediator,

βmj, αaj
⊤ π1jMVN2 0, V 1 + π2jMVN2 0, V 2 + π3jMVN2 0, V 3 + π4jδ0

with a prior probabilities πkj (k ∈ Ω, Ω = {1, 2, 3, 4}) summing to one and MVN2 denoting 

a bivariate Gaussian distribution. The first component represents active mediators, where 

both the exposure-mediator effect αaj and mediator-outcome effect βmj are nonzero and V1 

models their covariance. The inactive mediator will fall into one of the remaining three 

components. The second component corresponds to mediators with nonzero βmj but zero 

αaj, and the third component corresponds to mediators with nonzero αaj but zero βmj. 

Both V2 and V3 are low-rank matrices restricting that only βmj or αaj is nonzero, that 

is, V 2 = σ2
2 0

0 0
 and V 3 =

0 0
0 σ3

2 . Mediators with both exposure-mediator effect and mediator-

outcome effect being zero belong to the fourth component, and δ0 is a point mass at zero. 

We specify a conjugate inverse-Wishart prior on V1, V1 ~ Inv-Wishart(Ψ0, ν), where Ψ0 = 

diag{ψ01, ψ02} is a diagonal matrix, and ν is the degree of freedom. We also assign inverse-

gamma priors to σ2
2 and σ3

2, that is, σ2
2 Inv‐Gamma v/2, ψ01/2 , σ3

2 Inv‐Gamma v/2, ψ02/2 , 

where ν, ψ01, and ψ02 are the same parameters used in the inverse-Wishart distribution. 

In both simulation studies and real data examples, we set ψ01 and ψ02 as the sample 

variances of the nonzero βm and αa fitted through Bi-Lasso. The degree of freedom ν in 

the inverse-Wishart distribution is set to be two, which makes the distribution reasonably 

noninformative while still well-defined.

We introduce a membership indicator variable γj for the jth mediator, where γj = k if [βmj, 

αaj]⊤ is from Gaussian component k, k ∈ {1, 2, 3, 4}. If we assume independence among 

πk1, πk2, …, πkp (and subsequently γ1, γ2, …, γp), then each mediator is independent 

a priori and the prior distribution on [βm, αa]⊤ after integrating out {πkj} (or {γj}) is 

essentially a separable product of distributions of [βmj, αaj]⊤. This is akin to the concept 

of “separable prior” in Ročková and George.28 In contrast, the previously developed 

GMM method12 assumes a common set of π1, π2, π3, π4 for all the mediators a priori. 

This specification ties mediators together through the mixing probabilities and enables 

information sharing across mediators, making the priors “nonseparable.” However, since 

this previous GMM approach assumes the same mixing probabilities for all the mediators 

a priori, it does not differentiate highly correlated mediators from uncorrelated ones to 

inform coordinated mediator selection. Specifically, when the jth and (j + 1)th mediators are 

highly correlated with each other, because such correlation often implies common biological 

mechanism underlying both mediators, then one mediator being active becomes informative 

on the other being active in the sense that γj and γj+1 are more likely to be same. To enable 

coordinated selection of correlated active mediators, we consider embedding the correlation 

information to {πkj}’s or γj’s. In the following sections, we describe the proposed methods 

with more details.
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3.1 | Hierarchical Potts mixture model: GMM-Potts

The Potts model13 was initially developed as a generalization of the Ising model in 

statistical physics. However, it has enjoyed great success as a prior model for the spatial 

modeling in image analysis,29,30 disease mapping,31 genetics studies,32 and so on. In 

those applications, Potts models incorporate spatial Markovian dependency by assigning 

homogeneous relationships for the “neighboring” regions. In the context of mediation 

analysis, we allocate the high-dimensional mediators into four Gaussian components based 

on their exposure-mediator and mediator-outcome effects. We think of the highly correlated 

mediators as neighbors and we attempt to assign them to different mediation components 

through a Potts model.

To specifically formulate our Potts mixture model, we assume that γ = (γ1, γ2, …, γp) 

follows a Potts distribution,

p γ ∣ θ0, θ1 = c θ0, θ1
−1exp ∑

i = 1

p
θ0kI γi = k

× exp ∑
i = 1

p
∑
i j

∑
k = 1

4
θ1kI γi = γj = k ,

(3)

where i ~ j indicates neighboring pairs and I(·) is the indicator function. The neighboring 

relationship can be defined in terms of domain knowledge, or, in our case, the mediator 

correlation information. θ0 = (θ01, θ02, θ03, θ04) effectively determines the four group 

proportions a priori in the absence of mediator correlation. θ1 = (θ11, θ12, θ13, θ14) 

represents how mediator correlation determines the extent to which one mediator being 

selected into one group affects the probability of its neighboring mediators being selected 

into the same group. For θ1k > 0, the Potts distribution encourages configurations where 

“neighboring mediators” belong to the same group; and the larger θ1k, the tighter this 

coupling. When θ1 = 0, group membership of one mediator is independent of that of its 

neighbors. Based on the full probability distribution in Equation (3), the probability for the 

jth mediator belonging to component k conditional on its neighbors is,

p γj = k ∣ γi i ≠ j, θ0, θ1 = exp θ0k × exp ∑i jθ1kI γi = γj = k
∑k = 1

4 exp θ0k × exp ∑i jθ1kI γi = γj = k
. (4)

This conditional probability depends on the neighbors of the jth mediator and demonstrates 

the Markov property of the Potts distribution.

We develop a Markov chain Monte Carlo (MCMC) sampling strategy for the proposed 

model. A key challenge for inference is the exact calculation of the normalizing constant 

c(θ0, θ1) in Potts distribution, as it requires the summation over the entire space of γ which 

consists of 4p states. Even for a moderate number of mediators, c(θ0, θ1) is computationally 

intractable, and this complicates the Bayesian inference. Due to the intractable normalizing 

constant in Potts distribution, the update of θ0, θ1 cannot be handled by the standard 

Metropolis Hastings (MH) algorithm. To address this issue, we employ the double MH 

sampler33 to generate auxiliary variables via the MH transition kernels and eliminate the 
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normalizing constants. For θ0, θ1, we consider normal priors, and the prior means of 

{θ0k} are set to have the desired inclusion probability while the prior means of {θ1k} 

are set to be the same positive number. This prior information favors the grouping of 

correlated mediators. According to Equation (4), the updating of γ can be realized through 

single site Gibbs sampling. Since the sampling space of γ is huge and discrete, the 

efficiency of the standard Gibbs updates can be improved by the Swendsen-Wang (SW) 

algorithm.34 The SW algorithm partitions the whole set of mediators into blocks within 

which the mediators belong to the same normal component, and then updates each block 

independently. Following the strategy in Higdon,34 we alternate between the single site 

Gibbs updates of γ and SW updates to ensure movement in large patches and fast mixing of 

the algorithm. The detailed algorithm is given in the SI.

In our Potts mixture model, the “neighboring” mediators are predefined to capture the 

correlation structure among mediators. Based on our experience, including too many 

neighbors into the model will cause irrelevant noises to the group probabilities and blur 

the cluster boundary, while including too few neighbors will certainly lose some of the 

important structural information. In this article, we apply the common clustering method 

on the p(p − 1)/2 pairwise correlations across the p mediators to divide them into two 

groups: high correlation and background noise. This procedure essentially sets a correlation 

threshold for neighbors and nonneighbors in a data dependent way. In the procedure, we 

define the ith mediator and jth mediator as neighbors if their pairwise correlation is above 

this threshold. The threshold may be determined in other ways to reflect the prior knowledge 

on the neighborhood structure and relationships across mediators.

We refer to our Potts mixture model as GMM-Potts. GMM-Potts translates the correlation 

structure into a neighboring graph and incorporates the local dependency among mediators 

through mediators’ predefined neighbors. For each mediator, its four-component group 

probabilities will be dependent on its neighboring correlated mediators but not the 

nonneighboring ones. This local dependency feature of GMM-Potts is unique compared 

with the previous GMM and does not incur much additional computational burden.

3.2 | Hierarchical GMM with correlated selection: GMM-CorrS

GMM-Potts requires a hard thresholding rule to determine the neighboring graph among 

mediators. If the neighbors and nonneighbors of mediators are not correctly specified or 

difficult to specify as in the case of a weak correlation structure, then GMM-Potts may incur 

a loss of performance. To avoid the need of neighborhood prespecification and allow for a 

more direct incorporation of correlation structure, we consider an alternative approach for 

coordinated selection of correlated mediators here. This alternative approach is again built 

upon the GMM framework. Specifically, for each mediator, we assume that the selection/

group indicator γj follows a multinomial distribution with parameters π1j, π2j, π3j, π4j, 

and ∑k = 1
4 πkj = 1. We propose to jointly model all the mediators’ mixing probabilities and 

their continuous dependence structure via latent logistic normal distributions. The logistic 

normal14 has been studied in the context of analyzing compositional data, such as bacterial 

composition in human microbiome data35 and topics proportions associated with document 

collections in correlated topics model.36 In mediation analysis, it would allow for a flexible 
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covariance structure among mediators and give a more realistic model where correlated 

mediators will have similar group probabilities a priori.

In particular, we employ a Pólya-Gamma (PG) latent variable representation of the 

multinomial distribution to enable coordinated mediator selection. Our approach is 

motivated in part by computational considerations. Specifically, a naive incorporation of the 

Gaussian correlation structure among multinomial parameters as described in the previous 

paragraph imposes substantial computational challenge, as it would break the Dirichlet-

multinomial conjugacy commonly used in mixture models. Approximation techniques such 

as variational inference are feasible, but they do not always come with the theoretical 

guarantees as MCMC.37 Our approach extends a similar approach in Bayesian logistic 

regression inference. Specifically, Bayesian logistic regression has long been explored given 

its inconvenient analytic form of the likelihood and the nonexistence of a conjugate prior for 

parameters of interest. Recently, Polson et al38 construct a new data-augmentation strategy 

based on the novel class of Pólya-Gamma (PG) distributions, and the method is notably 

simpler and more efficient than the previous schemes for Bayesian hierarchical models with 

binomial likelihoods.39 To extend that approach to multinomial logit models and facilitate 

MCMC computation, we leverage a logistic stick-breaking representation in the PG latent 

variable augmentation40 to formulate the multinomial distribution in terms of latent variables 

with the jointly Gaussian likelihoods. First, we rewrite four-dimensional multinomial in 

terms of three binomial densities πj1, πj2, and πj3,

p γj = 1 = πj1 = πj1,

p γj = 2 ∣ γj ≠ 1 = πj2 = πj2/ 1 − πj1 ,

p γj = 3 ∣ γj ≠ 1 or 2 = πj3 = πj3/ 1 − πj1 − πj2 ,

p γj = 4 ∣ γj ≠ 1 or 2 or 3 = πj4 = πj4/ 1 − πj1 − πj2 − πj3 = 1,

Multinomial γj ∣ 1, πj1, πj2, πj3, πj4 = ∏
k = 1

3
Binomial I γj = k ∣ njk, πjk ,

where njk = 1 −∑k′<k I(γj = k′), nj1 = 1. The multinomial distribution is now expressed with 

three binomial distributions and each πjk describes the faction of the remaining probability 

for the kth group (details in the SI). To better aid the interpretation of the above stick-

breaking representation, we may consider a testing strategy for the indirect effect βmjαaj 

implemented on each mediator. By doing that, we will get the subset of active mediators 

with βmjαaj ≠ 0, that is, γj = 1. For the remaining mediators with βmjαaj = 0, we further 
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consider the following three cases: p(γj = 2|γj ≠ 1) is the conditional probability of having 

nonzero βmj effect but zero αaj given that βmjαaj = 0; p(γj = 3|γj ≠ 1 or |2) is the conditional 

probability of having nonzero αaj effect given that βmj = 0; and the rest of the mediators will 

surely have βmj = αaj = 0, that is, γj = 4. We note that under the sparsity assumption, for 

most of the mediators, πj2 ≈ πj2, πj3 ≈ πj3 due to the small values of πj1 and πj2.

Then, we define bjk = logit πjk  for k = 1, 2, 3 and j = 1, 2, …, p. We stack the 3 × p bjk’s as 

one random vector, and assume a multivariate normal prior on it, that is,

b ≔ bjk j = 1, …, p; k = 1, 2, 3,
b MVN a, diag σd1

2 , σd2
2 , σd3

2 ⊗ D , (5)

where ⊗ denotes the Kronecker product. The logistic transformation maps the transformed 

multinomial parameters to the 3p-dimensional open real space. The prior mean a = 

{ajk}j=1,…, p;k=1,2,3, and it is chosen such that ajk = aj′k for k = 1, 2, 3 and 1 ≤ j < 

j′ ≤ p. It reflects our prior belief on the overall group proportions and induces sparsity 

for the first three groups. The D is a p-by-p covariance matrix and will incorporate the 

mediator wise correlation/structure dependency to the transformed mixing probabilities. In 

our setting, we estimate the correlation matrix among mediators from data and replace the 

negative correlations with their absolute values. For technical reasons, we then find the 

nearest positive definite matrix to the absolute correlation matrix, and use that as the D 
matrix in model fitting. Based on our practical experience, this approximation does not 

alter the absolute values of the correlation in D much. In this way, both the positive and 

negative correlation among mediators will encourage similar values on π1j’s, therefore 

favoring the selection of correlated mediators. Since the variation level may be different for 

logit πj1 , logit πj2 , and logit πj3 , we introduce the groupwise σdk
2 , k = 1, 2, 3 for a more 

general covariance pattern. This correlation embedded GMM exploits the whole correlation 

information from all the mediators and does not require the predefined neighbors as in the 

GMM-Potts model.

We refer to the above model as GMM-CorrS. We develop an MCMC algorithm to infer 

parameters through data augmentation with Pólya-Gamma variables.38 The augmented 

posterior leads to conditional distributions from which we can easily draw samples and the 

entire vector b can be sampled as a block in a single Gibbs update. The detailed derivation 

and algorithm can be found in the SI. The software for implementing both GMM-Potts and 

GMM-CorrS can be found at https://github.com/yanys7/Correlated_GMM_Mediation.

4 | SIMULATIONS

We evaluate the performance of the proposed models compared with existing methods under 

different scenarios through simulations.
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4.1 | Small sample scenarios: n = 100, p = 200

4.1.1 | Simulation design—Following settings in Song et al,12 we adopt the four-

component structure to generate the exposure-mediator and mediator-outcome effects, that 

is, simulate [βmj, αaj]⊤ from

βmj, αaj
⊤ π1MVN 0, 0.5 0.2

0.2 0.5 + π2MVN 0, 0.5 0
0 0 + π3MVN 0, 0 0

0 0.5 + π4δ0 .

To introduce sparsity, we assume the proportion of active mediators π1 = 0.05, and the other 

three null components π2 = 0.05, π3 = 0.10, π4 = 0.80. We generate a p-vector of correlated 

mediators for the ith individual from Mi = Aiαa + ϵMi, where the continuous exposure {Ai, 

i = 1, …, n} is independently sampled from a standard normal distribution. The residual 

errors ϵMi ∼ MVM 0, Σ  and Σ models the correlation structure across mediators. For the 

outcome, we simulate it from the linear model: Y i = Mi
⊤βm + Aiβa + ϵYi, with βa = 0.5, and 

the residual error ϵYi ∼ N 0, 1 .

For the correlation structure, we assume 10 highly correlated blocks of size 10 × 10, 

within which the pairwise correlation of mediators is ρ1, for example, ρ1 = 0.5 − 0.03 |i 
− j| or 0.9 − 0.05 |i − j|, and the correlation between blocks (ρ2) is relatively weak (eg, 

ρ2 = 0 or 0.1). Such correlation structure mimics the local dependency due to physical 

adjacency or biologically functional pathway of biomarkers, which is commonly seen in 

the high-dimensional mediators. There are 10 active mediators, and they are assumed to 

cluster within one block or scatter over a few blocks, while the other blocks contain no 

active mediators. We also consider settings where there is no correlation or such structural 

information underlying active mediators, that is, setting Σ to be identical matrix or estimated 

covariance based on a random subset of DNAm from MESA. For the Bayesian methods, 

we check the MCMC convergence by running ten chains and computing the potential scaled 

reduction factors (PSRF).41 The estimated 95% confidential interval of the PSRFs for all the 

PIPs is [1.0, 1.2], indicating good mixing and convergence of the algorithms.

The GMM-Potts model needs the input of a reliable neighborhood matrix. In practice, 

we may not be able to specify a completely precise neighborhood structure, but instead a 

deviated version of that. To examine how sensitive our GMM-Potts model is to the incorrect 

neighborhood relationship, we randomly convert a proportion of r neighboring mediator 

pairs to be nonneighboring, and randomly convert the same amount of nonneighboring pairs 

to be neighbors. The other configurations are the same as in the previous simulations. We 

vary the perturbation rate r from 0.05 to 0.5 to mimic different degrees of bias. In addition, 

for the GMM-CorrS, since it directly takes the correlation matrix as an input, we examine its 

sensitivity to the observed correlation matrix by adding mild changes from N(0, σ2) to the 

estimated matrix. We vary σ from 0.1 to 0.3 for different levels of noise.

4.1.2 | Evaluation metrics—To examine the mediator selection accuracy, for the 

proposed GMM-Potts and GMM-CorrS methods as well as GMM, we use PIP to rank and 

select mediators. We calculate the true positive rate (TPR) for active mediators based on the 
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fixed 10% false discovery rate (FDR). For the estimation accuracy, we calculate the mean 

square error (MSE) of the indirect effects for both nonnull and null mediators, denoted as 

MSEnonnull and MSEnull. We perform 200 replicates for each scenario and report the means 

of those metrics in the result tables.

4.1.3 | Competing methods—In addition to the proposed methods, we consider the 

following existing methods: GMM with no correlated information included, Bi-Lasso 

(apply two separate Lasso regressions42 to the outcome and mediator model, respectively), 

Bi-Ridge (apply two separate ridge regressions43 to the outcome and mediator model, 

respectively), and Pathway Lasso.10 In Bi-Lasso and Bi-Ridge, we adopt 10-fold cross 

validation to choose the tuning parameter in each regression separately. The three frequentist 

methods provide optimized solutions of βm, αa to the three different penalized likelihoods, 

and the marginal indirect contribution from each mediator, that is, βmjαaj, is used to rank 

mediators for the TPR calculation.

4.1.4 | Simulation results—Table 1 shows the results under the small sample scenarios 

with n = 100, p = 200. Overall, by leveraging mediators’ correlation structure, the two 

proposed approaches, GMM-Potts and GMM-CorrS, substantially improve the selection 

accuracy over the other methods. When the active mediators are concentrated within one 

block, the GMM-Potts achieves the highest TPR (>0.90) at a fixed 10% FDR for identifying 

this whole block, followed by GMM-CorrS (~0.80 TPR). The advantage of the proposed 

methods grows with stronger correlations. Without such “group selection” ability, the GMM 

under independent priors tends to lose half of the power for detecting correlated mediators. 

On the other hand, if the active ones are evenly distributed into two blocks, then highly 

correlated mediators within the same block may not be concurrently active. This could 

happen if their correlation does not mainly link with mediation as we assume, and therefore 

may disturb mediator selection. Under those settings, we do observe power decrease for 

the proposed methods. Particularly, the GMM-Potts model becomes less preferable as it 

smoothes over nonmediating neighbors to infer active mediators, while GMM-CorrS uses a 

more flexible Gaussian distribution for dependent group probabilities and thus has the best 

TPR. In the settings where there is no systematic correlation structure underlying mediators, 

we find that GMM-CorrS behaves quite similarly to the GMM, and outperforms the others. 

GMM-Potts is less robust presumably due to the inclusion of irrelevant neighbors, but 

still better than the frequentist methods. The three frequentist methods have relatively poor 

selection performance with highly correlated mediators, and Bi-Lasso is most competitive 

under zero or weak correlation. In terms of the effects estimation, the proposed methods 

mostly achieve the smallest MSEnonnull and a reasonable level of MSEnull. Among the three 

frequentist methods, since in general Lasso tends to select less correlated variables than the 

elastic net type penalty, Bi-Lasso has a relatively larger MSEnonnull but noticeably smaller 

MSEnull than the pathway Lasso. Given the sparse setup in the above simulations, Bi-Ridge 

does not exhibit much advantage over the other methods.

Tables 2 and 3 summarize the sensitivity analysis for GMM-Potts and GMM-CorrS, 

respectively, regarding the input correlation structure. As expected, with increasing noise 

added to the correlation structure, the overall accuracy of GMM-Potts and GMM-CorrS 
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gets reduced. However, the power of our methods remains 75% of the original level for 

reasonable r and σ (r < 0.3, σ < 0.3). Even with large r = 0.5 and σ = 0.3, GMM-CorrS still 

has better performance (TPR, MSEnonnull) over methods with no structural information in all 

the settings, and GMM-Potts does for most of the settings. Generally speaking, the proposed 

methods are not sensitive to small alteration of the input correlation structure. In addition, 

we also perform sensitivity analysis on the ψ parameters (ψ01 and ψ02) in the covariances 

of both mixture models. We find that the posterior inference is robust to mild changes in 

ψ′s, especially as we increase the values of ψ′s. The results also show that model fitting 

criteria, such as the deviance information criterion (DIC), can be used to select the optimal 

ψ′s. More details can be found in Section 7 of the supporting file.

4.2 | Large sample scenarios: n = 1000, p = 2000

4.2.1 | Simulation design—Next, we examine the settings for n = 1000, p = 2000. 

We simulate the exposure, exposure-mediator and mediator-outcome effects using the same 

distribution as above. For the correlation structure, we now consider 50 blocks of size 20 

× 20, with relatively high within-block mediator correlation ρ1 and zero between-block 

correlation. We first set the four group proportions same as in the small sample scenarios, 

and the resultant 100 active mediators are assumed to evenly distribute over five blocks. The 

other blocks contain no active mediators. In one of the settings, we use the covariance matrix 

estimated from a random subset of DNAm in MESA as Σ to simulate mediators with no 

underlying systematic correlation structure.

Then we study a much sparser setting with only 10 active mediators to better reflect the 

situation we observe in the MESA application. The 10 active mediators exist in two blocks, 

each of which contains five active ones and 15 inactive ones. Furthermore, we consider 

another worse-case scenario for GMM-Potts model by reducing ρ1 to 0.25 and remaining the 

high sparsity. The weak correlation makes it hard for GMM-Potts model to identify the true 

neighboring relationship via the clustering method, and the performance of the Potts model 

is quite dependent on the smoothing effects from the predefined neighbors.

4.2.2 | Simulation results—Table 4 shows the results under the large sample scenarios 

with n = 1000, p = 2000. Our methods enjoy up to 30% power gain on mediator selection 

utilizing the correlation structure compared with the other methods. In the first setting, 

both methods identify almost all the active blocks, and GMM-Potts has a slightly higher 

TPR (0.97) at 10% FDR than GMM-CorrS (TPR = 0.92). When the mediator correlation 

has no implication for mediation effects in the second setting, the overall performance of 

GMM-CorrS is similar to that of GMM, and better than GMM-Potts. Those patterns are 

consistent with what we have observed in the small sample scenarios. Under the much 

sparser settings with only 10 active mediators and varied correlation ρ1, the GMM-CorrS 

maintains good and stable performance with TPR around 0.80. By contrast, the performance 

of GMM-Potts is dependent on how obvious the correlation patterns are and subsequently 

how well the clustering method does in defining neighbors and nonneighbors. For example, 

with ρ1 = 0.5 − 0.02 i − j, the GMM-Potts models can accurately identify the underlying 

correlation structure and achieve the highest TPR (0.85), smallest MSE (MSE| | nonnull = 

0.002, MSEnull = 7.607 ×10−7). However, as the within-block correlation ρ1 reduces to 0.25, 
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it becomes challenging for the clustering method to separate true correlation vs noise, and 

we do observe many noisy pairs in the neighborhood matrix. As a consequence, the results 

of GMM-Potts model get compromised by the inclusion of those irrelevant neighbors. This 

setting is actually in agreement with our observation of the ambiguous correlation structure 

and sparse signals in the MESA application, which may not fare well for GMM-Potts 

model. Among the other three frequentist methods, Bi-Lasso performs best regarding to the 

selection and estimation accuracy.

We note that the TPR results shown in the above tables represent the best selection 

performances one can achieve with the proposed methods, as we know the underlying true 

signals and can perfectly specify the 10% FDR thresholds. But that is not the case with real 

data applications. Therefore, we examine the empirical FDR estimates using (a) the local 

FDR approach44 for a targeted 10% FDR (specifically, we sort the p local FDRs from all the 

mediators and find the cutoff value on the local FDRs to declare significance), (b) median 

PIP cutoff, and (c) 0.90 PIP cutoff, along with the corresponding TPR estimates. Detailed 

procedure and the empirical estimates, including the empirical FDRs for simulations in this 

section, are provided in the SI. Under the small sample scenarios (Table S1), the local 

FDR approach provides decent and well-controlled empirical FDR for both of the proposed 

methods, while the estimates by median PIP cutoff and 0.90 PIP cutoff tend to be either 

slightly overestimated or very conservative. Under the large sample scenarios (Table S2), 

the local FDR approach and median PIP cutoff still produces reasonable FDR estimates for 

GMM-CorrS across different settings and for GMM-Potts when neighbors reflect connected 

signals. However, including irrelevant neighbors in GMM-Potts could lead to increased false 

discoveries, and instead a more stringent 0.90 PIP cutoff may be used if one seeks a lower 

limit on the false discovery. Therefore in practice, we would recommend the local FDR and 

0.90 PIP cutoff for reasonable FDR estimates and control, and we recognize the potential 

caveat concerning inflated FDR for GMM-Potts.

In addition to the above simulation scenarios, we also perform simulations where there 

is a single active mediator in each block. The simulation results are presented in Table 

S3. We find that the three GMM-based methods behave quite similarly to each other, and 

outperform the frequentist methods. Such pattern still holds when we use a different n/p 
ratio, for example, n = 100, p = 500 (see Table S4). Along with the selection and estimation 

performance, we report the computational cost for these two proposed methods in Table 

5. For both the small sample scenario with n = 100, and the large sample scenario with n 
= 1000, the proposed algorithms can be finished in a reasonable amount of time. We do 

acknowledge that future development of new algorithms and/or new methods will likely be 

required to scale our methods to handle thousands of subjects and millions of mediators.

To summarize our findings from the simulations, GMM-CorrS takes the overall correlation 

structure among mediators directly into the modeling process, and shows excellent 

performance and robustness under different correlation structures. On the other hand, 

the performance of GMM-Potts is related to how well the prespecified neighborhood 

matrix reflects the underlying connection of active mediators. When the correlation-based 

neighboring relationship has good implication on similar mediation effects, GMM-Potts 
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usually achieves the best selection and estimation accuracy. Its performance will likely get 

compromised by the inclusion of irrelevant neighbors.

5 | DATA APPLICATION

In this section, we study two real data applications of the proposed methods: the 

LIFECODES birth cohort and the MESA cohort. These two data sets have different 

correlation strength among mediators and thus can serve to demonstrate the advantages of 

each of the proposed methods. Specifically, in the LIFECODES birth cohort, the biomarkers 

present a relatively clear correlation/neighborhood structure. We thus expect GMM-Potts 

model to work well based on our observation from simulations. On the other hand, the 

correlation structure in the MESA cohort is relatively weak. We thus expect a better 

performance from GMM-CorrS compared with GMM-Potts there.

5.1 | The LIFECODES birth cohort

In this application, we consider a set of n = 161 pregnant women registered at the Brigham 

and Women’s Hospital in Boston, MA between 2006 and 2008. We are interested in the 

mediation mechanism linking environmental contaminant exposure during pregnancy to 

preterm birth through endogenous signaling molecules. Those endogenous biomarkers are 

derived from lipids, peptides, and DNA, and the lipids and peptide derived biomarkers 

were measured from subjects’ plasma samples, while the oxidative stress markers of 

DNA damage were measured from subjects’ urine samples. Both the urine and plasma 

specimens were collected at one study visit between 23.1 and 28.9 weeks gestation. 

We focus on p = 61 available endogenous biomarkers as potential mediators, including 

51 eicosanoids, five oxidative stress biomarkers and five immunological biomarkers. The 

correlation structure across mediators are shown in Figure 1, and clear pattern with moderate 

to strong correlations can be observed. For the prenatal exposure to environmental toxicants, 

we focus the attention of this present study on one class of environmental contaminants, 

polycyclic aromatic hydrocarbons (PAHs). PAHs are a group of organic contaminants that 

form due to the incomplete combustion of hydrocarbons, and commonly present in tobacco 

smoke, smoked and grilled food products, polluted water and soil, and vehicle exhaust 

gas.45 Previous studies have suggested association between PAH exposure and adverse birth 

outcomes.46 Since the PAH class contains multiple chemical analytes in our study, we follow 

Aung et al7 to construct an environmental risk score for the PAH class and use that risk 

score as the exposure variable. The continuous birth outcome, gestational age, was recorded 

at delivery for each participant, and preterm is defined as delivery prior to 37 weeks 

gestation. Since the cohort is oversampled for preterm cases, we multiply the data by the 

case-control sampling weights to adjust for that. We log-transform all measurements of the 

exposure metabolites and endogenous biomarkers. We apply the proposed methods with the 

aforementioned exposure, mediator and outcome variables, controlling for age and maternal 

BMI from the initial visit, race, and urinary specific gravity levels in both regressions of the 

mediation analysis.

The results are summarized in Table 6. Based on 10% FDR using the local FDR 

approach, GMM-Potts identifies four biomarkers for actively mediating the impact of 
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PAH exposure on gestational age at delivery, 8,9-epoxy-eicosatrienoic acid (8(9)-EET), 

9,10-dihydroxy-octadecenoic acid (9,10-DiHOME), 12,13-epoxy-octadecenoic acid (12(13)-

EpoME), 9-oxooctadeca-dienoic acid (9-oxoODE), while both GMM-CorrS and GMM only 

identifies two of them, 8(9)-EET and 9,10-DiHOME. We also report the indirect effect 

estimates and their 95% credible intervals for selected mediators, and the direction of 

effects are consistent among different methods. Among the four biomarkers, 8(9)-EET, 9,10-

DiHOME, and 12(13)-EpoME belong to the same Cytochrome p450 (CYP450) pathway, 

while 9-oxoODE is within cyclooxygenase (COX) pathway. CYP450 is a family of enzymes 

that function to metabolize environmental toxicants, drugs, and endogenous compounds,47 

and thus the PAH exposure may cause perturbations in the functions of these enzymes. 

It has also been suggested that the group of CYP450 metabolites as well as the related 

genes may play a role in the etiology of preterm delivery,48 and the underlying mechanisms 

involve increased maternal oxidative stress and inflammation.49 This evidence helps explain 

the potential mediating mechanism of CYP450 metabolites from PAH exposure to preterm 

delivery. Additionally, single biomarker analysis also demonstrated the protective effect of 

12(13)-EpoME on preterm.50 We also performed the posterior predictive checks on the 

outcome model for the three methods, in which the data generated from the posterior 

predictive distribution are compared with the observed outcome. We find the Bayesian 

predictive P-values51 of the GMM-Potts model are 0.72 and 0.48 for sample first and second 

moments, respectively, which are closest to 0.5 among the three methods and indicate the 

most adequate fit of the outcome model.

Besides the estimated correlation structure, we also consider the input of biological pathway 

based structural information. That is, only mediators within the same literature derived 

biological pathway or process are treated as neighbors in GMM-Potts and have nonzero 

pairwise correlations in GMM-CorrS. The findings are shown in Table S7 of the SI. 

GMM-Potts identifies a subset of the above four biomarkers: 8(9)-EET, 9,10-DiHOME, 

and GMM-CorrS declares the other two biomarkers as active mediators: 12(13)-EpoME, 

9-oxoODE. The overlapping lists of active mediators add confidence to our findings, and 

also reveal the fact that only adjusting for biological pathways may lose the correlated 

information between different pathways.

5.2 | The MESA cohort

In this application, we study the mediation mechanism of DNAm in the pathway from 

neighborhood socioeconomic disadvantage to blood glucose. We focus on n = 1226 

participants with no missing data, and a subset of p = 2000 CpG sites that have 

the strongest marginal associations with neighborhood disadvantage for computational 

reasons. As the exposure, neighborhood socioeconomic disadvantage evaluates the 

neighborhood social conditions from dimensions of education, occupation, income and 

wealth, poverty, employment, and housing. Previous literature has demonstrated the 

relationship between DNA methylation patterns and socially patterned stressors including 

low adult socioeconomic status (SES)52 and unfavorable neighborhood conditions.53 It 

has also been long known that disadvantaged neighborhood conditions can lead to a 

variety of health problems, such as chronic psychological distress54 and increased risk 

of cardiovascular disease.55 The outcome, glucose, is one of the most important blood 
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parameters and should be kept within a safe range in order to support vital body functions 

and reduce the risk of diabetes and heart disease.56 Multiple evidence has supported the 

association between differential DNAm patterns and glucose metabolism.57 However, the 

underlying molecular mechanisms that link neighborhood conditions to physical health 

profiles are not fully elucidated. To take a step forward, we apply the proposed methods 

for high-dimensional mediation analysis on DNAm. In the outcome model, we adjust for 

age, gender, race/ethnicity, childhood SES and adult SES (more details on the SES variables 

can be found at Smith et al53). In the mediator model, we control for age, gender, race/

ethnicity, childhood SES, adult SES, and enrichment scores for four major blood cell types 

(neutrophils, B cells, T cells, and natural killer cells) to account for potential contamination 

by nonmonocyte cell types. All the continuous variables are standardized to have zero mean 

and unit variance. In general, the correlation among DNAm in our study is relatively weak, 

and only 3% of DNAm pairs have correlation larger than 0.2.

The results can be found in Table 7. Because of the relatively ambiguous correlation 

structure observed across mediators in MESA, we do not expect big improvement from 

our methods. Indeed, the GMM-CorrS identifies one more CpG site as active mediators 

compared with GMM, and three other CpG sites are detected by both GMM-CorrS and 

GMM. The rank correlation for the mediator rank lists obtained from the two methods is 

0.74, indicating the high consistency between them. The indirect effect estimates from the 

GMM-CorrS are also close to those from the GMM. The one additional finding of CpG site 

by GMM-CorrS, cg27090988, is close to the gene OGG1. This gene, which is involved in 

the repair of oxidative DNA damage, has been shown up-regulated in type 2 diabetic islet 

cell mitochondria, and studies have suggested a crucial role of oxidative DNA damage in 

the pathogenesis of type 2 diabetes (T2D).58,59 We also examine the nearby genes to the 

other three jointly selected CpG sites. Among them, MYBPC3 is a known cardiomyopathy 

gene,60 and the increased risk of cardiac hypertrophy and heart failure is likely to alter the 

glucose metabolism;61 the expression level of CD101, a protein involved in innate immunity, 

was found associated with T2D in a Mendelian randomization analysis.62 As shown in 

the simulations, GMM-Potts is not quite suitable for a weak correlation structure as in the 

MESA data, and the method does not identify any active mediators based on 10% FDR.

6 | DISCUSSION

In this article, we present two hierarchical Bayesian approaches to incorporating the 

correlation structure across mediators in high-dimensional mediation analysis: (1) through a 

logistic normal for mixing probabilities (GMM-CorrS), or (2) through a Potts distribution on 

the group indicators (GMM-Potts). The consequent “nonseparable” priors of both methods 

inform the grouping and selection of correlated mediators under the composite structure 

of mediation. The simulation studies show that utilizing the correlation pattern in active 

mediators, the proposed methods greatly enhance the selection and estimation accuracy over 

the methods that do not account for such correlation, and maintain decent and comparable 

performance under no obvious or misspecified correlation structure. In addition, the analysis 

on the LIFECODES birth cohort and MESA cohort indicates that our methods can promote 

the detection of new active mediators, which may have important implications on future 

research in targeted interventions for preterm birth and diabetes.
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Between the two proposed methods, GMM-CorrS shows excellent performance and 

robustness under different correlation structures, while the performance of GMM-Potts is 

relatively heavily dependent on how well the prespecified neighborhood matrix reflects the 

underlying connection among active mediators. In particular, when the correlation-based 

neighborhood matrix captures the main correlation structure and has good predictive power 

on the correlated mediation effects, GMM-Potts usually achieves the best selection and 

estimation accuracy. Therefore, in data analysis, we would recommend using the GMM-

Potts when one is confident that the prespecified neighborhood matrix well captures the 

clustering pattern of active mediators, or when there are relatively strong domain knowledge 

on such mediator grouping structure. If that is not the case, then it would be safer to 

start from GMM-CorrS. There are several limitations of the proposed methods. First, for 

GMM-CorrS, it requires the inversion of a p × p matrix in each iteration of the sampling 

algorithm, and as p increases to the scale of hundreds of thousands, that step could become 

the computational bottleneck of the method. Techniques on matrix approximation or fast 

parallel matrix inversion will be required to speed up the computing time and reduce 

the memory footprint. Second, for GMM-Potts, smoothing over arbitrary or inaccurately 

specified neighbors may have a negative effect on its performance, and this can be further 

improved by imposing adaptive weight for each neighbor to reflect their relative importance. 

Moreover, the method can be extended to allow for simultaneous inference of both the 

active mediators and the neighborhood/network structure linking them. In that way, the 

neighborhood/network structure among mediators does not need to be known a priori. It can 

also be easily extended to more than two groups by introducing group-specific parameters 

θ0k and θ1k in the Potts distribution. This will facilitate the needs for multiple mediator 

groups.

As promising directions for future work, we note that there may be other ways to incorporate 

mediators’ correlation into the modeling process. Recently, testing the multivariate 

mediation effects from groups of potential mediators has received growing attention,63 and 

the variance component tests developed by Huang27 can naturally take into account the 

correlation within groups. Other frequentist extensions involving a sparse group Lasso type 

method by treating βmj and αaj as a group is also worth developing in the future. Also, 

Bobb et al64 develop a Bayesian kernel machine regression to incorporate the structure of 

the multipollutant mixtures into the hierarchical model. Those methodologies may provide 

insightful perspective to applying correlation kernels under the global testing setup in the 

context of high-dimensional mediation analysis.
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FIGURE 1. 
Correlations among biomarkers in LIFECODES birth cohort. The negative correlations 

(~37% of all the pairwise correlations) were replaced with their absolute values. The 61 

biomarkers were grouped by literature derived biological pathways or processes (black lines)
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TABLE 1

Simulation results of n = 100, p = 200 under different correlation structures

ρ1 = 0.5 − 0.03|i − j|, ρ2 = 0

(A) Signals in one block (B) Signals in two blocks

Method TPR MSEnonnull MSEnull ×10−4 TPR MSEnonnull MSEnull ×10−4

GMM-CorrS 0.78 0.029 1.360 0.62 0.039 1.919

GMM-Potts 0.93 0.035 2.251 0.49 0.040 2.112

GMM 0.45 0.042 1.211 0.46 0.047 1.203

Bi-Lasso 0.26 0.238 0.520 0.23 0.238 0.584

Bi-Ridge 0.22 0.283 2.639 0.21 0.286 2.642

Pathway Lasso 0.24 0.233 2.598 0.23 0.180 6.405

ρ1 = 0.9 − 0.05|i − j|, ρ2 = 0.1

(A) Signals in one block (B) Signals in two blocks

Method TPR MSEnonnull MSEnull ×10−4 TPR MSEnonnull MSEnull ×10−4

GMM-CorrS 0.81 0.208 1.146 0.49 0.182 4.080

GMM-Potts 0.92 0.171 3.515 0.41 0.233 1.651

GMM 0.33 0.206 2.158 0.22 0.201 3.112

Bi-Lasso 0.11 0.342 0.173 0.13 0.343 0.179

Bi-Ridge 0.15 0.322 2.170 0.16 0.326 1.690

Pathway Lasso 0.21 0.237 5.495 0.19 0.264 3.457

No systematic correlation structure (signals in two blocks)

(A) ρ1 = 0 (B) Weak correlation from MESA

Method TPR MSEnonnull MSEnull ×10−4 TPR MSEnonnull MSEnull ×10−4

GMM-CorrS 0.52 0.020 1.042 0.44 0.023 1.780

GMM-Potts 0.46 0.043 1.970 0.40 0.030 3.041

GMM 0.52 0.021 0.805 0.45 0.023 1.642

Bi-Lasso 0.45 0.081 0.542 0.35 0.139 0.740

Bi-Ridge 0.35 0.238 3.645 0.28 0.247 4.003

Pathway Lasso 0.35 0.164 0.314 0.32 0.177 0.400

Note: TPR: true positive rate at false discovery rate (FDR) = 0.10. MSEnonnull: mean squared error for the indirect effects of active mediators. 

MSEnull: mean squared error for the indirect effects of inactive mediators. The results are based on 200 replicates for each setting. Bolded TPRs 

indicate the top two performers.
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TABLE 2

Sensitivity analysis for Potts mixture model (GMM-Potts) for n = 100, p = 200

ρ1 = 0.5 − 0.03|i − j|, ρ2 = 0

(A) Signals in one block (B) Signals in two blocks

Perturbation rate TPR MSEnonnull MSEnull ×10−4 TPR MSEnonnull MSEnull ×10−4

0 0.93 0.035 2.251 0.49 0.040 2.112

0.05 0.78 0.076 1.496 0.44 0.091 1.733

0.1 0.72 0.077 1.578 0.43 0.091 1.827

0.2 0.69 0.087 1.568 0.42 0.086 1.822

0.3 0.61 0.097 1.736 0.41 0.088 2.019

0.4 0.53 0.102 1.525 0.40 0.085 1.952

0.5 0.49 0.094 2.082 0.41 0.081 1.847

ρ1 = 0.9 − 0.05|i − j|, ρ2 = 0.1

(A) Signals in one block (B) Signals in two blocks

Perturbation rate TPR MSEnonnull MSEnull ×10−4 TPR MSEnonnull MSEnull ×10−4

0 0.92 0.171 3.515 0.41 0.233 1.651

0.05 0.91 0.180 0.819 0.33 0.191 1.876

0.1 0.91 0.181 1.203 0.35 0.183 2.156

0.2 0.91 0.175 1.393 0.32 0.201 1.815

0.3 0.89 0.174 1.129 0.32 0.177 2.081

0.4 0.88 0.173 1.395 0.32 0.200 1.492

0.5 0.83 0.166 2.046 0.30 0.188 1.884
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TABLE 3

Sensitivity analysis for the Gaussian mixture model with correlated selection (GMM-CorrS) for n = 100, p = 

200

ρ1 = 0.5 − 0.03|i − j|, ρ2 = 0

(A) Signals in one block (B) Signals in two blocks

Noise level TPR MSEnonnull MSEnull ×10−4 TPR MSEnonnull MSEnull

0 0.78 0.029 1.360 0.62 0.039 1.919

0.1 0.71 0.029 2.481 0.56 0.036 2.246

0.2 0.60 0.031 2.575 0.50 0.037 2.043

0.3 0.53 0.033 2.235 0.47 0.037 1.910

ρ1 = 0.9 − 0.05|i − j|, ρ2 = 0.1

(A) Signals in one block (B) Signals in two blocks

Noise level TPR MSEnonnull MSEnull ×10−4 TPR MSEnonnull MSEnull ×10−4

0 0.81 0.208 1.146 0.49 0.182 4.080

0.1 0.72 0.168 4.017 0.40 0.127 3.288

0.2 0.63 0.170 3.442 0.37 0.130 3.370

0.3 0.54 0.176 3.413 0.34 0.133 3.283
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TABLE 4

Simulation results of n = 1000, p = 2000 under different correlation structures, p11 is the number of true active 

mediators

p11 = 100, signals in five blocks

(A) ρ1 = 0.5 − 0.02|i − j| (B) Weak correlation from MESA

Method TPR MSEnonnull MSEnull ×10−4 TPR MSEnonnull MSEnull ×10−4

GMM-CorrS 0.92 0.031 0.440 0.83 0.002 0.240

GMM-Potts 0.97 0.030 0.018 0.76 0.004 1.013

GMM 0.76 0.077 0.630 0.84 0.002 0.176

Bi-Lasso 0.73 0.031 0.199 0.65 0.042 0.446

Bi-Ridge 0.32 0.244 2.680 0.36 0.202 3.795

Pathway Lasso 0.44 0.112 1.162 0.42 0.107 1.427

p11 = 10, signals in two blocks

(A) ρ1 = 0.5 − 0.02|i − j| (B) ρ1 = 0.25

Method TPR MSEnonnull MSEnull ×10−4 TPR MSEnonnull MSEnull ×10−4

GMM-CorrS 0.83 0.003 0.015 0.82 0.002 0.017

GMM-Potts 0.85 0.002 0.008 0.61 0.018 0.228

GMM 0.80 0.003 0.013 0.81 0.002 0.016

Bi-Lasso 0.73 0.013 0.036 0.76 0.010 0.035

Bi-Ridge 0.41 0.061 1.508 0.39 0.063 1.517

Pathway Lasso 0.55 0.046 0.133 0.56 0.047 0.141

Note: TPR: true positive rate at false discovery rate (FDR) = 0.10. MSEnonnull: mean squared error for the indirect effects of active mediators. 

MSEnull: mean squared error for the indirect effects of inactive mediators. The results are based on 200 replicates for each setting. Bolded TPRs 

indicate the top two performers.
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TABLE 5

The average runtime of the proposed methods with (n, p) = (100, 200), (100, 500), and (1000, 2000)

Method n = 100, p = 200 n = 100, p = 500 n = 1000, p = 2000

GMM-CorrS 3.5 min 0.97 h 9.8 h

GMM-Potts 2.2 min 0.44 h 4.0 h

Note: Comparison was carried out on a single core of Intel(R) Xeon(R) Platinum 8176 CPU @ 2.10GHz. For both proposed methods, we in total 
ran 150 000 iterations.
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TABLE 6

Summary of the identified active mediators from the data application on LIFECODES study based on 10% 

FDR with the local FDR approach

Method Selected mediators PIP βmjαaj (95% CI)

Polycyclic aromatic hydrocarbons → biomarkers → gestational age

GMM-Potts 12(13)-EpoME 0.99 0.419 (0.295, 0.579)

8(9)-EET 0.98 0.368 (0.179, 0.567)

9-oxoODE 0.97 −0.296 (−0.441, 0.000)

9,10-DiHOME 0.87 −0.185 (−0.383, 0.000)

Note: Compared with GMM-CorrS and GMM, the GMM-Potts model achieves the most adequate fit of the outcome model based on posterior 

predictive check. The two additional findings from GMM-Potts are marked in blue. Besides the PIP, we also report the posterior estimates βmjαaj
(ie, the marginal indirect contribution of the jth mediator to the joint NIE) and its 95% credible interval (CI).
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TABLE 7

Summary of the identified active mediators from the data application on MESA study based on 10% FDR 

using the local FDR approach

Method Selected mediators Nearby genes PIP βmjαaj (95% CI)

Neighborhood SES → biomarkers → glucose

GMM-CorrS cg19515398 EIF2C2 0.97 −0.013 (−0.026, 0.000)

cg04000940 MYBPC3 0.96 0.016 (0.000, 0.029)

cg17907003 CD101 0.88 0.016 (0.000, 0.034)

cg27090988 OGG1 0.84 −0.011 (−0.024, 0.000)

Note: We include the nearby gene, PIP, the posterior estimates βmjαaj (ie, the marginal indirect contribution of the jth mediator to the joint NIE) 

and its 95% credible interval (CI) for each selected CpG site. The one additional finding from GMM-CorrS is marked in blue. The GMM-Potts 
does not identify any active mediators based on 10% FDR.
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