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SUMMARY

Pathogenic enteric viruses are a major cause of morbidity and mortality, particularly among 

children in developing countries. The host response to enteric viruses occurs primarily within 

the mucosa, where the intestinal immune system must balance protection against pathogens with 

tissue protection and tolerance to harmless commensal bacteria and food. Here, we summarize 

current knowledge in natural immunity to enteric viruses, highlighting specialized features of the 

intestinal immune system. We further discuss how knowledge of intestinal anti-viral mechanisms 

can be translated into vaccine development with particular focus on immunization in the oral 

route. Research reveals that the intestine is a complex interface between enteric viruses and the 

host where environmental factors influence susceptibility and immunity to infection, while viral 

infections can have lasting implications for host health. A deeper mechanistic understanding of 

enteric anti-viral immunity with this broader context can ultimately lead to better vaccines for 

existing and emerging viruses.

INTRODUCTION

Pathogenic enteric viruses, characterized by fecal-oral transmission and intestinal 

replication, are a major cause of worldwide morbidity and mortality. Localized 

intestinal infection by enteric viruses such as adenovirus-A, -F, and -G (Adenoviridae), 

norovirus (Caliciviridae), astrovirus (Astroviridae), sapovirus (Caliciviridae), and rotavirus 

(Reoviridae) cause gastroenteritis characterized by tissue inflammation, disruption of the 

epithelial barrier, malabsorption, and diarrhea (Banyai et al., 2018; Liu et al., 2016). 

Rotavirus is the primary pathogen responsible for diarrheal mortality, causing >200,000 

deaths and millions of hospitalizations each year, while adenovirus and norovirus are 

responsible for an additional 100,000 annual deaths (GBD Diarrhoeal Disease Collaborators, 

2018; Hallowell et al., 2021). Hepatoviruses and enteroviruses (Picornaviridae), such 

as hepatitis A, poliovirus, and coxsackievirus, infect via the oral route but cause few 

gastrointestinal symptoms and result in clinical disease only after dissemination to 

another site. Enteric viruses have diverse genetic composition, cellular tropism, and 

pathophysiology, though all 16 human viruses known to be transmitted in oral route are non-

enveloped, likely because a lipid membrane would be disrupted in the harsh environment 
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of the digestive tract (Bushman et al., 2019). Key features of major enteric viruses are 

summarized in Figure 1.

The host response to enteric viruses occurs primarily within the intestinal mucosa, which 

contains a single layer of epithelial cells, connective tissue beneath termed the lamina 

propria, and an underlying layer of muscle. Most immune cells are found in the epithelium 

and lamina propria, which each form distinct immune compartments. Induction of immune 

responses to intestinal antigen occurs in gut-draining lymph nodes and gut-associated 

lymphoid tissues such as Peyer’s patches (Mowat and Agace, 2014). The majority of 

immune stimulation in the intestine comes from commensal microbes and food. The 

intestinal immune system must balance immunological tolerance to these harmless entities 

with protection against pathogens. Dysregulated immune responses may lead to tissue 

damage, inflammatory bowel disease, or food allergy, and accordingly the intestinal immune 

system is set in a default state of tolerance. Although these immune-suppressive pathways 

are mainly targeted at extracellular antigen, there is a high threshold in general for immune 

activation in the gut. Enteric pathogens and vaccines that enter in the oral route must 

therefore provide a higher level of stimulation to overcome tolerance, providing important 

context for the nature of effective antiviral immunity in the gut (Faria et al., 2017; Zhou 

and Sonnenberg, 2018). Another key concept for antiviral immunity is that viruses have 

evolved strategies to evade every step of the immune response, while the immune system 

compensates with redundant mechanisms for viral detection and control. This tradeoff is 

made evident by the existence of multiple converging innate immune pathways for viral 

detection as well as the multi-faceted adaptive immune response.

During viral infection, epithelial and innate cells detect the breach via cytosolic and 

membrane pattern recognition receptors. A cascade of signaling pathways is activated within 

the cells that in turn activates the production of inflammatory mediators such as type I 

and III interferons (IFN-α/β/λ), interleukin (IL)-6, IL-1β, IL-18, and tumor necrosis factor 

alpha (TNF-α) (Figure 2A). These interferons and cytokines alarm the surrounding cells by 

inducing the activation of intrinsic anti-viral programs and the activation of endothelial cells 

to facilitate the recruitment of leukocytes. Dendritic cells (DCs) in the lamina propria that 

have taken up viral particles migrate to the mesenteric lymph nodes and present processed 

viral antigens to virus-specific T cells via major histocompatibility complex (MHC) class I 

and II molecules. Subsequently, virus-specific T cells differentiate into memory and effector 

subtypes with anti-viral properties and upregulate gut homing receptors such as α4β7 and 

CCR9 to migrate to the intestinal tissue (Figure 2B). The recruited intestinal virus-specific T 

cells can directly eliminate virus-infected cells via granzyme/perforin- or cytokine-mediated 

cytotoxicity (Figure 2C). Simultaneously, viral antigen capture and presentation within 

specialized immune structures in the intestinal tissue called Peyer’s patches results in the 

activation and differentiation of virus-specific B cells, generally in a T cell-dependent 

manner. The activated B cells differentiate into plasma cells that produce large amounts of 

virus-specific secretory immunoglobin A (IgA) antibodies that are translocated to the lumen 

where they can neutralize virus (Figure 2D). T cells and plasma cells activated during a 

primary viral infection can establish permanent tissue residence in the gut or migrate to 

the bone marrow and mount rapid responses upon secondary infection. Thus, the intestinal 
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immune system can quickly detect and clear viruses through innate mechanisms, as well as 

establish long-term antigen-specific protective immunity through adaptive mechanisms.

In this review, we will summarize current knowledge of natural immunity to enteric 

viruses and how this knowledge is being translated into vaccine development, highlighting 

specialized features of intestinal immunity. Human studies in this field have been hindered 

by difficulty in accessing mucosal tissues, necessitating the use of gut-homing immune 

responses in peripheral blood as the main readout for mucosal immunity. Accordingly, we 

will discuss findings from human studies where possible while also highlighting functional 

and mechanistic studies from mice.

INNATE ANTIVIRAL RESPONSES

The intestinal epithelium and associated mucus layer form a selective barrier that provides 

defense against enteric pathogens. Mucus, essentially a hydrogel of highly glycosylated 

linear proteins, is densely packed with anti-microbial peptides such as defensins that can 

disrupt viral envelopes: another reason enteric viruses that transmit via oral-fecal routes 

are non-enveloped (Daher et al., 1986; Linden et al., 2008). The mucus layer also contains 

secretory antibodies that can neutralize virus before it reaches the tissue (Mantis et al., 

2011). The outer mucus layer is constantly shed and passed down the digestive tract to be 

excreted. The epithelium itself forms a structural barrier to viral invasion including a dense 

brush border (microvilli) on the apical side and multiprotein adhesion complexes between 

neighboring epithelial cells (tight junctions) (Delorme-Axford and Coyne, 2011). Enteric 

viruses have adapted numerous strategies to invade through the mucosa. For example, 

adenovirus and poliovirus can both use tight junction proteins as entry receptors (Bergelson 

et al., 1997; Mendelsohn et al., 1989). However, most luminal bacteria and viruses never 

breach the mucosal barrier and therefore may not directly interact with immune cells (Kuss 

et al., 2008; Mantis et al., 2011).

Viral detection occurs through pattern recognition receptors, either intrinsically by an 

infected cell through recognition of cytosolic nucleic acids or extrinsically by recognition 

of endosomal nucleic acids (Figure 3). Cytosolic sensors are universally expressed across 

cell types to recognize DNA (cGAS) or RNA (RIG-I and MDA5), leading to downstream 

activation of adaptor proteins STING or MAVS, respectively (Andrejeva et al., 2004; 

Ishikawa and Barber, 2008; Yoneyama et al., 2004). Endosomal sensing is mediated 

primarily by toll-like receptors (TLRs) that are expressed by intestinal epithelial cells, 

DCs, and macrophages, recognizing double-stranded RNA (TLR3), single-stranded RNA 

(TLR7/8), and CpG motifs in double-stranded DNA (TLR9) and recruiting downstream 

adaptor and signaling proteins MyD88 and TRIF (Blasius and Beutler, 2010). TLR sensing 

is important as MyD88-deficient mice have increased susceptibility for multiple enteric 

viruses (Fejer et al., 2008; Hartman et al., 2007; McCartney et al., 2008; Thackray et al., 

2012; Uchiyama et al., 2015).

Viral detection pathways lead to downstream activation of the transcription factor nuclear 

factor κB, which leads to production of pro-inflammatory cytokines including IL-1β, IL-6, 

IL-12, TNF-α, and IFNs (Kawai and Akira, 2011). IFNs are critical in antiviral immunity, 
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and mice lacking type I IFN receptor or the downstream adapter molecule STAT1 are 

highly susceptible to viral infections (Hwang et al., 1995; Ingle et al., 2018; Muller et al., 

1994). Type I IFNs contribute to multi-pronged antiviral defense mechanisms that include 

promoting apoptosis of infected cells, antigen presentation pathways, and natural killer and 

cytotoxic T cell responses (Stetson and Medzhitov, 2006). While type I or II IFNs do not 

regulate viral load of chronic murine norovirus, these cytokines prevent the spread of virus 

from intestinal tuft cells to systemic extraintestinal sites such as lymph nodes and spleen 

(Baldridge et al., 2015; Nice et al., 2015). Most viruses have evolved mechanisms to evade 

the IFN response; for example, rotavirus targets IFN-regulatory factors (downstream of 

DNA/RNA sensors) to reduce the type I IFN response (Arnold and Patton, 2011). Type III 

interferon (IFNλ), which can be produced by epithelial and myeloid cells (Lauterbach et 

al., 2010), is also critical for control of enteric viruses in mice and induces long-lasting 

expression of IFN-stimulated genes relative to type I IFNs (Baldridge et al., 2017; Larsen et 

al., 2020; Ye et al., 2019). Consistently, mice lacking IFN-λ receptor exhibit high norovirus 

load in intestinal tissues and stool (Baldridge et al., 2017).

Nucleotide-binding oligomerization domain (NOD)-like receptors can be activated 

by enteric viruses though recognition of self-derived stress signals to induce the 

inflammasomes NLRP3 in immune cells or NLRP9 in IECs (Allen et al., 2009; Zhu et al., 

2017). Inflammasomes are signaling complexes that activate caspase-1 or −11, resulting in 

inflammatory cell death, and secretion of the cytokines IL-1β and IL-18, which promote an 

adaptive antiviral response (Niu et al., 2019; Zhao and Zhao, 2020). The production of IL-18 

and IL-22 by TLR5-stimulated DCs has been proposed to induce clearance of rotavirus 

(Zhang et al., 2014), while targeted deletion of NLRP9b in intestinal epithelial cells leads 

to diarrhea and increased rotavirus shedding in the feces (Zhu et al., 2017). The innate 

pathways described here enable broad detection of viruses that converge into a common 

pro-inflammatory response and conversely represent major targets for viral immune evasion 

strategies (Carty et al., 2021; Pichlmair and Reis e Sousa, 2007).

Innate responses occur rapidly, within hours of viral detection, and are critical for viral 

control during primary exposure. Additionally, innate cells contribute to induction of 

specific immunological memory through uptake and presentation of viral antigens to 

adaptive immune cells. Viral detection through pattern recognition receptors promotes 

antigen presentation through several mechanisms, including upregulation of costimulatory 

molecules, MHC class I and II, and CCR7-dependent migration to T cell zones in lymph 

nodes (van Montfoort et al., 2014). Antigen-presenting cells can also directly sample the 

intestinal lumen for antigens via trans-epithelial processes, though it is not known whether 

viruses can be sampled in this manner (Mazzini et al., 2014; Niess et al., 2005; Rescigno 

et al., 2001). Finally, specialized intestinal epithelial cells called M cells that overlay gut-

associated lymphoid tissues such as Peyer’s patches can directly transport virus from the 

lumen through transcytosis, where they can be picked up for presentation (Dillon and Lo, 

2019). However, several enteric viruses can also utilize M cells for entry and replication, and 

depletion of M cells in mice has been shown to limit infection with norovirus and reovirus 

(Dillon and Lo, 2019; Gonzalez-Hernandez et al., 2014). Initiation of adaptive immunity and 

formation of specific immune memory is key for protection against future infections.
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INTESTINAL B CELLS AND IgA

B cells develop in the bone marrow, where they produce their B cell receptors by 

immunoglobulin gene rearrangements, which, following germinal center-mediated somatic 

hypermutation, provide virtually unlimited potential antigen recognition capacity. B cells 

are crucial players in mucosal immunity, especially as producers of secretory IgA, the most 

abundant antibody in mice and humans. Selective IgA deficiency in humans is associated 

with increased incidence of intestinal infections and more severe gastrointestinal symptoms, 

however, an estimated 85%–90% of IgA-deficient individuals are asymptomatic, suggesting 

alternate mechanisms such as increased IgM can compensate in absence of IgA (Yel, 2010). 

Following maturation of antigen-specific B cells at gut immune inductive sites, memory B 

cells and plasma cell precursors upregulate intestinal homing molecules α4β7 and CCR9 

and migrate to the intestinal tissue (McNeal and Ward, 1995; Williams et al., 1998). 

Intestine-resident IgA plasma cells produce secretory dimeric IgA, which is transported 

to the lumen through the epithelial cells via polyIg-receptors (Mantis et al., 2011).

Secretory IgA is among the most important indicators of protection against enteric viral 

infection and can potentially neutralize virus in the mucus layer before it reaches host cells, 

preventing infection altogether. Indeed, clearance of enteric viruses has been positively 

correlated to the presence of specific intestinal IgA (Atmar et al., 2011; Blutt et al., 

2012; Cheuvart et al., 2014; Lindesmith et al., 2003; Nishio et al., 1992; Ramani et al., 

2015; Tacket et al., 2003; Unicomb et al., 1996). In contrast, circulating antibodies have 

limited access to the gut mucosa and hence are less capable of limiting the initial mucosal 

phase of enteric infections, though they have been shown to offer protection against the 

systemic phase of certain enteric pathogens (Faden et al., 1990; Hird and Grassly, 2012; 

Zeng et al., 2016). In many cases, serum-specific antibody titers correlate with protection 

against enteric viruses (Reeck et al., 2010; Velazquez et al., 2000), although it is unclear 

whether this is through direct control of infection or simply an indirect readout for control 

through secretory antibody induction. One study reported that 4 months after rotavirus 

infection, serum IgA levels could predict small intestine secretory IgA with 79% accuracy, 

whereas saliva (85%) and feces (92%) were more accurate predictors (Grimwood et al., 

1988). Serum from adenovirus-infected mice has in vitro neutralizing activity but does not 

protect naive mice from enteric adenovirus infection, supporting the conclusion that serum 

antibodies cannot control mucosal infection (Lussier et al., 1987). Although an intestinal 

IgA response to SARS-CoV-2 has not been investigated, IgA antibodies dominate early 

specific antibody responses in the serum (monomeric, circulating), as well as in the saliva 

and lungs (secretory) (Sterlin et al., 2021). Furthermore, secretory IgA antibodies neutralize 

SARS-CoV-2 15-fold more effectively than their monomeric counterparts (Wang et al., 

2021). Finally, mice lacking B cells fail to clear acute norovirus infection but are able 

to clear rotavirus infection, thus the absolute requirement for antibodies varies by virus 

(Chachu et al., 2008b; Franco and Greenberg, 1995; Karst et al., 2003). As most vaccines 

depend highly on humoral immunity, a better understanding of the role of circulating versus 

secretory antibodies as well as B cell-dependent and -independent pathways in the enteric 

anti-viral response is crucial.
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Some evidence suggests that secretory antibodies generated by viral infections restricted to 

mucosal sites are short lived (<3 years) relative to serum antibodies generated by systemic 

infections (>10 years) (Slifka and Ahmed, 1996). Bacteria-specific intestinal IgA reportedly 

persists in monocolonized mice but declines rapidly in the presence of other microbiota, 

and additive increases in specific IgA were found after consecutive bacterial exposures, 

in contrast to prime-boost dynamics seen in peripheral antibody responses (Hapfelmeier 

et al., 2010). Mucosal IgA responses, therefore, may follow different dynamics than 

peripheral antibodies, and one possible mechanism for mucosal IgA degeneracy is continual 

replacement reflecting ongoing stimulation from the intestinal lumen. Rotavirus-specific 

IgA plasma cells can be detected in intestinal biopsies from the majority of human donors 

despite no recent history of rotavirus infection (Di Niro et al., 2010; Nair et al., 2016) 

and can be found in the lamina propria and bone marrow of mice 9 months after infection 

(Youngman et al., 2002). This suggests that despite potentially short-lived intestinal IgA, 

long-lived plasma cells may be able to quickly mount a humoral response upon re-infection. 

Studies on the longevity of intestinal humoral immunity are critical for understanding 

anti-viral mechanisms.

INTESTINE-RESIDENT T CELL RESPONSES

The majority of the immune cells found in the intestinal tissue are T cells, including 

peripherally recruited conventional TCRαβ T cells, which populate primarily the intestinal 

lamina propria, and tissue-resident innate-like T cells such as CD8αα TCRγδ, CD8αα, and 

CD4 CD8αα TCRαβ T cells primarily populating the intestinal epithelium (Cheroutre et al., 

2011; Mayassi and Jabri, 2018). TCRαβ T cells primed in the gut-draining lymph nodes can 

migrate to the intestine where they functionally adapt, establishing permanent residency and 

memory characteristics (Bilate et al., 2020; Fonseca et al., 2020; Kiner et al., 2021; London 

et al., 2021).

Most mechanistic studies about the role of T cells in enteric virus infection derive from 

experiments in mice. While mice lacking both B and T cells become chronically infected 

with adenovirus or rotavirus (Dharakul et al., 1990; Franco and Greenberg, 1995; Umehara 

et al., 1984), animals lacking CD8+ T cells show delayed clearance of these enteric viruses 

(Chachu et al., 2008a; Franco et al., 1997; Zhu et al., 2016), which suggests an important, 

but not essential, role for cytotoxic T cells. Along the same lines, adoptive transfer of 

norovirus-specific CD8+ T cells can reduce the viral burden of Rag−/− mice persistently 

infected with norovirus (Tomov et al., 2013). Rotavirus-specific CD8+ T cells have been 

found in Peyer’s patches of infected mice expressing high levels of tissue homing receptors 

CCR9 and CXCR6 (Jiang et al., 2008). In humans, rotavirus-specific CD8+ T cells were 

found in the peripheral blood and intestinal epithelium by tetramer staining; these cells 

also concomitantly express the gut-homing receptors CD103 and integrin β7 and produce 

IFN-γ (Newell et al., 2013; Wei et al., 2006, 2009). However, studies in animal models 

suggest that the production of IFN-γ or perforin and expression of bβ integrin by CD8+ T 

cells are all dispensable for the control of rotavirus infection (Franco et al., 1997; Kuklin 

et al., 2000). On the other hand, perforin does have a role in protection against norovirus 

(Chachu et al., 2008a). The limited requirement for CD8+ T cells may be due to partially 

redundant function with other cytotoxic immune cells such as innate lymphoid cells and 
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natural killer cells. For example, CD8+ T cells detect virus-infected cells through viral 

peptide presentation on MHC-I, but several viruses evade CD8+ T cell-mediated killing by 

downregulating MHC-I surface expression. In this case CD8+ T cells are dispensable for 

viral clearance while natural killer cells can detect “missing self” and initiate cytotoxicity 

(Hansen et al., 2010; Koutsakos et al., 2019). In some cases, persistence of viral infection 

can be linked to evasion of CD8+ T cell responses. For example, acute murine norovirus 

elicits effective CD8+ T responses and can be cleared, while chronic murine norovirus 

recruits fewer and less functional CD8+ T cells (Parsa et al., 2021; Tomov et al., 2013, 

2017). While the mechanism of chronic murine norovirus evasion remains unclear, its 

selective infection of rare epithelial tuft cells may reduce antigen availability to CD8+ T 

cells, while acute murine norovirus that infects myeloid cells may be more accessible. 

Additional studies are needed to define mechanisms of CD8+ T cell-mediated viral control, 

how these pathways can be evaded by enteric viruses, and whether similar mechanisms 

apply during human infections.

Murine studies have also provided some understanding about the role of CD4+ T cells in 

enteric viral clearance. CD4+ T cell help is important for B cell class switching and affinity 

maturation, although some IgA is still found in CD4+ T cell-deficient mice, indicating 

that IgA class switching can occur via both T cell-dependent and -independent pathways 

(Fagarasan et al., 2010; Hornquist et al., 1995; Snider et al., 1999). Accordingly, CD4+ 

T cell-depleted mice show reduction in the generation of rotavirus-specific intestinal IgA, 

although they could still clear virus (Franco and Greenberg, 1997). Comparably, mice 

lacking CD4+ T cells show higher norovirus load but eventually clear infection (Chachu 

et al., 2008a; Zhu et al., 2013, 2016). To gain more insights into the role of peripherally-

recruited T cells in enteric viral infections, we fate-mapped naive T cells (Merkenschlager 

et al., 2021) in mice infected with several different enteric virus strains. We found that 

viruses that spread systemically, such as reovirus T1L (a virus in the same family as 

rotavirus) and acute norovirus CW3, preferentially recruit CD8 T cells to the intestine. In 

contrast, enteric adenovirus and chronic norovirus CR6, which do not spread systemically, 

induced the recruitment of activated CD4+ T cells to the intestinal epithelium expressing 

CCR9, Ly-6A, granzyme B, and IFN-γ. Although mice infected with chronic norovirus did 

not clear infection, we found a role for norovirus-recruited CD4+ T cells, but not reovirus-

recruited CD4+ T cells, in the clearance of heterologous adenovirus infection. Removal of 

TCR from CD4+ T cells before adenovirus infection increased viral titers and delayed viral 

clearance, but removal of TCR post-infection did not impact viral clearance (Parsa et al., 

2021). These findings suggest TCR-dependent differentiation but TCR-independent function 

of virus-recruited T cells, similar to what we previously proposed for other intestinal T cell 

subsets (Bilate et al., 2020). We also found that heterologous viral clearance by pre-existing 

virus-recruited CD4+ T cells was dependent on IFN-γ secretion, which could be induced 

by stimulation with IL-12 and IL-18 without TCR engagement (Parsa et al., 2021). This 

suggests a unique differentiation pathway and TCR-independent function of virus-recruited 

intestinal CD4+ T cells in cross-protective viral clearance.

In the epithelial layer, most T cells in mice and a large fraction in humans are TCRγδ T 

cells (Guy-Grand et al., 1991). Murine studies demonstrated that TCRγδ T cells actively 

monitor the intestinal epithelium and can quickly identify infected or stressed epithelial 
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cells (Hoytema van Konijnenburg et al., 2017). Upon activation, TCRγδ T cells exhibit 

cytotoxic properties and produce cytokines such as IFN-γ, TNF-α, and antimicrobial 

proteins (Cheroutre et al., 2011; Olivares-Villagomez and Van Kaer, 2018). Activated 

TCRγδ T cells can produce IFN-α and IFN-λ but were found to be dispensable for rotavirus 

clearance (Franco and Greenberg, 1997; Swamy et al., 2015). While part of these results 

could potentially be explained by redundancy in intestinal T cell subset function, the specific 

role of TCRγδ T cells in controlling enteric virus infections, particularly those with tropism 

for the epithelium, remains unclear but is an intriguing topic for further research.

HOST IMMUNITY, SUSCEPTIBILITY, AND HEALTH

Humans can suffer from multiple rotavirus, norovirus, and adenovirus infections throughout 

their lifespan, although the severity of disease is often reduced after repeated exposure 

(Gray et al., 2007; Velazquez, 2009; Velazquez et al., 1996). Epidemiological and clinical 

studies have demonstrated that strain-specific protective immunity can be generated after 

a single adenovirus, rotavirus, or norovirus infection, though there is conflicting evidence 

regarding the extent and duration of this protection (Gladstone et al., 2011; Simmons et al., 

2013; Velazquez et al., 1996; Zhu et al., 2013). However, there are at least 30 serotypes 

of norovirus and 50 serotypes of adenovirus in circulation, with new variants constantly 

emerging, creating complications for long-term immunity (Lion, 2014; Ramani et al., 2014). 

Humans can be sequentially and even concurrently infected with different adenovirus strains 

within a span of 2 years (Gray et al., 2007). Host genetic diversity and environmental 

factors, including diet and gut microbiome, likely also contribute to variable outcomes in 

enteric virus susceptibility and immunity (Tan and Jiang, 2014).

The majority of deaths and severe illnesses from enteric viruses occur in children under 5 

years old, and only neonatal mice are susceptible to symptomatic rotavirus or norovirus 

infection, whereas adult mice without pre-existing immunity are asymptomatic (GBD 

Diarrheal Disease Collaborators, 2018; Little and Shadduck, 1982; Sheridan et al., 1983) 

This suggests that age-related susceptibility to enteric viruses depends on both pre-existing 

immunity and maturation of the intestinal immune system. For example, lower levels of 

TLR3 are found in duodenal tissue from humans under 5 years old when compared to 

humans 6–20 years old, and, accordingly, TLR3 contributes to rotavirus control in adult 

mice but did not impact susceptibility in neonatal mice (Pott et al., 2012). Unfortunately, 

the short time frame in which mice can be symptomatically infected with rotavirus or 

norovirus creates difficulties in meaningful evaluation of protective immunity in murine 

models. Age-dependent aspects of mucosal immunity are an important consideration for 

timing of immunizations (discussed below).

While a balanced gut microbiota is known to protect against opportunistic bacterial 

infections, studies suggest that gut bacteria can both facilitate and protect against 

enteric virus infections under different circumstances. For example, antibiotic-treated mice 

have decreased susceptibility to poliovirus and rotavirus; findings possibly related to a 

microbiota-mediated suppression of the IFN-λ pathway (Baldridge et al., 2015; Kuss et 

al., 2011; Uchiyama et al., 2014). In contrast, another study reported that microbiota 

stimulates a homeostatic IFN-λ response (Van Winkle et al., 2022). Further, colonization 
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of segmented filamentous bacteria suppresses rotavirus infection in mice (Shi et al., 2019). 

In humans, gut microbiota composition has been correlated with susceptibility to rotavirus 

and norovirus (Rodriguez-Diaz et al., 2017), and the contrasting findings above suggest 

that different microbial species or compositions may either stimulate or suppress IFN-λ. 

Poliovirus binding of bacterial LPS was shown to enhance virion stability, suggesting a role 

for direct interactions between viruses and bacteria in addition to indirect stimulation of the 

immune system (Robinson et al., 2014). Preexisting viral infections may also impact viral 

susceptibility. For example, the presence of a specific strain of astrovirus in immunodeficient 

mice could protect against rotavirus and norovirus in an IFN-λ-dependent manner (Ingle et 

al., 2019). Together these findings suggest that diverse intestinal signals contribute to the 

overall state of IFN stimulation in the intestine, with consequences for susceptibility to viral 

infection.

Alongside commensal bacteria, the intestine is host to a diverse and abundant virome that 

is composed principally of bacteriophages and endogenous retroviruses (Neil and Cadwell, 

2018). Intriguingly, while germ-free or antibiotic-treated mice have numerous intestinal 

abnormalities, including altered tissue morphology and reduced intestinal immune cells, 

norovirus infection was sufficient to reverse many of these phenotypes and protect against 

chemical tissue injury in a type-I-IFN-dependent manner, suggesting that in absence of a 

native microbiome or virome, typically pathogenic viruses can potentially promote intestinal 

homeostasis (Kernbauer et al., 2014). This emerging field of research has demonstrated that 

the concept of viruses as exclusively pathogenic is outdated, and that commensal viruses, 

like bacteria, may provide both benefits and detriments to the host (Neil and Cadwell, 2018).

Several studies have linked enteric viral infections to other intestinal diseases. Human 

norovirus infection and acute gastroenteritis have been associated with post-infectious 

irritable bowel syndrome and inflammatory bowel disease (Glass et al., 2009; Marshall 

et al., 2007). Chronic norovirus infection also triggers enhanced intestinal pathology in mice 

expressing a human Crohn disease susceptibility allele, suggesting that host gene-virus 

interactions can promote intestinal disease (Cadwell et al., 2010). Additionally, active 

infection with norovirus or HIV has been linked to changes in gut microbiota composition, 

suggesting that viral infection can lead to dysbiosis (Nelson et al., 2012; Vujkovic-Cvijin 

et al., 2013). Human studies have linked rotavirus and reovirus with Celiac disease, while 

enteric viral infections in mice were shown to impair the induction of regulatory T cells and 

promote inflammatory T cell responses to dietary antigen (Bouziat et al., 2017, 2018; Stene 

et al., 2006). These studies suggest that viral infections may disrupt homeostatic intestinal 

immune tolerance to microbiota and food in certain circumstances.

Finally, enteric viruses may impact health beyond the gut. A relationship between enteric 

infections and malnutrition, each increasing susceptibility to the other, has long been 

proposed (Scrimshaw et al., 1968; Tickell et al., 2020). Severe childhood diarrhea and 

malnutrition have in turn been correlated with stunted growth and increased risk of chronic 

adulthood conditions such as cardiovascular disease (Margolis, 2010; Schlaudecker et al., 

2011). Rotavirus infection has also been implicated in increased risk of type I diabetes in 

humans and mice. One proposed mechanism is cross-reactivity between viral antigen and 

self-antigen leading to destruction of insulin-secreting cells, though only indirect evidence 
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for this exists (Burke et al., 2020; Gomez-Rial et al., 2020). A lot remains to be learned 

about mechanisms connecting enteric viruses and human diseases, but these observations 

highlight the importance of developing effective vaccines to prevent enteric virus infections.

TARGETING INTESTINAL IMMUNITY BY VACCINATION

Vaccines have been approved for each of the main enteric viruses discussed in this review 

except norovirus and overall have been highly successful at preventing serious viral disease. 

Poliovirus has been nearly eradicated from human populations after a global vaccination 

campaign (Razum et al., 2019), and mortality rate from diarrhea decreased 30% from 2010 

to 2019, partly due to expanded distribution of rotavirus vaccines (De Jesus et al., 2020; 

IHME, 2019; Shah et al., 2017). However, enteric viruses still cause substantial mortality 

and health burden, especially for children in developing countries (GBD Diarrheal Disease 

Collaborators, 2018). Further, as viruses continuously evolve and adapt to evade immune 

responses and infect new niches, we must also adapt our immunization strategies. The 

COVID-19 pandemic has illustrated both the need for new vaccine strategies and relevance 

of mucosal immunity for prevention of infection.

Mucosal immune responses are highly compartmentalized such that the tissue of primary 

immunogen encounter is the site where the majority of effector and memory cells will 

traffic. The intestine-specific immune pathways of viral detection and response discussed 

above therefore depend on encountering the virus within the intestinal tract. Parenteral 

vaccines, for example those given in the intramuscular route, elicit strong peripheral immune 

responses but poor tissue immunity, and the circulating antibodies they generate have very 

limited access to mucosal tissue (Hird and Grassly, 2012; Holmgren and Czerkinsky, 2005; 

Zhaori et al., 1988). Further, several human studies have demonstrated that immunization at 

different mucosal sites (e.g. oral, rectal, nasal, vaginal) elicits mucosal antibody responses 

in the targeted tissue but produces variable antibody responses at other mucosal sites or 

even within different regions of the same mucosal tissue, thus, there is no universal route 

of mucosal immunization (Eriksson et al., 1998; Jertborn et al., 2001; Johansen et al., 2005; 

Johansson et al., 2004; Kozlowski et al., 1997; Ogier et al., 2005; Quiding-Jarbrink et al., 

1997; van Splunter et al., 2018). The best route of immunization to generate intestinal 

immunity is therefore oral or rectal, although there is evidence that intranasal vaccination 

can elicit protective humoral and T cell responses in the intestine in some cases (Ciabattini 

et al., 2010; Esplugues et al., 2011; Ruane et al., 2013, 2016). Oral vaccines are particularly 

attractive as they are easy to administer without the need for sterile devices or trained 

personnel, a particular advantage in low-income countries where the need is highest. Thus, 

intestinal immunity generated through vaccination in the oral route is ideal for viruses that 

are restricted primarily to the gastrointestinal tract.

For viruses that infect through the fecal-oral route and then spread systemically 

(e.g. poliovirus, hepatitis A), parenteral and mucosal vaccines can both be effective. 

Intramuscular polio and hepatitis A vaccines produce circulating antibodies that prevent 

viral spread to the central nervous system or liver, respectively, protecting against serious 

disease. By contrast, the oral polio vaccine promotes both systemic and mucosal immunity, 
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including a robust IgA response that limits viral replication in the gastrointestinal tract 

(Nathanson, 2008; Wright et al., 2016) (Box 1).

For viruses that can infect multiple mucosal tissues including the intestine (e.g. adenovirus 

and HIV), ideal vaccines will promote broad immunity across mucosal and systemic 

sites, though this has proved evasive. Furthermore, there are some points of evidence that 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect and replicate 

in the intestine, suggesting that induction of intestinal immunity may be an important 

consideration for vaccine design (Box 2). It has been suggested that oral vaccines can 

induce airway-homing memory B cells and nasopharyngeal IgA (van Splunter et al., 2018; 

Zhaori et al., 1988) and that nasal immunization can induce gut-homing B cells and 

intestinal immunity (Esplugues et al., 2011; Ruane et al., 2013, 2016). However, other 

studies have shown no intestinal immune response to nasal immunization (Ogier et al., 2005; 

Quiding-Jarbrink et al., 1997), suggesting that this cross-tissue protection may depend on 

immunization protocol. Oral immunization does not typically elicit protection in the genital 

tract (Eriksson et al., 1998; Kozlowski et al., 1997), providing a barrier to the development 

of oral vaccines for sexually transmitted pathogens. To protect multiple tissues, mucosal 

vaccines may require additional components to modulate immune cell trafficking. One 

option being investigated is the use of the vitamin A derivative retinoic acid (RA) to improve 

mucosal homing. RA has been shown to promote IgA class switching and to upregulate 

expression of CCR9 and integrin α4β7 on T and B cells, leading to enhanced gut homing 

(Iwata et al., 2004; Lee et al., 2016; Mora et al., 2006; Ruane et al., 2016). Studies in mice 

have indicated that inclusion of RA with parenteral immunizations can promote gut, vaginal, 

and lung homing of T cells and increase specific intestinal IgA, resulting in improved 

protection against both bacterial and viral mucosal challenges (Hammerschmidt et al., 2011; 

Tan et al., 2011). In human trials, supplementation of oral typhoid vaccine with RA led 

to increased specific intestinal IgA and T cell expression of gut homing markers, though 

this effect was not seen with oral rotavirus, polio, or cholera vaccines (Lisulo et al., 2014; 

Mwanza-Lisulo et al., 2018). Defining further mechanisms of immune compartmentalization 

and cross-protection in mucosal tissue sites will be of great importance for improving 

mucosal vaccines.

Finally, immune compartmentalization exists even within the digestive tract, which may be 

an important consideration for vaccine design. We recently reported that immune responses 

in the proximal intestine are biased toward tolerance while the distal intestine is predisposed 

to more pro-inflammatory responses. As a consequence of this compartmentalization, 

immune tolerance to food proteins generated in the proximal intestine was not disrupted 

by pathogens infecting the distal intestine, but was disrupted by helminth infection restricted 

to the proximal intestine (Esterhazy et al., 2019). These findings suggest that targeting 

the distal intestine for vaccination might promote better protective immunity without the 

risk of disrupting homeostatic tolerance responses. For oral vaccines, the largest response 

is typically observed in the proximal intestine, though recent progress in vaccine delivery 

systems can enable a more targeted approach (Coffey et al., 2021; Johansson et al., 2004; 

van Splunter et al., 2018). Indeed, an adenovirus-vectored vaccine was found to be more 

immunogenic when delivered in radio-controlled capsules to the distal small intestine 

compared to the mid-small intestine (Kim et al., 2016).
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ORAL VACCINES

There are four licensed oral vaccines for enteric viruses: two for rotavirus and two for 

poliovirus. Additionally, an oral vaccine for adenovirus is approved for military use. All 

approved oral vaccines use live attenuated or reassorted virus (Figure 1). Immunization with 

live virus works well in the oral route as they are naturally evolved to withstand degradation 

in the digestive tract and elicit immune responses through the same pathways as wild-type 

viruses, overriding intestinal immune tolerance. However, live strains come with a risk of 

genetic instability and can revert to virulence, as has been seen in rare cases (4.7 per 1 

million) with the live polio vaccine (Platt et al., 2014) (Box 1). In more recent decades, the 

focus in viral vaccine development has shifted away from whole virus vaccines and toward 

compo-nent vaccines using viral protein (e.g. hepatitis B vaccine) or DNA/RNA (e.g. Pfizer/

Moderna SARS-CoV-2 vaccines). These formulations are non-replicating and can be safer 

and more tar-geted than whole virus vaccines; however, they have so far been unsuccessful 

in the oral route due to poor survivability in the highly acidic and enzymatic environment 

of the digestive tract, the default state of immunological tolerance toward oral antigen, and 

a lack of safe and effective mucosal adjuvants (Lavelle and Ward, 2021). Viral vectors 

(e.g. AstaZeneca/Johnson and John-son SARS-CoV-2 vaccines) or virus-like particles (e.g. 

human papillomavirus vaccine) are more promising for oral use because their delivery and 

immunogenicity are similar to native strains, but they offer more opportunity for engineering 

and rational design. Importantly, vaccines using whole virus or viral vectors have native 

adjuvant properties and do not necessarily require additional adjuvant to stimulate mucosal 

immunity.

The immune response generated by existing oral vaccines using attenuated viral strains is 

overall similar to natural infection because the majority of immune stimulatory components 

remain intact. The inductive phase of oral rotavirus or poliovirus vaccination is characterized 

by a robust IgA response (Faden et al., 1990; Groome et al., 2017; Nishio et al., 1990; 

Ogra, 1995). In most studies, serum level of virus-specific IgA measured shortly after 

oral immunization is the best available correlate of vaccine protection (Angel et al., 2012; 

Cheuvart et al., 2014; Ogra, 1995; Plotkin, 2020). As discussed above, this is likely due 

to a correlation between circulating and secretory IgA, indicating that immunity from both 

natural infection and oral vaccination with enteric viruses depends on induction of secretory 

IgA, which can neutralize virus before it infects host cells and replicates.

T cell responses to oral immunization are less well studied than humoral responses, though 

T cells support mucosal IgA induction and very likely contribute to long-term protection. 

Of note, live vaccines are generally better at inducing T cell responses than component 

vaccines, which are often engineered and selected based on their ability to elicit humoral 

immunity (Gilbert, 2012). Following OPV, antigen-specific T cells in peripheral blood 

are characterized by expression of IFN-γ and gut-homing integrins (Vekemans et al., 

2002; Wahid et al., 2005). T cell responses following rotavirus vaccination are poorly 

characterized, though low numbers of specific CD4+ T cells expressing gut-homing integrins 

can be detected in peripheral blood 2 weeks after immunization (Parra et al., 2014).
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The goal of oral vaccination is long-term protection against enteric infections, mediated 

by persistent mucosal antibodies as well as memory B and T cells that can be quickly 

activated upon infection to mount both local and systemic humoral and cellular responses. 

Polio-specific antibodies and T cells can be consistently detected in circulation decades 

after oral immunization, in line with the observation that OPV in childhood confers long 

lasting protection (Bianchi et al., 2021; Kelley et al., 1991; Sivak and Bobier, 1978; 

Wahid et al., 2005). Whether intestinal immunity from OPV is equally long-lasting has 

not been thoroughly assessed, though subjects that receive OPV in infancy show increased 

poliovirus-specific mucosal IgA after intramuscular boosting in adulthood (Herremans et 

al., 1999), possibly due to re-activation of long-lived memory cells. Longevity of rotavirus 

vaccine protection is less well characterized as vaccines have only been widely available 

in the last 15 years. Further, rotaviruses are still highly prevalent in human populations, 

unlike poliovirus, so detection of specific antibodies years after vaccination could be due to 

“boosting” by natural infection. However, because severe illness and mortality from enteric 

viruses primarily occurs in children under 5 years, decades-long vaccine protection may not 

always be required.

ADENOVIRAL VECTOR VACCINES

One strategy that has shown promise in recent years for mucosal vaccination is the use 

of adenoviral vectors, which display diverse tissue tropism depending on the subtype 

(Arnberg, 2009; Kang et al., 2020). An oral adenoviral vaccine used in the U.S. military that 

consists of live adenovirus-4 and −7 is well tolerated and generates long-lasting immunity 

against subsequent respiratory infection (Collins et al., 2020; Kuschner et al., 2013). This 

demonstrates that adenoviruses can generate immunity across mucosal tissues, including 

gastrointestinal and respiratory tracts. In addition, adenoviruses offer great potential as 

flexible vaccine delivery systems because strains with different characteristics can be 

selected or engineered to target appropriate immunity for a given pathogen, as was recently 

reviewed (Barry et al., 2020). Other practical advantages of adenoviral vectors are that they 

do not integrate into the host genome, making them relatively safe, and they can be stably 

stored at room temperature, making them easy to distribute.

Oral vaccines using adenoviral vectors are under investigation for several viruses. One 

notable oral platform is VXA, which is currently in clinical trial for vaccination against 

influenza, norovirus, and SARS-CoV-2 (Vaxart, USA). VXA is a replication-defective 

adenovirus-5 vector expressing a TLR3 adjuvant (Liebowitz et al., 2020; Scallan et 

al., 2013). Phase 1 and 2 clinical trials with VXA expressing influenza or norovirus 

proteins have indicated induction of mucosal IgA as well as a robust mucosal homing 

CD4+ and CD8+ T cell response. By contrast, reports on whether parenteral adenoviral 

vaccines such as VXA can elicit mucosal antibody responses have been mixed (DOI 

10.1101/2021.08.22.21262168) (Declercq et al., 2022). Pre-clinical studies showed that 

oral immunization with VXA encoding SARS-CoV-2 spike protein (VXA-Cov2) protected 

hamsters against severe disease (Johnson et al., 2022). Phase 1 clinical tri-als with VXA-

Cov2 found induction of specific IgA in saliva and nasal fluid (Johnson et al., 2022). These 

early reports provide promising evidence that oral vaccination using adenoviral vec-tors 

can generate mucosal immune responses in both the gastrointestinal tract and airway, and 
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a room-temperature-sta-ble oral tablet formulation would certainly be valuable for wide-

spread COVID-19 vaccine distribution. However, the efficacy of these vaccines remains 

unproven in humans and is not yet be-ing tested in developing countries.

GLOBAL EFFICACY OF ORAL VACCINES

Enteric viruses are ubiquitous across the globe, contributing to health burden in both low- 

and high-income countries. However, out of 1.6 million deaths from diarrhea in 2016, nearly 

1.5 million occurred in south Asia and sub-Saharan Africa, while only 30,000 occurred in 

high-income countries (GBD Diarrheal Disease Collaborators, 2018). Unfortunately, there is 

growing evidence that oral vaccines are less effective in low-income settings. Oral rotavirus 

vaccines report 85%–100% efficacy at preventing severe disease in middle- and high-income 

countries, but only 40%–60% in low-income countries (Armah et al., 2010; Jiang et al., 

2010; Madhi et al., 2010; O’Ryan and Linhares, 2009; Ruiz-Palacios et al., 2006; Vesikari et 

al., 2006, 2007; Zaman et al., 2010). 3 doses of OPV resulted in nearly 100% seroconversion 

of children in the USA but only 70%–90% seroconversion of children in India (John, 1976; 

McBean et al., 1988). Similar discrepancies have been described for oral vaccines against 

Vibrio cholera and enterotoxigenic E. coli (Hallander et al., 2002; Svennerholm et al., 2021), 

indicating that the problem is not confined to anti-viral immunity.

A number of correlates have been proposed to explain vaccine failures in low-income 

settings, though methods and results in these studies are highly variable, making it 

difficult to draw firm conclusions (Parker et al., 2018). Additionally, many factors that 

impact gut immunity (e.g. host genetics, infection history, diet, microbiota) have complex 

relationships with each other, making it difficult to pinpoint specific causative factors on 

a population scale. For example, diet and microbiota play substantial roles in shaping 

the intestinal immune system, vary highly across socioeconomic regions, and are linked 

to infection susceptibility and gut homeostasis. Additionally, concomitant infection with 

enteric pathogens in vaccinated individuals could impact the initiation of immune responses 

to oral vaccines in gut-draining lymph nodes. However, observational studies have not 

identified consistent links between nutrition or commensal microbiota composition and oral 

vaccine efficacy, possibly because of the complex nature of the variables involved (Parker et 

al., 2018; Savy et al., 2009), highlighting the need for comprehensive longitudinal studies.

Enteric infection and vaccination history of both children and their mothers have been linked 

to oral vaccine efficacy. Infants from low-income countries are more likely to have rotavirus-

specific serum IgA prior to immunization than infants from high-income countries (Cunliffe 

et al., 2014). Presence of specific maternal antibodies has been negatively associated with 

oral vaccine immunogenicity, though there is conflicting evidence regarding a relationship 

to breastfeeding, likely due to the complex nature of maternal-derived immune factors in 

breastmilk (Becker-Dreps et al., 2015; Moon et al., 2016; Rennels, 1996; Rongsen-Chandola 

et al., 2014; Sabin et al., 1963). Intriguingly, maternal helminth infection in the third 

trimester correlated with increased IgA responses to oral rotavirus or poliovirus vaccine 

(Clark et al., 2016).
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Several studies suggest that certain concomitant enteric immune responses may interfere 

with vaccination. Diarrhea concurrent with OPV reduces seroconversion, suggesting that 

either specific conflicting immune responses or general intestinal inflammation and 

dysfunction can disrupt oral immunization (Parker et al., 2014). Immunogenicity of 

oral rotavirus or poliovirus vaccines was reduced by concurrent infection with nonpolio 

enterovirus, although several detected enteric pathogens did not significantly impact 

oral immunization (Taniuchi et al., 2016). Further, giving oral rotavirus and poliovirus 

vaccines on the same day lowers rotavirus seroconversion but not poliovirus seroconversion 

(Emperador et al., 2016). Finally, intestinal IgA responses to OPV wane with age and are 

sometimes undetectable in adults, even if there is pre-existing circulating immunity due 

to prior intramuscular vaccination during infancy (Brickley et al., 2019). These findings 

demonstrate that immune responses in the intestine may interfere with each other, though it 

may depend on certain shared pathways. Detangling specific mechanisms of disruption will 

be critical for finding solutions. The majority of studies above have assessed factors related 

to failure in seroconversion after oral vaccination. However, IgA seroconversion itself is 

less predictive of oral vaccine protection in low-income countries, suggesting that even 

when an initial immune response is mounted there are more complex environmental factors 

governing long-term mucosal immunity (Angel et al., 2012). To our knowledge studies have 

not yet addressed environmental factors in longevity of mucosal antibody responses.

Altogether, it is unlikely that a single factor is responsible for vaccine failure in developing 

countries. Chronic enteric infections, diarrhea, and malnutrition lead to a cluster of related 

downstream effects including gut barrier dysfunction, dysbiosis, increased inflammatory 

stimulation, and immune dysregulation. One explanation for vaccine failure is that a state 

of bystander hyperactivation of the intestinal immune system, potentially in conjunction 

with pre-existing antibodies, leads to clearance of live attenuated oral vaccines before a 

specific mucosal response can be generated. Such mechanism might then be insufficient 

to clear non-attenuated virus, leading to illness. Another possible explanation is that 

conflict with other ongoing immune responses in the intestine leads to poor responsiveness 

even if the vaccine is delivered to immune inductive sites. There may be a critical 

window for oral immunization between the time that maternal antibodies wane and other 

conflicting intestinal immune responses accumulate. Variation in prevalent circulating viral 

serotypes across geographical regions is also an important consideration in vaccine design. 

Understanding the basis for oral vaccine failure will be critical for design of new strategies, 

and these studies also demonstrate the importance of testing oral vaccines in a variety 

of geographical and socioeconomic settings because gut immunity is highly impacted by 

environment. Finally, they show that although vaccines are critical in the fight against global 

disease there will be no silver bullet for enteric viruses in low-income settings without basic 

access to food, clean water, and medicine.

CONCLUDING REMARKS

Enteric viruses are a major cause of mortality and global health burden, though the relatively 

low impact of these viruses in high-income countries shows that many of these deaths could 

be prevented with access to existing medical interventions. Nevertheless, as new viruses will 

continually emerge, it is important to continue efforts to understand viral pathogenesis and 
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immunity, especially at mucosal sites where the majority of viral infections begin. Human 

studies in this field are challenging, but much needed insight could be gained from directly 

studying intestinal immune responses to viral infection and vaccination through biopsies and 

sampling of fecal antibodies. The majority of our mechanistic understanding of intestinal 

immunity comes from mouse studies; however, lab mice fail to capture the complexity of 

the human intestinal immune landscape as they typically lack an infection history and have 

a stable diet and environmental niche. Use of pet shop or “wildling” mice will likely provide 

more accurate models for understanding intestinal immunity. Better understanding of human 

intestinal anti-viral immunity can be combined with advances in vaccine technology to 

target effective and long-lasting protection in a variety of environmental contexts. We see 

great promise in oral vaccination for existing and emerging viruses if this can be achieved.
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Box 1.

Oral polio vaccines: A success story and a cautionary tale

The polio vaccination campaign has overall been highly successful, resulting in near-

global eradication of polio. Oral polio vaccination (OPV) promotes both mucosal and 

systemic immunity, including a robust IgA response that limits viral replication in the 

gastrointestinal tract (Nathanson, 2008; Wright et al., 2016). Intramuscular inactivated 

polio vaccines (IPVs), by contrast, do not promote a mucosal immune response but 

do produce circulating antibodies that prevent viral spread to the central nervous 

system and subsequent paralysis (Hird and Grassly, 2012). Both vaccines are highly 

effective and promote long-lasting protection, but parenteral vaccination does not prevent 

viral replication or subsequent community transmission due to the lack of mucosal 

immunity (Herremans et al., 1999; Shulman et al., 2015). Further, the OPV is both 

cheaper and easier to administer (Zimmermann et al., 2020). The main drawback of 

OPV is that in rare cases (4.7 per 1 million) the live attenuated virus can revert 

to neurovirulence, causing paralysis, whereas IPVs use inactivated virus and are not 

associated with the same risk (Platt et al., 2014). For this reason, most high-income 

countries have transitioned to IPV (Bandyopadhyay et al., 2015). Vaccine schedules 

giving first IPV then OPV have been shown to promote mucosal immunity while limiting 

potential risks, because systemic immunity is already in place upon exposure to the 

live vaccine (Alexander et al., 2004; Domok, 1984; Modlin et al., 1997). This indicates 

that combination parenteral and mucosal vaccination may be an option for combatting 

viruses, particularly those where immunity in multiple tissue sites is needed. However, 

formulation of effective oral vaccines without live virus remains a critical next step for 

vaccine development.
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Box 2.

Evidence for intestinal SARS-CoV-2 infection

SARS-CoV-2, the virus behind the COVID-19 pandemic, which killed more than 3 

million people in 2020 alone (Simonsen and Viboud, 2021), is thought to primarily 

spread through respiratory droplets and replicate in airway epithelial cells (Stadnytskyi 

et al., 2020). There is some evidence for SARS-CoV-2 infection in the gastrointestinal 

tract, though the origins of such infections are unclear. Fecal-oral transmission has 

been proposed (Guo et al., 2021), though unlike other known human enteric viruses, 

SARS-CoV-2 has an envelope and therefore likely does not survive well in the stomach. 

It is also possible that SARS-CoV-2 can disseminate to the gut from the respiratory 

tract via circulation. SARS-CoV-2 enters cells using primarily ACE2, which is highly 

expressed on intestinal epithelial cells (Hamming et al., 2004; Hoffmann et al., 2020; Hu 

et al., 2021), and SARS-CoV-2 can infect and replicate in human intestinal organoids 

and organ chips (Bein et al., 2021; Lamers et al., 2020). While SARS-CoV-2 RNA is 

readily found in stool samples of infected individuals, detection of live, replicative virus 

has been difficult, perhaps due to viral isolation methods or timing of sample isolation 

(Holshue et al., 2020; Pedersen et al., 2022; Wolfel et al., 2020). We did not find any 

clinical symptoms or immune activation in the intestine or lungs of mice orally infected 

with ten times the lethal intranasal dose of mouse-adapted SARS-CoV-2 (unpublished 

data). However, it should be noted that this virus was adapted for intranasal infection, 

which could affect the intestinal tropism of the virus (Leist et al., 2020). Nevertheless, 

intragastric inoculation of SARS-CoV-2 in non-human primates manifested in productive 

infection of both respiratory and intestinal tissue (Jiao et al., 2021). Interestingly, SARS-

CoV-2 shedding in stool can persist even after respiratory symptoms subside (Wu et al., 

2020). Additionally, one study detected SARS-CoV-2 N protein in intestinal enterocytes 

in 5 of 14 individuals an average of 4 months after COVID-19 diagnosis, indicating 

prolonged viral shedding of SARS-CoV-2 (Gaebler et al., 2021). Finally, some patients 

infected with SARS-CoV-2 also display acute gastrointestinal symptoms (Pan et al., 

2020; Wang et al., 2020). However, direct evidence of gastrointestinal damage caused by 

SARS-CoV-2 is lacking and needs further investigation.
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Figure 1. Pathogenic enteric viruses
Key features of enteric viruses, natural immunity, and vaccines.

References: 1(Lundgren and Svensson, 2001); 2(Hagbom et al., 2011); 3(Saxena et al., 

2016); 4(Franco and Greenberg, 1995); 5(Franco and Greenberg, 1997); 6(Chachu et al., 

2008b); 7(Lindesmith et al., 2003); 8(Ramani et al., 2015); 9(Chachu et al., 2008a); 
10(Bishop et al., 1973; Flewett et al., 1973); 11(Howley et al., 2020); 12(GBD Diarrheal 

Disease Collaborators, 2018); 13(Little and Shadduck, 1982; Sheridan et al., 1983); 
14(Bhandari et al., 2014; Ruiz-Palacios et al., 2006; Velazquez et al., 1996); 15(Burnett 

et al., 2020); 16(Armah et al., 2010; Jiang et al., 2010; Madhi et al., 2010; O’Ryan and 

Linhares, 2009; Ruiz-Palacios et al., 2006; Vesikari et al., 2006, 2007; Zaman et al., 

2010); 17(Kapikian et al., 1972); 18(Baldridge et al., 2016; Elftman et al., 2013; Gonzalez-

Hernandez et al., 2013, 2014; Grau et al., 2017; Karst and Wobus, 2015); 19(Newman and 

Leon, 2015); 20(Roth et al., 2020); 21(Kim et al., 2018); 22(Eggers, 1999); 23(Mendelsohn 

et al., 1989; Nomoto, 2007); 24(Chard et al., 2020); 25(Nathanson, 2008); 26(Wright et al., 

2016); 27(Khan et al., 2014; Koike et al., 1991); 28(Connor et al., 2022); 29(John, 1976; 

McBean et al., 1988); 30(Hilleman and Werner, 1954; Rowe et al., 1953); 31(Lion, 2014); 
32(Greber and Flatt, 2019; Hashimoto et al., 1966); 33(Parsa et al., 2021); 34(Collins et al., 

2020; Kuschner et al., 2013); 35(Hashimoto et al., 1966).
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Figure 2. Intestinal immunity during viral infections
(A) Early recognition of viruses via pattern recognition receptors such as intracellular DNA 

and RNA sensors by innate immune cells results in an interferon and cytokine response. 

Virus and viral antigen uptake by dendritic cells, macrophages, and epithelial M cells leads 

to activation of the adaptive immune system.

(B) Dendritic cells in the lamina propria migrate to the draining mesenteric lymph nodes and 

present viral antigens to virus-specific T cells.

(C) Activated T cells migrate to the intestinal tissue and elicit antiviral immunity by cytokine 

secretion or cytotoxic activity.

(D) B cells activated in Peyer’s patches undergo IgA class switching and differentiate into 

plasma cells with the help of follicular T helper cells. Intestinal plasma cells produce 

secretory IgA that can neutralize viruses in the mucosa.
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Figure 3. Detection of viruses by pattern recognition receptors
Virus-derived RNA and DNA can be recognized by toll-like receptors (TLRs) and cytosolic 

sensors, resulting in the secretion of pro-inflammatory cytokines and IFNs. Inflammasome 

activation results in cytokine maturation and secretion and inflammation-induced cell 

death. IFNs activate gene expression programs that are important for downstream anti-viral 

immunity.
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