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Abstract
BACKGROUND 
Hepatic steatosis is a major cause of chronic liver disease. Two-dimensional (2D) 
ultrasound is the most widely used non-invasive tool for screening and 
monitoring, but associated diagnoses are highly subjective.

AIM 
To develop a scalable deep learning (DL) algorithm for quantitative scoring of 
liver steatosis from 2D ultrasound images.

METHODS 
Using multi-view ultrasound data from 3310 patients, 19513 studies, and 228075 
images from a retrospective cohort of patients received elastography, we trained a 
DL algorithm to diagnose steatosis stages (healthy, mild, moderate, or severe) 
from clinical ultrasound diagnoses. Performance was validated on two multi-
scanner unblinded and blinded (initially to DL developer) histology-proven 
cohorts (147 and 112 patients) with histopathology fatty cell percentage diagnoses 
and a subset with FibroScan diagnoses. We also quantified reliability across 
scanners and viewpoints. Results were evaluated using Bland-Altman and 
receiver operating characteristic (ROC) analysis.
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RESULTS 
The DL algorithm demonstrated repeatable measurements with a moderate number of images 
(three for each viewpoint) and high agreement across three premium ultrasound scanners. High 
diagnostic performance was observed across all viewpoints: Areas under the curve of the ROC to 
classify mild, moderate, and severe steatosis grades were 0.85, 0.91, and 0.93, respectively. The DL 
algorithm outperformed or performed at least comparably to FibroScan control attenuation 
parameter (CAP) with statistically significant improvements for all levels on the unblinded 
histology-proven cohort and for “= severe” steatosis on the blinded histology-proven cohort.

CONCLUSION 
The DL algorithm provides a reliable quantitative steatosis assessment across view and scanners 
on two multi-scanner cohorts. Diagnostic performance was high with comparable or better 
performance than the CAP.

Key Words: Ultrasound; Liver steatosis; Deep learning; Screening; Computer-aided diagnosis
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Core Tip: Ultrasound is widely used to evaluate liver steatosis, but it is subjective. We developed a deep 
learning algorithm for quantitative steatosis scoring from ultrasound. The algorithm was trained on > 
200000 images and composed of different scanners and viewpoints from both hepatic lobes. High 
diagnostic performance was measured across all viewpoints in separate histology proven groups, which 
was comparable to or better than the control attenuation parameter. We demonstrated high agreement 
across scanners and viewpoints. Thus, our deep learning algorithm provides a quantitative assessment with 
high performance and reliability.
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INTRODUCTION
Liver steatosis, or fatty liver disease, is a major cause of chronic liver disease worldwide. It is estimated 
that nonalcoholic fatty liver disease (NAFLD) affects 20%-30% of the global population[1-3] and is 
associated with increased risks of cardiovascular disease, type 2 diabetes, and metabolic risk factors[4]. 
Unfortunately, it is an undertreated and underdiagnosed disease[5]. For those patients with more 
aggressive nonalcoholic steatohepatitis, the risks of liver cirrhosis, liver failure, and hepatocellular 
carcinoma are higher[6-8]. Liver steatosis is also associated with chronic viral hepatitis. For instance, 
hepatitis C can impair glucose metabolism, resulting in the accumulation of fat droplets in the liver and 
increasing hepatocarcinogenesis[9]. There have been reports on the interaction between liver steatosis 
and hepatitis B. Previous reports have also suggested that liver steatosis is associated with delayed 
hepatitis B surface antigen seroclearance[10]. Therefore, assessing liver steatosis is also important for 
chronic viral hepatitis.

Liver needle biopsy is the gold standard diagnosis at present. However, even with machine learning-
based interpretation[11,12], the invasiveness of the biopsy severely limits its clinical applicability as a 
screening and assessment tool, and at the same time it is prone to sampling error. Thus, with the 
growing prevalence of NAFLD and nonalcoholic steatohepatitis, accurate, reliable, and accessible non-
invasive screening tools are increasingly important to quantify liver steatosis and provide follow-up 
monitoring[4].

Such tools include magnetic resonance imaging with derived proton density fat fraction (MRI-PDFF), 
quantitative ultrasound (US), and two-dimensional (2D) US diagnoses[13]. MRI-PDFF is the best non-
invasive test and can be used as a gold standard in clinical trials, but it is costly for routine clinical care
[5,14]. As for quantitative US, its most popular variant is FibroScan with its control attenuation 
parameter (CAP) scores[15]. CAP is more available than MRI-PDFF but still requires dedicated 
equipment. Finally, 2D US exams have been widely used for the diagnosis of liver disease for 5 decades
[13], which is partly driven by the prevalence of US equipment and its low cost. In clinical practice, 2D 
US is also the first-line screening modality for the detection of liver cancer[16]. Therefore, steatosis can 
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also be assessed from studies with a primary aim of liver tumor screening. Given these considerations, it 
is not surprising that 2D US is the most common tool for assessing liver steatosis[4].

A recent NAFLD epidemiology meta-analysis revealed that 90.6% of 392 studies in China used 2D US 
as the diagnostic modality of choice[3]. Unfortunately, US steatosis scores are considered a subjective 
diagnosis. A meta-analysis in 2011 reported that the kappa statistics for inter- and intra-observer 
reliability showed poor numbers[4]. A 2014 analysis[17], focusing on US steatosis assessment derived 
from routine clinical care, concluded that intra- and inter-observer agreement of binary assessment was 
only 51%-68% and 39%-40%, respectively, and it also noted that there was a lack of reported reliability 
measurements of categorical assessments. Both studies attributed the low reliability to different image 
acquisition practices across institutions and the subjective and variable nature of US image 
interpretation. More recently, Hong et al[18] investigated the reliability of categorical US assessments of 
different features and reported only moderate inter-rater agreements (intra-class correlation coefficients 
of 0.54) for the overall steatosis impression.

A promising alternative is to apply machine learning algorithms, e.g., deep learning (DL), on 2D US 
liver scans. The goal is to provide a quantitative measure of liver steatosis directly from 2D US images 
for clinical decision support. Efforts toward this end have been reported. However, limitations in the 
analysis, i.e., small training set sizes[19,20], only binary assessments[20-24], and single-scanner data[23-
27], restrict the conclusions that can be drawn. Moreover, the reliability of these assessments, either 
across scanners or across different US views of the liver, have not been assessed. Relatedly, the specific 
number of images needed for a reliable diagnosis, and of which liver viewpoints, has also not been well 
articulated or characterized. This is crucial for an at-large adoption of any imaging-based diagnostic 
tool.

To address these limitations, we developed a scalable DL algorithm to quantitatively assess liver 
steatosis from 2D US using a retrospectively mined big data cohort. Cross-scanner and cross-view 
reliability was measured in addition to diagnostic performance against gold standard histopathological 
diagnoses on two clinical cohorts. Direct comparisons against CAP were also performed. The DL 
algorithm might serve as an effective tool for liver steatosis screening and monitoring.

MATERIALS AND METHODS
Patient cohorts and image collection
Multiple patient cohorts were collected for our study, as shown in Table 1 and Figure 1. The clinicopath-
ological makeup of each dataset can be found in Supplementary Table 1. All US images underwent the 
same automatic cropping and resampling preprocessing, which is described in the Supplementary 
material. This study was approved by the Institutional Review Board of the Chang Gung Medical 
Foundation (CGMH IRB No. 201801283B0).

Big data groups (big data learning group and big data validation group)
We retrospectively collected a big data dataset from the picture archiving and communication system of 
CGMH, a major hospital in Taiwan (over 4 million outpatient visits/year). All patients who received 
elastography (a quantitative US technology), specifically acoustic radiation force impulse imaging and 
FibroScan, between January 3, 2011 and September 28, 2018 represented the index patients. From the 
index patients, we extracted all 2D US studies that were acquired within the same 2011-2018 period, 
resulting in multiple studies per patient. Seventy percent of the patients and their corresponding US 
studies were randomly selected as training data (big data learning group, BD-L), totaling 2899 patients 
and 200654 images. We used another 10% of the patients for validating and tuning our DL algorithm 
(big data validation group, BD-V), totaling 411 patients and 27421 images. The remaining 20% of the 
patients were not used as part of this study. In addition, any patients also found in the other datasets 
were also moved to this excluded cohort. The collected images were generated from 13 known scanners, 
which are listed in Supplementary Table 2. Each US study was accompanied by a 2D US diagnosis of 
steatosis severity from visual assessment using established guidelines[13,28], generated through the 
course of routine clinical care. These labels are used to train the DL algorithm. We enrolled the 
maximum number of patients that fit our inclusion criteria to provide as much data as possible for the 
DL algorithm.

Unblinded test group (histopathology unblinded test group)
We used a collection and selection protocol reported in prior work[29-32]. Specifically, since 2011 it has 
been CGMH policy to obtain elastography measurements for all patients undergoing a liver biopsy, i.e., 
acoustic radiation force impulse and FibroScan once the latter became available. The histopathology 
unblinded test group (HP-U) dataset (n = 147) consists of patients with FibroScan diagnoses between the 
dates November 27, 2014 to September 26, 2019. Identical to a prior study[29], we included patients with 
chronic hepatitis B virus (HBV), chronic hepatitis C virus (HCV), and non-hepatitis B/C virus (NBNC) 
liver diseases. We excluded those with decompensated liver disease, toxic hepatitis, alcoholism, or 
autoimmune liver diseases. After exclusion of these etiologies, the majority of the NBNC group were 

https://f6publishing.blob.core.windows.net/5ade7f27-6fd6-4ee5-83cc-9c07c99966ca/WJG-28-2494-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/5ade7f27-6fd6-4ee5-83cc-9c07c99966ca/WJG-28-2494-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/5ade7f27-6fd6-4ee5-83cc-9c07c99966ca/WJG-28-2494-supplementary-material.pdf
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Table 1 Overview of development and testing datasets

Stage Name Purpose Labels Patients Studies Images

DL learning BD-L Big data, to train the neural network 2D US Dx 2899 17149 200654

DL validation BD-V Big data, to tune model performance 2D US Dx 411 2364 27421

Testing HP-U Histopathology-proven group, to (a) measure the trend between 
DL predictions and histology (b) measure reliability across 2D US 
liver viewpoints

Histology 147 147 1647

TM Tri-machine data US Dx group, to (a) measure reliability across 2D 
US liver viewpoints and (b) measure reliability across scanners

- 246 733 9215

HP-T1 Histology proven group to measure the trend between DL 
predictions and histology

Histology, 
CAP

112 112 1996

1Labels blind to deep learning researchers during course of algorithmic development.
DL: Deep learning; US: Ultrasound; BD-L: Big data learning group; BD-V: Big data validation group; HP-U: Histopathology unblinded test group; TM: 
Trimachine group; HP-T: Histopathology blinded test group; CAP: Control attenuation parameter; 2D: Two-dimensional; Dx: Diagnosis.

Figure 1 Flowchart. 2D-US: Two-dimensional ultrasound.

NAFLD patients (90.3% in HP-U group, Supplementary Table 1B). Histopathological analysis was 
performed by the same clinician (S.F.H.), and any retrospectively collected histopathological analysis 
not originally performed by S.F.H. was redone. Liver biopsies were collected mainly at the CGMH 
outpatient center and were performed to evaluate fibrosis, steatosis, or an unknown etiology[29-32]. 
Percutaneous liver biopsy was performed under US guidance with an 18-gauge core needle and an 
automatic pistol device (Magnum; Bard Peripheral Vascular, Inc, Tempe, AZ, United States). Under this 
standard procedure a liver specimen greater than 1.2 cm was obtained. However, a portion of the 
histology data was obtained from tumor resection. Following Kleiner et al[33], the histology diagnoses 
were graded into normal (5%), mild (5% and 33%), moderate (33% and 66%) and severe (66%) based on 
the liver fat cell fraction.

Because we were interested in US analysis, additional selection criteria were also applied. A patient 
must have a 2D US study that was: (1) Acquired within 3 mo of the biopsy; and (2) acquired with one of 
the Siemens Acuson S2000, Philips IU22, or Toshiba Aplio 300 scanners. We also excluded patients with 
tumors > 3 cm and with multiple cysts. Finally, US studies must have ≥ 10 images of the viewpoints 
depicted in Figure 1. If more than one US study qualified, we randomly selected one. All labels in HP-U 
were unblinded to the DL researchers of this work, but the data was treated as a test set, meaning it was 
only analyzed after development was complete.

Tri-machine group
We prospectively collected this cohort (n = 246) from patients that had both an US and a FibroScan 
study ordered and if D.I.T., Y.C.C., T.H.H., or C.J.C. conducted the image study. With the agreement of 
these patients, they were scanned by Siemens Acuson S2000, Philips IU22, and Toshiba Aplio 300 
scanners on the same day. Studies were collected over a period from August 30, 2018 to August 27, 2019, 
and we only included patients diagnosed with the HBV, HCV, and NBNC criteria used in HP-U. The 
tri-machine (TM) cohort allowed for an assessment of agreement across scanners.

https://f6publishing.blob.core.windows.net/5ade7f27-6fd6-4ee5-83cc-9c07c99966ca/WJG-28-2494-supplementary-material.pdf
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Blind testing group (histopathology blinded test group)
Finally, we included histopathology blinded test group (HP-T, n = 112), a clinical testing dataset whose 
labels were blind to the DL researchers involved in this project during development of the algorithm. 
HP-T was collected from patients that had received a liver biopsy between April 18, 2011 to May 5, 2015 
and September 1, 2018 to January 29, 2021. Associated FibroScan diagnoses were only available for the 
later subset of patients. Also, unlike HP-U, US studies were not restricted to only the Siemens, Philips, 
and Toshiba scanners of TM and HP-U. In particular, 18 studies were acquired with the Aloka SSD 5500 
or ATL: HDI 5000 scanners, which are not currently considered premium scanners.

Image selection
We were interested in investigating performance and reliability across viewpoints. Thus, we only 
included US images from the viewpoints shown in Figure 2, which can be categorized into four view 
groups: Left liver lobe (LLL), right liver lobe (RLL), liver/kidney contrast (LKC), and subcostal (SC). For 
HP-U, HP-T, and BWC, we only included studies that had ≥ 10 images of any of the studied viewpoints. 
BD-L and BD-V were automatically filtered with an algorithm explained in the Supplementary material.

Training steatosis assessment DL algorithm
Figure 3 illustrates the algorithmic workflow of our DL algorithm. Using the images from BD-L, we 
trained a multi-class deep ResNet18[34] DL classifier using the 2D US diagnoses, which were ordinal 
labels ranging from 0 to 3 corresponding to None; Mild; Moderate; and Severe steatosis[35]. We treated 
each image independently in training and followed the well-known binary decomposition approach to 
ordinal classification of Frank and Hall[36]. After training, a simple transformation produced a 
continuous score[37] for each image that ranged from 0 to 1, with higher scores corresponding to more 
severe steatosis. As Figure 3 indicates, during inference, we took the mean of the image-wise scores 
within and across each view group. The view group scores were further averaged to produce an “All 
View Groups” score. If one or several view groups were missing, the “All View Groups” score was 
calculated with what view groups were available. More details on the training strategy can be found in 
the Supplementary material, and a listing of hyper-parameters is given in Supplementary Table 5.

Statistical analysis
A listing of all experiments can be found in Supplementary Table 3. We evaluated the reliability and 
diagnostic performance of the DL algorithm. We judged P values < 0.05 as significant and corrected for 
multiple comparisons using the Holm-Bonferroni procedure[38].

Reliability studies
Experiment 1: We used TM and HP-U to assess how many images were needed per view group to 
achieve repeatability. Note, for the TM dataset we randomly selected only one US study for each patient 
to avoid sampling the same patient more than once. As advocated by Bland and Altman[39,40], we 
graphed the within-subject standard deviations across different view-group steatosis scores and 
measured the repeatability coefficient (RC)[40]. The difference between two repeated measurements 
should be within the RC value for 95% of the US studies. However, because the within-subject standard 
deviation was not uniform across our data (typically greater variability in repeated measurements at 
moderate steatosis levels), we regressed a non-uniform RC and used the worst-case RC value as a 
summary statistic, with 95% confidence intervals computed using percentile bootstrap (1000 bootstrap 
samples)[41]. More details on this calculation can be found in the Supplementary material.

Experiment 2: We also evaluated agreement across scanners using TM. We conducted a Bland-Altman 
analysis[39] on the difference values across view-group scores and calculated the limits of agreement 
(LOAs[40]), which are the limits by which 95% of the disagreements fall under[40]. Like Experiment 1, 
variability tended to be higher at moderate levels of severity. Therefore, we regressed non-uniform 
LOAs and used the maximum upper LOAs and minimum lower LOAs as summary statistics. More 
details can be found in the Supplementary material. We also calculated the percentage agreement, using 
the cutoff levels determined in Experiment 3 below.

Diagnostic testing
Experiment 3a: We validated the DL model diagnostic performance using the images and histopatho-
logical labels of HP-U. Although the HP-U labels were not blinded to the DL researchers during 
algorithmic development, it was treated like a test set, i.e. evaluation was only performed once model 
development was complete. Histopathological diagnoses were separated into four ordinal labels[27]. 
For three separations of fatty percentages, i.e., grade ≥ 5%, grade ≥ 33%, and grade ≥ 66%, we used 
receiver operating characteristic (ROC) curve analysis and measured the area under the curve of the 
ROC (AUCROC). Trend tests between the DL assessment and histopathological grades were conducted 
using the non-parametric Jonckheere-Terpstra test[42]. The 95% confidence intervals of all AUCROCs 
were calculated based on DeLong’s non-parametric test[43]. When needed, we determined cutoff values 
using the values that maximized the Youden index[44].

https://f6publishing.blob.core.windows.net/5ade7f27-6fd6-4ee5-83cc-9c07c99966ca/WJG-28-2494-supplementary-material.pdf
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https://f6publishing.blob.core.windows.net/5ade7f27-6fd6-4ee5-83cc-9c07c99966ca/WJG-28-2494-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/5ade7f27-6fd6-4ee5-83cc-9c07c99966ca/WJG-28-2494-supplementary-material.pdf
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Figure 2 Image view categorization and grouping. Six ultrasound image viewpoints were used in this study. A: Left lobe longitudinal; B: Left lobe transverse; 
C: Right lobe intercostal; D: Lower right lobe intercostal (depicting liver/kidney contrast); E: Subcostal depicting liver/kidney contrast; F: Subcostal with hepatic veins. 
These views were further categorized into four groups: Left liver lobe (A and B), right liver lobe (C), liver/kidney contrast (D and E), and subcostal (E and F). LLL: Left 
liver lobe; RLL: Right liver lobe; LKC: Liver/kidney contrast; SC: Subcostal. Liver cartoons adapted from the DataBase Center for Life Science (
https://commons.wikimedia.org/wiki/File:201405_liver.png), licensed under the Creative Commons Attribution 4.0 International[51] (Copyright permission see 
Supplementary material).

Figure 3 Algorithmic workflow. Images were first comprehensively preprocessed to remove regions outside the ultrasound beam. A deep learning neural 
network, called ResNet-18, was trained on individual ultrasound images in the big data learning group. The model predicted confidences in three binary cutoffs: “≥ 
mild”, “≥ moderate”, or “= severe” steatosis. The confidences were mapped to a continuous image-wise score in the range of [0, 1]. View-group scores were produced 
by averaging each image within the group. An “All View Groups” score was produced by averaging all available view group scores. In the figure’s example, the gold 
standard histopathology diagnosis was a fatty cell percentage of 90%. LLL: Left liver lobe; RLL: Right liver lobe; LKC: Liver/kidney contrast; SC: Subcostal.

Experiment 3b: We compared the performance of FibroScan with that of the DL assessment, and 
statistical significance of any differences in AUCROCs were assessed using the StAR[45] imple-
mentation of DeLong’s non-parametric test[43].

Experiment 4a: Finally, we tested our DL assessment on HP-T, whose histopathological labels were 
blind to the DL researchers during model development.

Experiment 4b: For patients with FibroScan diagnoses, we also compared its performance with that of 
the DL assessment. Experiments 4a and b used the same statistical analyses as Experiments 3a and b.

https://commons.wikimedia.org/wiki/File:201405_liver.png
https://f6publishing.blob.core.windows.net/5ade7f27-6fd6-4ee5-83cc-9c07c99966ca/WJG-28-2494-supplementary-material.pdf


Li B et al. AI quantitative liver steatosis from ultrasound

WJG https://www.wjgnet.com 2500 June 14, 2022 Volume 28 Issue 22

RESULTS
Repeatable measurements with a moderate number of images
We first determined how many images were needed for each view group to reach a repeatable 
measurement (Experiment 1 in Supplementary Table 3) using TM (one random study per patient) (n = 
246) and HP-U (n = 147). The results when using three images per view group can be found in Table 2, 
and the complete set of results from one-to-four images can be found in Supplementary Table 6. As can 
be seen, depending on the view group, the max RC value was equal to or less than 30% of the DL 
assessment scale, which ranged from 0 to 1. In the worst case, 95% of the differences between repeated 
measurements should be within this max RC value. As the repeatability graph of Figure 4A 
demonstrates, this max RC value occurred at moderate levels of steatosis severity, which have a wide 
tolerance (e.g., moderate fatty cell content is commonly determined as being anything between 33% and 
66%). The RC values for mild and severe were much lower, suggesting that a 30% RC value was highly 
conservative for these ranges of severity. The repeatability graphs for all other view groups can be 
found in Supplementary Figure 1. Together, these data demonstrate the DL assessment can attain 
repeatable measurements with a moderate number of images for each view group. For the remainder of 
evaluations, we will only include assessments that have a minimum of three images for each view 
group.

Agreement across scanners was high
We used the TM dataset (n = 246) to measure agreement across measurements taken on the same day 
but with three different scanners (Experiment 2 in Supplementary Table 3). As the Bland-Altman plots 
for “All View Groups” of Figure 4B-D demonstrate, the LOAs are worse at moderate levels of severity, 
but they are much tighter at milder and more severe levels. This mirrors the repeatability results. 
Table 2 presents the Bland-Altman summary statistics for all view groups, demonstrating that the cross-
scanner agreement is roughly equivalent for all view groups. For brevity we combined the results across 
all scanner pairs together. As can be seen, the agreement across scanners is high. The bias for “All View 
Groups” was close to zero, and the worst case LOAs were around 35% for every view group. The LOAs 
for “All View Groups” fell to 25%, suggesting that examining all view groups together can increase 
reliability. The percentage agreement numbers are all 92% or higher, further underscoring the high 
agreement across the tested scanners.

High diagnostic performance on clinical test sets
With the reliability studies completed, we validated the DL score against a histopathological gold 
standard for diagnosing mild-to-severe (≥ 5%), moderate-to-severe (≥ 33%), and severe (≥ 66%) fatty 
percentages. The results on HP-U and HP-T, Experiments 3 and 4 in Supplementary Table 3, 
respectively, are presented in Table 3. Focusing primarily on the HP-T results, the “Complete 4 view 
group study” of Table 3 only selects studies that had three or more images for every view group. This 
allowed an “apples-to-apples” comparison across view groups. As can be seen, the performance was 
comparable across view groups, suggesting that each view group provided similar diagnostic value, 
with all providing AUCROCs ≥ 0.84. The “Individual view group study,” on the other hand, presented 
results when examining each view group individually, meaning only the view group in question 
required three or more images. This allowed for a larger sample size. In this setting “All View Groups” 
denoted the mean score across all view groups with three or more images, which can comprise different 
view groups from study to study. The ROC curves for “All View Groups” for the individual view group 
study can be found in Figure 5A. As can be seen in Table 3, the results for the individual view groups 
were broadly like those of the complete view groups study with AUCROCs ≥ 0.81. Comparing the 
results of HP-U to HP-T, the AUCROCs were generally similar, reinforcing the above results. However, 
the HP-U results were generally better, especially for diagnosing mild-to-severe steatosis. This is due to 
HP-T including non-premium Aloka and ATL HDI scanners in its cohort, which make it harder to 
accurately assess steatosis. Indeed, as Figure 5B indicates, when only selecting for the Siemens, Philips, 
and Toshiba premium scanners the AUCROC scores for HP-T were much improved, indicating that 
scanner choice does make an impact. Finally, the “FibroScan comparison study” compared the 
performance of FibroScan directly with the DL assessment. As can be seen, the DL assessment AUCROC 
values were better than FibroScan, and statistical significance was reached for all levels on the HP-U 
dataset and for “= severe” on the HP-T dataset (Figure 5).

DISCUSSION
Incorporating different 2D US scanner models and brands, different liver viewpoints, and prospectively 
and retrospectively collected images, we demonstrated that a DL-based assessment can provide 
quantitative and reliable hepatic steatosis scores.

https://f6publishing.blob.core.windows.net/5ade7f27-6fd6-4ee5-83cc-9c07c99966ca/WJG-28-2494-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/5ade7f27-6fd6-4ee5-83cc-9c07c99966ca/WJG-28-2494-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/5ade7f27-6fd6-4ee5-83cc-9c07c99966ca/WJG-28-2494-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/5ade7f27-6fd6-4ee5-83cc-9c07c99966ca/WJG-28-2494-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/5ade7f27-6fd6-4ee5-83cc-9c07c99966ca/WJG-28-2494-supplementary-material.pdf
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Table 2 Reliability studies in different views

Repeatability study Cross-scanner agreement study

View n Max RC n Bias Min lower LOA Max upper LOA Agreement

LLL 342 0.27 (0.24, 0.29) 237 0.00 (-0.01, 0.01) -0.37 (-0.32, -0.42) 0.37 (0.32, 0.42) 92%

RLL 370 0.21 (0.19, 0.23) 232 0.00 (-0.01, 0.01) -0.37 (-0.33, -0.42) 0.37 (0.33, 0.42) 92%

LKC 267 0.30 (0.27, 0.34) 183 0.00 (-0.01, 0.01) -0.35 (-0.29, -0.41) 0.35 (0.29, 0.41) 93%

SC 297 0.26 (0.24, 0.29) 182 0.00 (-0.01, 0.01) -0.36 (-0.31, -0.42) 0.36 (0.31, 0.42) 94%

All view groups - - 237 0.00 (-0.01, 0.01) -0.25 (-0.21, -0.28) 0.24 (0.21, 0.28) 94%

On the left, the max repeatability coefficient was tabulated when using three images for each view group (Histopathology unblinded test group and 
Trimachine group datasets). On the right, the bias, worst-case limits of agreement, and agreement (%) were tabulated across different view groups for the 
Trimachine dataset. The results for all scanner pairs were combined. Parentheses enclose bootstrapped 95% confidence intervals. RC: Repeatability 
coefficient; LOA: Limits of agreement; LLL: Left liver lobe; RLL: Right liver lobe; LKC: Liver/kidney contrast; SC: Subcostal.

Figure 4 Repeatability study. A: A repeatability coefficient plot for right liver lobe when using three images; B-D: Cross-scanner Bland-Altman plots for Siemens-
Toshiba (B), Toshiba-Philips (C), and Philips-Siemens (D), respectively. Cross-scanner plots were depicted for “All View Groups” when using ≥ three images per view 
group. Grey-shaded areas indicate 95% confidence intervals. RC: Repeatability coefficient; LOA: Limit of agreement.

Unlike attenuation imaging (ATI)[46], FibroScan, or some other reported DL solutions[22,25,26], our 
algorithm accepts images taken from both hepatic lobes rather than a selected area of interest in a 
specific location. We categorized 2D US images into six major viewpoints (Figure 2), which we further 
grouped into four view groups. We found that for each view group three images were enough to reach 
acceptable max RC values of 21%-30% (Table 2, Figure 4A), where the best and worst max RC values 
corresponded to the RLL and LKC view group, respectively. The relatively poorer repeatability of the 
LKC view group was likely due to the heterogenous makeup of viewpoints, as it comprises both 
subcostal and right lobe intercostal images. To put these repeatability ranges in context, the RC for gold 
standard histopathology fatty percentage assessment has been reported to be 38%[47] with poor 
intraclass correlation agreements of 0.57[48]. Considering our DL model’s worst max RC value was 30% 
and that RC values tended to be much better than 30% at milder or more severe levels of steatosis 
(Figure 4 and Supplementary Figure 1), these repeatability measures compare well. It is also 
encouraging that the DL algorithm was more repeatable at milder and severe steatosis levels since such 
patients should indeed be less ambiguous to categorize.

https://f6publishing.blob.core.windows.net/5ade7f27-6fd6-4ee5-83cc-9c07c99966ca/WJG-28-2494-supplementary-material.pdf
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Table 3 Receiver operating characteristic analysis on the histopathology unblinded test group and histopathology blinded test group 
cohorts for diagnosing steatosis grades

HP-U HP-T

View n AUC ≥ 5% AUC ≥ 33% AUC ≥ 66% Acc n AUC ≥ 5% AUC ≥ 
33% AUC ≥ 66% Acc

Complete 4 view group study1

LLL 41 0.98 (0.93, 
1.00)

0.95 (0.89, 
1.00)

0.94 (0.87, 
1.00)

83% 51 0.90 (0.82, 
0.98)

0.92 (0.81, 
1.00)

0.90 (0.82, 
0.99)

88%

RLL 41 0.96 (0.90, 
1.00)

0.95 (0.89, 
1.00)

0.89 (0.79, 
0.99)

85% 51 0.84 (0.73, 
0.95)

0.93 (0.84, 
1.00)

0.92 (0.85, 
1.00)

96%

LKC 41 0.96 (0.90, 
1.00)

0.95 (0.89, 
1.00)

0.93 (0.84, 
1.00)

83% 51 0.84 (0.73, 
0.95)

0.95 (0.90, 
1.00)

0.88 (0.79, 
0.97)

90%

SC 41 0.96 (0.90, 
1.00)

0.92 (0.84, 
1.00)

0.89 (0.79, 
0.99)

83% 51 0.88 (0.79, 
0.97)

0.93 (0.86, 
1.00)

0.88 (0.77, 
0.99)

90%

All view groups 41 0.96 (0.90, 
1.00)

0.94 (0.88, 
1.00)

0.92 (0.83, 
1.00)

83% 51 0.88 (0.79, 
0.98)

0.95 (0.88, 
1.00)

0.91 (0.83, 
0.99)

94%

Individual view group study1

LLL 103 0.95 (0.90, 
0.99)

0.93 (0.87, 
0.98)

0.91 (0.86, 
0.97)

80% 96 0.84 (0.76, 
0.93)

0.92 (0.85, 
0.99)

0.93 (0.88, 
0.98)

90%

RLL 138 0.94 (0.91, 
0.98)

0.91 (0.86, 
0.98)

0.85 (0.78, 
0.92)

83% 109 0.82 (0.74, 
0.90)

0.89 (0.83, 
0.96)

0.92 (0.87, 
0.97)

92%

LKC 88 0.96 (0.92, 
1.00)

0.92 (0.86, 
0.98)

0.84 (0.76, 
0.92)

80% 71 0.81 (0.69, 
0.93)

0.93 (0.87, 
0.99)

0.89 (0.81, 
0.96)

90%

SC 117 0.93 (0.89, 
0.98)

0.91 (0.85, 
0.96)

0.86 (0.79, 
0.92)

79% 90 0.86 (0.77, 
0.94)

0.89 (0.82, 
0.96)

0.90 (0.83, 
0.97)

88%

All view groups 147 0.95 (0.91, 
0.98)

0.92 (0.88, 
0.96)

0.87 (0.81, 
0.92)

76% 112 0.85 (0.77, 
0.93)

0.91 (0.85, 
0.97)

0.93 (0.88, 
0.98)

90%

FibroScan comparison study1,2

All view groups 147 0.953 (0.92, 
0.98)

0.953 (0.92, 
0.98)

0.923 (0.88, 
0.97)

77% 80 0.93 (0.87, 
0.98)

0.97 (0.93, 
1.00)

0.923 (0.86, 
0.98)

91%

FibroScan 147 0.88 (0.81, 
0.95)

0.88 (0.81, 
0.95)

0.80 (0.73, 
0.87)

62% 80 0.89 (0.82, 
0.96)

0.92 (0.86, 
0.98)

0.82 (0.73, 
0.92)

68%

1Filtered with a minimum of 3 images for each view group.
2Selecting only studies with associated FibroScan control attenuation parameter (CAP) scores.
3Area under the curve of the receiver operating characteristic significantly better than FibroScan CAP scores.
“Complete 4 view groups study” only selects studies where every view group is qualifying (three or more images), whereas “Individual view group 
study” examines the performance of each qualifying view group individually. Numbers in parentheses are 95% confidence intervals. All trends between 
the deep learning/CAP score and the histopathology grades were significant (P < 0.001). “Acc” is the classification accuracy when the threshold values 
calculated by optimizing the Youden index[44] are applied. LLL: Left liver lobe; RLL: Right liver lobe; LKC: Liver/kidney contrast; SC: Subcostal; HP-U: 
Histopathology unblinded test group; HP-T: Histopathology blinded test group; AUC: Area under the curve.

We also demonstrated good cross-scanner agreement. Bland-Altman analysis suggested bias across 
scanners was near zero with acceptable LOAs (35%-37%) for individual view groups, with the LOAs 
falling to 25% when using “All View Groups.” When using categorical labels, these numbers correspond 
to agreements of 90% to 96%. An encouraging sign for generalizability is that cross scanner agreement is 
high for the Siemens: S2000 scanner, despite it being poorly represented in BD-L.

In terms of diagnostic performance, we validated on two different histology-proven cohorts (HP-U 
and HP-T). The “Complete view group study” of Table 3 indicated that diagnostic performance 
remained stable across view groups, with comparable and high AUCROC values (≥ 0.84). These results 
were reinforced by the “Individual view group study,” which allowed each view group to be invest-
igated individually, with a corresponding larger sample size. Again, the DL model posted good 
AUCROC values (≥ 0.81) across view groups and histopathology grades. As highlighted in the results, 
the AUCROCs in HP-T tended to be lower than in HP-U, which was most pronounced for diagnosing > 
5% fatty percentage. This is explained by the 18 earlier studies acquired by low resolution scanners in 
HP-T (Supplementary Table 2), which produced relatively lower quality images than the more recent 
premium scanners. Indeed, as Figure 4B shows, excluding the older scanners raised the HP-T AUCROC 
scores considerably so that they matched the HP-U group (from 0.85 to 0.90 AUCROC for ≥ 5% fatty 

https://f6publishing.blob.core.windows.net/5ade7f27-6fd6-4ee5-83cc-9c07c99966ca/WJG-28-2494-supplementary-material.pdf
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Figure 5 Receiver operating characteristic analysis on histopathology blinded test group. A and B: Receiver operating characteristic curves of the 
deep learning model for diagnosing hepatic steatosis grades on histopathology blinded test group (HP-T) when using all scanners and only the 
Siemens/Toshiba/Philips premium scanners, respectively; C and D: Only select for histopathology blinded test group studies with FibroScan diagnoses, 
corresponding to the performance of the deep learning algorithm and FibroScan, respectively. All receiver operating characteristic curves were measured against a 
histopathological gold standard. AUCROC: Area under the curve of the receiver operating characteristic.

percentage). Consequently, even though performance seemed to be stable across the tested premium 
scanners, the DL algorithm can be sensitive to scanner quality, which is a matter requiring further 
investigation.

The clinical diagnosis of our big data was generally based on the principle of Hemaguchi score, US-
FLI score, and hepatorenal steatosis score[13]. Our DL algorithm demonstrated good quantitative 
performance despite being trained on subjective 2D US categorical labels with inter-observer variations. 
We speculate this is due to the exceptionally large training BD-L dataset, which included diagnoses 
from 63 clinicians. This allowed the DL model to “learn” and distill from a variety of clinical 
assessments. In addition, the DL model’s continuous output allowed for a calibration against accepted 
gold standards. Although the distribution of etiologies between the big data training cohort and 
histology-proven validation cohorts were unavoidably different, validation performance remained high. 
Thus, these distributional differences did not seem to impede performance on a representative sample 
from a clinical population.

Importantly, we compared the DL algorithm’s performance head-to-head with CAP of FibroScan. The 
DL algorithm’s “All View Groups” score reported higher AUCROCs (0.92-0.97 vs 0.80-0.92) and 
accuracies (77%-91% vs 62%-68%) than CAP (Table 3). Statistically significant improvements were 
achieved for all levels on the HP-U cohort, and only for “= severe” on the HP-T cohort. This is 
encouraging because, unlike CAP, our DL algorithm can be applied to many different liver viewpoints 
and does not require additional equipment outside of an US scanner. Our DL algorithm enjoys similar 
advantages in flexibility over other quantitative US techniques[25,49], which examines the attenuation, 
brightness, or echogenicity change within a small region of interest (ROI). Such restrictions may result 
in missing other useful information for steatosis diagnosis (for example, liver/kidney contrast and the 
loss of vessel walls). Quantitative US can also not be applied to patients where the specific ROI is unable 
to be imaged and is often limited to a specific scanner, e.g., ATI only works with Canon scanners.

The DL algorithm can be trained with large-scale retrospective datasets, which need neither costly 
machines nor annotation of regions of interest. Furthermore, in the inference stage, our algorithm does 
not require images from all hepatic views, e.g., the absence of the right hepatic lobe images is acceptable, 
as the performance of our algorithm with left hepatic lobe images is just as good. When using “All View 
Groups,” diagnostic AUCROCs did not improve. However, the improved cross-scanner agreement 
(Table 2) suggests using “All View Groups” may provide more reliability. Our algorithm could be used 
on different brands of scanners in different hospitals. However, each scanner or hospital may determine 
their cutoff values for different grades of steatosis based on their preferred gold standard (liver 
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histology or MRI-PDFF). Its potential applications include improved steatosis screening and longit-
udinal tracking in clinical settings. Our trained algorithm may be shared with researchers for non-
commercial use upon reasonable requests to the clinical principal investigator (D.I.T.) and subject to IRB 
approval. We expect it to have good generalizability given the diversity of the BD-L dataset. Because 
our algorithm is trained only on retrospective US-labeled data, which are readily available in most 
Picture Archiving and Communication Systems, we also believe the methodology we presented here to 
be highly generalizable and accessible to institutions wishing to train their own algorithms.

The use of machine learning technologies for non-invasive liver steatosis assessment has received 
attention for a number of years[19-27]. This work represents a significant step forward. Like this work, 
many prior solutions were built upon recent DL techniques[22,24-27], which Supplementary Table 7 
summarizes. Apart from Gummadi et al[22], all other works only test on a single scanner. Moreover, our 
evaluation includes more than one etiology: HBV, HCV, and NBNC liver diseases. In terms of training, 
we use so-called “big-data,” which included 13 known different US scanner models and over 228000 
images and 19000 US studies. This dwarfs the training set size of other works and should contribute to 
better model generalizability. Another important point is that most prior studies used one specific 
viewpoint[19,20,24] or manually defined area of interest[22,25,26], which can restrict their applicability. 
Like Byra et al[27], we investigated performance across different views. In addition, we investigated 
different viewpoints in both hepatic lobes. This advantage is most evident for patients with one resected 
hepatic lobe or a lobe whose space is occupied by a lesion. Furthermore, this study measured agreement 
across three different scanners and repeatability across different view groups and across different 
numbers of images per view group, which are analyses not found in other studies. Finally, we are the 
first to directly compare against a leading non-invasive alternative: CAP of FibroScan.

Our study has several limitations. First, we primarily used histology as the gold standard for 
assessing liver steatosis, which can suffer from sampling errors, processing variabilities, and intra- and 
inter-observer variability[48,50]. A histopathological gold standard also introduced patient selection 
bias. For example, CGMH histology is not required to initiate therapy in patients with HCV, whereas it 
is often required for patients with HBV or nonalcoholic steatohepatitis. In addition, we selected US 
studies completed within 3 mo of a liver histology study. If there were vigorous lifestyle changes within 
3 mo, we may have a risk of deviation between fatty scores of US image and liver histology. Thus, 
investigating and validating against other non-invasive scores, both imaging and non-imaging based, 
remains an important task. Second, for assessing diagnostic performance we used retrospective data. To 
impose a degree of standardization, we required there to be at least 3 images in a view group and ≥ 10 
images in the whole US study. Nonetheless, more controlled experimental settings may allow for more 
precise comparisons and follow-up prospective studies should implement an acquisition protocol to 
assess diagnostic performance in varied settings. In particular, the relatively poorer repeatability of the 
LKC view group should be investigated, and, if necessary, adjustments to the protocol should be made. 
Third, patients in HP-U and HP-T may also have co-occurring liver fibrosis, which likely has complex 
interactions with hepatic steatosis. The effect of this interaction on interpretations needs further study. 
Fourth, the scanner quality and model does seem to impact the DL model. Future work should better 
measure this impact, focusing on premium scanners not seen in the training data, which would better 
characterize generalizability. Fifth, the combined case numbers in HP-U and HP-T were more than 200, 
but the number with “complete view groups” was relatively small. Relatedly, the data collected in this 
study were all acquired from the CGMH institution, so any conclusions must be interpreted cautiously. 
Measuring performance across multiple centers, ideally using a prospective data collection protocol 
with larger evaluation cohorts, remains an important aspect of future work.

CONCLUSION
The DL algorithm provided a reliable quantitative steatosis assessment across view and scanners on two 
multi-scanner cohorts. Diagnostic performance was high with comparable or better performance than 
CAP. This algorithm could be applied to prospectively as well as retrospectively collected 2D US 
images.

ARTICLE HIGHLIGHTS
Research background
Two-dimensional (2D) ultrasound has been used for screening of liver steatosis for more than 5 decades. 
It is a cheap and non-invasive study.

Research motivation
Two-dimensional ultrasound is a subjective diagnosis that is not suitable for quantitative study.

https://f6publishing.blob.core.windows.net/5ade7f27-6fd6-4ee5-83cc-9c07c99966ca/WJG-28-2494-supplementary-material.pdf
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Research objectives
To produce an objective steatosis diagnostic algorithm by deep learning from big data of 2D ultrasound 
images.

Research methods
Using multi-view ultrasound big data from a retrospective cohort of patients, we trained a deep 
learning algorithm to diagnose steatosis stages from clinical ultrasound diagnoses. Performance was 
validated on two multi-scanner unblinded and blinded histology-proven cohorts with histopathology 
diagnoses and a subset with FibroScan diagnoses. We also quantified reliability across scanners and 
viewpoints. Results were evaluated using Bland-Altman and receiver operating characteristic analysis.

Research results
The deep learning algorithm demonstrated repeatable measurements with a moderate number of 
images and high agreement across three premium ultrasound scanners. High diagnostic performance 
was observed across all viewpoints. Areas under the curve of the receiver operating characteristic to 
classify mild, moderate, and severe steatosis grades were 0.85, 0.91, and 0.93, respectively. This 
algorithm outperformed or performed at least comparably to FibroScan control attenuation parameter 
on the unblinded or blinded histology-proven cohort.

Research conclusions
This algorithm could give an objective diagnosis of steatosis from prospectively or retrospectively 
collected 2D ultrasound images.

Research perspectives
The cutoff values for different grades of steatosis would need future studies in different scanners and 
fibrosis status.
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