Skip to main content
. 2022 Mar 21;11(3):156–169. doi: 10.4103/EUS-D-21-00063

Table 2.

Summary of pooled rates

Pooled rate (95% CI) I2% heterogeneity (95% PI)
Accuracy
 Overall 86% (82.8-88.6)
10 datasets
57% (71-94)
 EUS-images 91.8% (82.3-96.4)
5 datasets
78% (52-99)
 EUS-elastography 85.4% (82-88.2)
5 datasets
0% (79-89)
 Neural network algorithm 85.5% (80-89.8)
5 datasets
69% (61-97)
Sensitivity
 Overall 90.4% (88.1-92.3)
13 datasets
39% (83-96)
 EUS-images 93.4% (88.9-96.1)
7 datasets
60% (78-98)
 EUS-elastography 88.9% (85.8-91.4)
5 datasets
0% (84-93)
 Neural network algorithm 91.8% (87.8-94.6)
8 datasets
45% (84-97)
Specificity
 Overall 84% (79.3-87.8)
13 datasets
88% (51-97)
 EUS-images 89.8% (76.3-96)
7 datasets
92% (35-99)
 EUS-elastography 79.9% (73.5-85.1)
5 datasets
61% (55-93)
 Neural network algorithm 84.6% (73-91.7)
8 datasets
90% (39-97)
PPV
 Overall 90.2% (87.4-92.3)
12 datasets
70% (65-97)
 EUS-images 87.9% (80.8-92.6)
6 datasets
75% (54-96)
 EUS-elastography 90% (86.6-92.6)
5 datasets
16% (85-95)
 Neural network algorithm 87.4% (82-91.3)
7 datasets
68% (59-96)
NPV
 Overall 89.8% (86-92.7)
12 datasets
90% (51-99)
 EUS-images 96.3% (93.3-98)
6 datasets
37% (89-98)
 EUS-elastography 77% (65.1-85.8)
5 datasets
86% (27-96)
 Neural network algorithm 91.4% (83.7-95.6)
7 datasets
85% (43-98)

CI: Confidence interval; PPV: Positive predictive value; NPV: Negative predictive value; PI: Prediction interval