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Abstract

Objectives: Automated whole brain segmentation from magnetic resonance images is of 

great interest for development of clinically relevant volumetric markers for various neurological 

diseases. While deep learning methods have demonstrated remarkable potential in this area, they 

may perform poorly in non-optimal conditions, such as with limited training data. Manual whole 

brain segmentation is an incredibly tedious process, so minimizing the dataset size required for 

training segmentation algorithms may be of wide interest. The purpose of this study was to 

compare the performance of the prototypical deep learning segmentation architecture (U-Net) 

with a previously published atlas-free traditional machine learning method, Classification using 

Derivative-based Features (C-DEF) for whole brain segmentation, in the setting of limited training 

data.

Materials and Methods: C-DEF and U-Net models were evaluated after training on manually 

curated data from 5, 10, and 15 participants in two research cohorts – (i) people living with 

clinically diagnosed HIV infection and (ii) relapsing-remitting Multiple Sclerosis (MS), each 

acquired at separate institutions, and between 5 and 295 participant data using a large, publicly 

available and annotated dataset of glioblastoma and lower grade glioma (BraTS). Statistics was 

performed on Dice Similarity Coefficient (DSC) using repeated-measures ANOVA and Dunnett-

Hsu pairwise comparison.

Results: C-DEF produced better segmentation than U-Net in lesion (29.2 – 38.9%) and 

cerebrospinal fluid classes (5.3% – 11.9%) when trained with data from 15 or fewer participants. 

Unlike C-DEF, U-Net showed significant improvement when increasing the size of the training 

data (24 – 30% higher than baseline). In the BraTS dataset, C-DEF produced equivalent or better 
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segmentations than U-Net for enhancing tumor and peritumoral edema regions across all training 

data sizes explored. However, U-Net was more effective than C-DEF for segmentation of necrotic 

tumor tissue when trained on 10 or more participants, probably due to the inconsistent signal 

intensity of the tissue class.

Conclusions: These results demonstrate that classical machine learning methods can produce 

more accurate brain segmentation than the far more complex deep learning methods when only 

small or moderate amounts of training data are available (n ≤ 15). The magnitude of this advantage 

varies by tissue and by cohort, while U-Net may be preferable for deep grey matter and necrotic 

tumor segmentation, particularly with larger training datasets (n ≥ 20). The magnitude of this 

advantage varies by tissue and by cohort. Given that segmentation models often need to be 

re-trained for application to novel imaging protocols or pathology, the bottleneck associated with 

large-scale manual annotation could be avoided with classical machine learning algorithms such as 

C-DEF.
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1. Introduction

In recent years, imaging markers of atrophy and inflammation derived from brain 

segmentation have been widely used to inform disease status and progression in neurological 

disorders (1–3). These volumetric markers, particularly with regards to white matter lesions 

(4, 5), are of great interest as potential endpoints for clinical trials. Although labels 

manually drawn by an expert rater remain the gold standard for segmentation accuracy, 

this is prohibitively tedious and costly to do on a large scale. Whole brain segmentation 

is particularly time-consuming due to the large number of detailed contours that must be 

delineated across many individual slices. Automation of brain segmentation can therefore 

help by delivering fast and reproducible imaging markers (6).

Among automated brain segmentation algorithms, supervised learning methods have 

demonstrated strong capability to model the signal intensity profiles and spatial context 

of brain tissues to produce robust brain segmentations. Atlas-free segmentations offer ability 

to segment the brain in a disease-independent manner, using signal intensity signatures 

of various tissue types from multiple contrasts and derived image filters (7). Recently, 

deep learning has risen to the forefront by demonstrating state-of-the-art results on a 

range of medical image segmentation benchmarks, including the MICCAI Brain Tumor 

Segmentation challenge, Medical Segmentation Decathlon, and others (8–11). The U-Net 

framework, introduced in 2015 by Ronneberger et al., used a convolutional neural network 

with skip connections to capture complex spatial information at multiple scales (12). 

Since then, much research has focused on improvement of this framework using various 

strategies for multiscale feature aggregation (9, 13, 14) and localization (15, 16). Despite 

the proliferation of U-Net-style architectures, many of the same challenges still persist with 

regards to model development and deployment. Model training requires specialized GPU 

resources that are of little use in other aspects of clinical informatics workflows. Due to the 

high number of parameters (often greater than a million) involved in training for large 3D 
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or 4D (if multi-contrast) volumes, GPU memory limitations often dictate that input size be 

reduced, with patch extraction being the most common approach (17, 18). With this in mind, 

the relative performance of these highly complex deep learning algorithms as opposed to 

less resource-intensive machine learning algorithms needs to be investigated.

Perhaps more importantly, deep-learning models still frequently rely on extensive training 

datasets and demonstrate inconsistent generalizability across imaging protocols and 

pathologies. This is significant because a model trained on hundreds of well-labeled public 

datasets may still find itself to be of limited use while segmenting naïve images. Bias 

introduced by factors such as scanner type and imaging parameters can be great enough 

to significantly confound segmentation tasks (19). These factors can make transfer learning 

or domain adaptation with few labeled examples challenging, particularly if the disease or 

scanner protocol of interest is rare or novel, making previously learned features less relevant. 

Therefore, real-world applications of automated segmentation often rely on training models 

from scratch with manually curated labels from each dataset. Such manual annotation 

requires expert knowledge and therefore places a substantial time demand on qualified 

experts. Manual annotation is also prone to significant inter- and intra-operator variability 

requiring consensus readings (20), further adding to the cost of curation. This can create 

a significant bottleneck for model development in many cases (21), so reducing the size 

of training dataset that is needed may be of wide interest. There is therefore a need for 

algorithms that are robust to training on limited data and a greater understanding of the 

behavior of supervised segmentation methods under limited training conditions. Several 

previous studies have observed effect of training dataset size on the performance of deep 

learning models for medical segmentation tasks, including for head-and-neck CT (22) and 

carotid ultrasound (23). However, this line of inquiry remains underexplored in the domain 

of whole brain segmentation. In addition, these studies typically do not consider alternative 

segmentation methods such as classical machine learning for comparison.

This study aims to address these gaps in knowledge by comparison of a deep-learning 

method (U-Net) and a classical machine learning method (C-DEF) for segmentation on 

several clinical datasets under limited training conditions. Each model was evaluated in 

parallel on two moderately sized cohorts (n=20 for each cohort) composed of patients 

diagnosed with HIV infection and relapsing-remitting MS, respectively. Algorithms were 

assessed solely for tissue segmentation performance within each cohort in order to assess 

the reliability of each method. The amount of training data provided for training was 

varied in order to assess the relationship between training data abundance and segmentation 

performance. This comparison was then extended to a publicly available segmentation 

benchmark, the MICCAI BraTS 2020 Training dataset, modified to classify only the 

manually delineated pathological tissue subtypes, to validate the observed trends over a 

larger range of training dataset sizes.

2. Materials and Methods

2.1. Datasets and Preprocessing

Multi-modal brain MRI scans were obtained at 3T from study participants clinically 

diagnosed with relapsing-remitting multiple sclerosis using 2010 revised McDonald Criteria 
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(24) (MS cohort) and people living with HIV infection (HIV cohort). MS cohort participants 

were recruited as part of the FutureMS study (https://future-ms.org). Study protocols 

were approved by the institutional review board of the National Institute of Neurological 

Disorders and Stroke (reference number NCT01875588) for the HIV cohort and the National 

Health Service South East Scotland Research Ethics Committee 02 (reference number 

15/SS/0233) for the MS cohort, and all participants provided written informed consent. 

Images used in this analysis included MPRAGE (TR/TE/TI = 2500/2.26/1100 ms, 1 mm 

isotropic resolution), 3D FLAIR (TR/TE/TI = 5000/393/1800 ms, 1mm isotropic resolution), 

PD/T2 (2D FSE, TR/TE = 3630/9.6 and 96 ms, resolution = 0.7×0.7×3) acquired on a 

Siemens Prisma 3T for the MS cohort, and MPRAGE (TR/TE/TI = 6.9/3.2/900 ms, 1 mm 

isotropic resolution), FLAIR (TR/TE/TI = 4800/350/1650 ms, 1mm isotropic resolution), 

PD/T2 (2D TSE, TR/TE = 3418/15 and100 ms, 0.9×0.9×3 mm resolution) acquired on 

the Philips Achieva 3T (Philips Healthcare, Andover, MA) for the HIV cohort. All MR 

images were co-registered to the corresponding MPRAGE image and were skull-stripped, 

bias-field corrected, and normalized using AFNI tools (25) as described in (7). Whole brain 

segmentations were obtained using FreeSurfer (26) on the MPRAGE and FLAIR images, 

then converted into the following labels: cerebrospinal fluid (CSF), grey matter (GM), and 

white matter (WM). These labels were then manually edited for errors and lesions were 

manually drawn by either a trained neurologist (YM, SO) or a clinical neuroscientist (RM), 

each with more than 5 years of experience.

The multi-institutional MICCAI BraTS 2020 Training dataset (BraTS cohort, https://

www.med.upenn.edu/cbica/brats2020/data.html) was used to check the applicability of our 

findings to a much larger dataset with widely accepted gold-standard masks (11). This 

dataset contains pre-processed multimodal input data and expert-drawn glioma region 

segmentations for 369 participants. The images were individually z-score normalized prior 

to modeling. For these experiments, the healthy tissue labels were omitted as it contained a 

mixture of signal intensity profiles from WM, GM, and CSF, and therefore was not relevant 

to the techniques being tested herein. The three remaining labels of the tumor regions were 

used for training and testing: enhancing tumor (ET), peritumoral edema (PE), and necrotic/

non-enhancing core (NCR/NET).

2.2. Brain Segmentation Methods

Figure 1 shows the inference pipeline for our parallel evaluation of C-DEF and U-Net. All 

models were trained from scratch on each cohort. In the C-DEF pathway (blue shading), 

image features were derived and used as inputs for a logistic regression classifier following 

the previously published method (7). Gaussian blur and Gaussian gradient filters with kernel 

sizes of 33, 53, 73, 93, 173, 333, and 653 were calculated for each contrast and concatenated 

with the unfiltered images (27). These features were z-score normalized based on the mean 

and standard deviation of the entire training dataset, then used to train a multinomial logistic 

regression classifier with a maximum of 200 iterations and L2 regularization (C=0.05) to 

prevent overfitting. For detailed methods, please see (7). C-DEF models were implemented 

on a computing cluster with 64x Intel® Xeon® CPUs (Intel Corporation, Santa Clara, CA) 

with 256 GB RAM running CentOS 7.7.
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In the U-Net pathway (green shading), a 3D U-Net model was used to train and predict 

on 3D image patches, then the output patches were concatenated to produce the final 

segmentation. U-Net architecture was adapted from the original 3D U-Net method (28) with 

32 filters in the first convolution layer but with the use of padded convolution layers and 

randomly sampled input patches for training (18). Key hyperparameters including patch 

size, batch size, learning rate, and number of epochs were tuned by 5-fold cross-validation 

grid search on the MS cohort (data not shown), and the configuration with the highest 

average DSC was chosen. Based on this, the Adam optimizer with categorical cross-entropy 

loss and a learning rate of 1 × 10−3 was trained for a maximum of 50 epochs with 

a batch size of 60, and early stopping was conditioned on validation loss to prevent 

overfitting. For each participant, 1000 random nonzero voxels were selected and patches 

of size 323 were extracted centered at each voxel. Data augmentation consisted of random 

patch-wise reflections, rotations, and elastic deformations during training. The U-Net model 

was implemented in Keras with Tensorflow backend on an NVIDIA® v100-SXM2 GPU 

(NVIDIA, Santa Clara, CA) with 32 GB VRAM and 8 Intel® Xeon® Gold 6410 CPUs 

(Intel Corporation, Santa Clara, CA) with 64 GB RAM.

2.3. C-DEF vs U-Net Comparison

The optimized C-DEF and U-Net methods were then applied to the full MS and HIV 

cohorts. Models were evaluated by 5-fold cross-validation using an 80/20 training/testing 

split for C-DEF and U-Net, with 25% of the training data used for validation in the latter 

case. For each cross-validation fold, the training (including validation, in the case of U-Net) 

dataset was then subsampled to include either 5, 10, or 15 participants for model fitting to 

simulate limited training data availability. This subsampling was randomly generated but 

kept consistent between corresponding C-DEF and U-Net runs (e.g., C-DEF-5 and U-Net-5) 

to provide a fair comparison. The same comparison was also applied to the BraTS cohort 

with additional models trained with data from 20, 40, 80, 160, and 295 (maximum available) 

participants as well. Mean computational cost statistics were calculated from three-fold 

repeated measurements.

2.4. Qualitative Evaluation

Output segmentations for the HIV and MS cohorts were first visually inspected, then 

qualitatively scored by an experienced neurologist (SO) or trained clinical neuroscientist 

(RM), respectively, while blinded to the method and model used to generate each 

segmentation. A 5-point rating scale was used ranging from 1 = ‘very bad’ to 5 =‘ very 

good’ for each tissue class. Net score for each segmentation was calculated as the mean 

of the ratings for all tissue classes, with lesion segmentations weighted double due to their 

importance as a potential marker for neurological disease progression.

2.5. Quantitative Evaluation and Statistical Analysis

Dice Similarity Coefficient (DSC) scores were calculated according to the following 

formula:

DSC = 2 TP
2 TP + FP + FN
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where TP, FP, and FN are the number of true positive, false positive, and false negative 

voxels, respectively, when segmentation results were compared to labels manually drawn by 

an expert neurologist. Statistical analyses were performed using SAS® version 9.4 (SAS 

Institute Inc, Cary, NC). Box-Cox data transformation was applied to the two data sets with 

minimum observations <0.1. The Shapiro–Wilk (sample size<50) or Kolmogorov–Smirnov 

test was used to check the normality assumption. For each tissue class, repeated-measures 

analysis of variance (RM-ANOVA) was conducted to evaluate the effect of the scoring 

method on mean DSC. Intraclass correlation coefficient (ICC) and 95% confidence intervals 

were calculated to examine the correlation and agreement of the different scoring methods 

(treated as raters). Bland-Altman agreement analysis was performed using segmentation 

tissue volumes of model pairs to examine potential biases between C-DEF and U-Net 

models trained on the same data. The Bonferroni-corrected p-value <0.05 was considered to 

be statistically significant.

2.6. Code and Data Availability

BraTS is a publicly available dataset. Code and data for C-DEF and prototypical U-Net 

models used herein will be made available via GitHub upon acceptance of manuscript. The 

MS and HIV data in this project are confidential and obtained via a natural history study, 

but may be obtained with Material Transfer Agreements, subject to NIH’s policy on data 

sharing.

3. Results

3.1. Participant Cohorts

The Institutional Review Board approved the study protocols and all participants provided 

written informed consent. Images acquired from participants diagnosed with relapsing-

remitting MS (MS cohort, n = 20, 13 women, age 36 ± 8 years, time from diagnosis 0.2 

± 0.1 years, and Expanded Disability Status Scale (EDSS) 2.5 ± 1.8), and people living 

with HIV (HIV cohort, n = 18, 10 women, age 56 ± 4 years, time from diagnosis 20 ± 

8 years) were used in this study (mean ± SD). Label masks were derived from FreeSurfer 

segmentations (26), which were converted to white matter, grey matter, and CSF labels. 

These were carefully edited by one of three neurologists and/or clinical neuroscientists (RM, 

YM, SO), who then manually added the lesion class. In addition, a collection of multimodal 

MRI scans of glioblastoma (n=293) and lower grade glioma (n=76) patients with manually 

drawn tumor segmentation masks were downloaded from the MICCAI BraTS 2020 online 

portal and modified to exclude normal brain regions (11, 29) (https://www.med.upenn.edu/

cbica/brats2020/data.html).

3.2. Whole Brain Segmentation

Qualitative examination of segmentation results from C-DEF trained on data from 5, 10, and 

15 MS cohort participants revealed no obviously visible improvement (Figure 2A, top row; 

mean ratings: 3.77, 3.79, and 3.79, respectively), whereas significant improvements (yellow 

arrows) were seen, especially for lesion segmentation, by increasing the training data 

supplied to U-Net (Figure 2A, middle row; mean ratings: 3.55, 3.90, and 3.93, respectively). 

U-Net-5 had low lesion sensitivity, especially for small punctate lesions (red arrows), and 
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higher occurrence of false positives from artifactual hyperintensities (not shown). These 

results were mostly replicated in the HIV cohort (Figure 2B), with the exception that 

U-Net-15 (4.12) rated worse than U-Net-10 (4.58) due to errors in the brainstem.

Quantitative results found that for both cohorts, DSC from C-DEF segmentations were 

unchanged with additional training data, but DSC from U-Net segmentation improved 

significantly with more training data (p<0.05, slice test applied to DSC from each tissue 

class, Figure 3A). In the MS cohort, DSC from the U-Net segmentation improved on 

average by 30% in the lesion class (p<0.001), 8% in the CSF class (p<0.01), 2% in the 

GM class (p<0.001), and 1% in WM class (p<0.001) when using training data from 15 

participants compared to 5. U-Net segmentation in the HIV cohort showed similar DSC 

increases with a 24% improvement in the lesion class (p<0.001) and 2% improvement in 

the CSF class (p<0.01). It should be noted that the DSC from WM and GM segmentation 

was not significantly changed in the HIV cohort. Consistent with qualitative examination, 

quantitative results from U-Net-5 segmentation had worse DSC across all tissues than 

C-DEF-5 for both cohorts, except for WM in the MS cohort. Meanwhile, U-Net-15 

segmentation had similar lesion, GM, and CSF DSC as C-DEF-15 segmentation in the 

MS cohort and similar lesion and WM DSC in the HIV cohort.

ICC between C-DEF models trained with data from 5, 10, and 15 participants were >0.92 

and >0.96 in all tissue classes in the MS cohort and the HIV cohort, respectively. Between 

U-Net models it varied between 0.72 (CI: [0.52, 0.87]) in the WM class to less than 0.1 

(CI: [−0.15, 0.39]) in the lesion class in the MS cohort and between 0.60 (CI: [0.35, 0.81]) 

in the CSF class to less than 0.4 (CI: [0.07, 0.65]) in the lesion class in the HIV cohort. 

Furthermore, Bland-Altman analysis (Figure 3B) found that U-Net-5 consistently gave much 

smaller lesion volumes compared to C-DEF-5 segmentation in both cohorts (MS cohort 

mean bias: 0.69, CI: [−0.49, 1.87], HIV cohort mean bias: 0.40, CI: [−0.64, 1.45]). The same 

comparison with models trained on 15 data points (not shown) found a 67–70% reduction 

in lesion volume bias (MS: 0.20 [−0.35, 0.75], HIV: 0.13 [−0.47, 0.73]) compared to the 5 

participant models. In the MS cohort, C-DEF-5 produced smaller CSF volumes compared 

to U-Net-5 for most participants, with a few exceptions. Visual inspection of the four U-Net 

segmentations that deviated from this trend (not shown) revealed abnormally low sulcal 

CSF sensitivity. For each tissue class, the MS cohort had a greater range of relative volume 

differences, which is consistent with qualitative observations of greater similarity between 

C-DEF and U-Net segmentations in the HIV cohort. In addition, Bland-Altman analysis 

of C-DEF compared to the manually edited masks (not shown) confirmed that MS cohort 

CSF volumes for C-DEF were consistently lower than those present in the manual labels 

regardless of amount of training data used.

Difference map calculations of MS cohort segmentations revealed that C-DEF was better 

able to detect fine details of the cerebellar GM/WM folds, while U-Net typically failed to do 

so (Figure 4A). C-DEF also produced more plausible cortical grey matter boundaries than 

U-Net in many cases (Figure 4B). Qualitative inspection of the FreeSurfer-derived manually 

edited training labels found that these two areas were particularly prone to labeling noise 

and subtle errors, which were more readily replicated by U-Net than by C-DEF. Finally, 

C-DEF more often misclassified parts of subcortical grey matter structures, including the 
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globus pallidus and thalamus, as white matter, while U-Net generally labeled them correctly 

(Figure 4C).

3.3. Tumor Segmentation of Glioma Dataset

In order to validate and extrapolate these findings, we downloaded a large publicly available 

dataset and modified it to simulate tissue segmentation using signal intensity profiles. Table 

1 summarizes the performance of C-DEF and U-Net models on the modified BraTS cohort. 

C-DEF outperformed U-Net by mean DSC on the enhancing tumor (ET) and peritumoral 

edema (PE) classes when trained on data from 5 participants (p < 0.001, Dunnett-Hsu test), 

while the necrotic/non-enhancing tumor (NCR/NET) DSC was not significantly different 

between C-DEF-5 and U-Net-5. While no difference in mean DSC for any class was 

seen between C-DEF-5 and C-DEF-10, it did increase significantly for all classes between 

U-Net-5 and U-Net-10. When trained on much more data (>20 participants), C-DEF mean 

DSC did eventually increase significantly, with average improvement of 12% (ET), 7.6% 

(PE), and 190% (NCR/NET) from minimum to maximum amount of training data. Over the 

same range, U-Net scores increased 43% (ET), 62% (PE), and 200% (NCR/NET). C-DEF 

was better or statistically equivalent to U-Net by DSC for PE and ET tissue classes for 

every training regime tested, except for PE with 160 training data. However, U-Net did 

demonstrate a significant advantage on the NCR/NET tissue class for all except 5 and 

15 training data models. While C-DEF models collectively produced ICCs of 0.81 [0.78, 

0.83] and 0.89 [0.88, 0.91] for ET and PE DSC, indicating highly similar segmentation 

results, it had a far lower ICC of 0.62 [0.58, 0.66] for NCR/NET DSC, indicating only mild 

consistency in segmentation results for C-DEF models trained on different amounts of data.

3.4. Computational Cost Comparison

Benchmark computational cost data for C-DEF and U-Net models were gathered during 

comparison on the MS cohort. When trained on the minimum 5 participants in the same 

CPU environment, U-Net (8400 ± 76 min) was more than two orders of magnitude slower 

than C-DEF (38.8 ± 0.7 min) in terms of overall training time per training participant. When 

deployed optimally on a v100 GPU, U-Net training time (33 ± 2 min) was comparable 

to C-DEF deployed on CPU, and inference was nearly 3 times faster (0.20 ± 0.01 min/

participant compared to 0.55 ± 0.02 min/participant for C-DEF). It should be noted that 

C-DEF is currently only implemented on CPU. Both U-Net and C-DEF overall training time 

increased approximately linearly with the number of training participants in both the MS and 

HIV cohorts.

4. Discussion:

A logistic regression model using derived image textures (C-DEF) for brain segmentation 

performed equivalent or better by several key metrics than a prevalent deep learning 

algorithm (U-Net) when trained on manually edited masks from a small to moderate 

number of participants (n ≤ 15). In particular, C-DEF produced good lesion and CSF 

segmentations even when trained on the minimum 5 training participants, while U-Net did 

not. Performance of U-Net models for whole brain segmentation improved significantly with 

increasing amounts of training data, however, no significant improvements were seen in 
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C-DEF models with increasing size of training data. U-Net produced better segmentation of 

certain structures, such as the thalamus and globus pallidus, with more subtle tissue intensity 

signatures. However, C-DEF was more robust to minor annotation errors in the training data, 

leading to better segmentation of certain structures, such as cerebellar folds and cortical 

grey matter boundaries. Moreover, deep learning algorithms such as U-Net require more 

compute resources than a classical machine learning method such as C-DEF to perform 

model training in a reasonable amount of time. Taken together, we have demonstrated that 

a classical machine learning algorithm such as C-DEF can produce equivalent or better 

whole brain segmentation based on signal intensity profiles than a much more resource 

intensive deep learning algorithm such as U-Net in the case of limited training data. 

Furthermore, accuracy of C-DEF segmentation is high even with limited (n=5) training data, 

and comparable to the accuracy of U-Net trained with larger (n=15) training data, making it 

a less labor intensive and more cost-effective option.

Minimizing the amount of manual label annotation required to obtain a reasonable model is 

an important goal often overlooked during model development. This step can have a large 

impact upon the time needed to implement a segmentation pipeline for a given application 

(30), as it is extremely tedious and requires expert knowledge of neuroanatomy and/or 

neuroradiology. This is particularly true for a task such as whole brain segmentation, as 

opposed to targeted quantification of a single structure, such as glioma segmentation. Given 

that the efficacy of any supervised learning model is highly dependent upon the quality of 

the training data, the threshold for acceptable annotations is generally quite high. It may 

therefore be advantageous to be able to obtain robust segmentations from only a few very 

carefully edited training data, rather than relying on a much larger pool of training data 

that may be more susceptible to large annotation errors due to its size. C-DEF achieves 

semantic segmentation by modeling individual voxels (along with their derived features), 

which means that a single annotated subject could be considered a source of millions of 

individual training data points. Meanwhile, U-Net dictates training on large image patches, 

which reduces the number of discrete training examples that can be obtained from each 

subject, even after data augmentation. Therefore, it is intuitive that C-DEF may be far less 

susceptible to overfitting and other penalties of insufficient training data.

The advantages of C-DEF were more pronounced when training was performed on a 

smaller number of training data. C-DEF produced reasonably good segmentations after 

training on data from only 5 participants, while U-Net segmentations were significantly 

degraded when trained with so few data points. The latter is evidenced not only by raw 

DSC scores (Figure 3A) but also by the subpar CSF volumes produced in a single fold 

of U-Net-5 (Figure 3B, top rightmost plot), which are sufficiently aberrant as to indicate 

model instability. C-DEF was also more effective in segmentation of certain structures, 

such as cerebellar folds and sulcal grey matter boundaries, particularly in the MS cohort 

(Figures 4A, 4B). These regions were observed to be susceptible to labelling errors, which 

may indicate that C-DEF effectively lowers the quality threshold for training annotations by 

avoiding overfitting, provided that texture-enriched tissue intensity signatures are reasonably 

well-resolved. Indeed, we refrained from using the term gold-standard masks for manually 

annotated masks due to the presence of such errors. This capability presents a trade-off, 

since C-DEF was largely ineffective for segmentation of certain regions where tissue 
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intensity signatures were not as well-resolved, such as thalamus and globus pallidus. As 

a result, U-Net demonstrated slightly better overall WM and GM DSC for some training 

regimes, but only on the MS cohort. Our training annotations were derived from FreeSurfer 

subcortical segmentation, which uses an atlas of annotated examples as priors (26). This 

mitigates the issue of overlapping tissue intensity signatures by utilizing a combination of 

local and global factors and their correlations to determine the most likely label for a given 

voxel. U-Net was given no such priors, but it was able to identify subcortical grey matter 

structures more reliably than C-DEF using only patch-wise spatial features. This difference 

could be due to a number of factors, but is likely related to the fact that the number and 

complexity of features captured by U-Net far surpasses the small (<50) number of localized 

image textures incorporated into a single-layer logistic regression model by C-DEF. It may 

also indicate that deep grey matter structures are not linearly distributed and therefore not 

easily separable by the linear decision boundaries defined by C-DEF, as opposed to the more 

complex boundaries available to a deep network such as U-Net.

In order to further explore the dependence of each algorithm on training data size, the 

MICCAI BraTS 2020 Training dataset was used as a supplementary comparison. This 

dataset was chosen based on its large, expert-curated set of gold-standard labels and 

its widespread acceptance as a public benchmark in the medical image segmentation 

community. Unfortunately, whole brain segmentation labels are not provided for this 

dataset, so the “healthy tissue” label encompasses regions of white matter, grey matter, 

and CSF, leading to an indeterminate tissue intensity signature. In order to adapt the tumor 

segmentation task to be more comparable to whole brain segmentation, we chose to omit 

the “healthy tissue” label from training and quantify segmentation of the three tumor regions 

(enhancing tumor, necrotic/non-enhancing tumor, and peritumoral edema) directly rather 

than using the nested anatomical labels (enhancing tumor, tumor core, whole tumor) of the 

official BraTS challenge. When evaluated on the enhancing tumor (ET) and peritumoral 

edema (PE) regions, C-DEF was better or equivalent to U-Net regardless of the number of 

participants used for training (up to 295). However, we observed that both C-DEF and U-Net 

struggled with segmentation of necrotic/non-enhancing tumor regions (NCR/NET), with 

U-Net producing significantly better results in this region with moderate (n=10) and large (n 

≥ 20) training data sizes. The ET and NCR/NET labels were both modest minority classes, 

representing 19.8% and 22.2% of the data compared to 58.0% belonging to the peritumoral 

edema class. The NCR/NET label also had significant overlap with the PE class in terms 

of tissue intensity signatures (data not shown), which may have been exacerbated by the 

significant variation in intensity profiles in this multi-institutional dataset. These factors may 

have been at least in part responsible for the larger relative increase in NCR/NET DSC with 

more training.

MR images, especially at high fields, are prone to bias fields from radiofrequency excitation 

and receive profiles, which can confound segmentation using only local voxel intensities 

(20, 31). In addition, spatial context plays a critical role in tissue segmentation (7, 20). 

To address these issues, derived image textures offer a viable alternative to atlas-based 

strategies. Exhaustive optimization by searching all potential texture sets remains an 

intractably large task, which is one limitation of the C-DEF approach. U-Net offers 

one solution to this problem by effectively optimizing its own filters, albeit at great 

Dieckhaus et al. Page 10

Top Magn Reson Imaging. Author manuscript; available in PMC 2023 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



computational expense. The effects of changing the number of U-Net filters as well as 

spatial factors such as patch size and overall architecture depth are complicated, and 

exhaustive exploration of this space is beyond the scope of this work. Prior work has found 

evidence that deeper networks are not always better, depending on the complexity of the 

modeled dataset (14). For the comparison herein, we tried to match the maximum receptive 

field in the U-Net architecture (which depends on the size of the filters and depth of the 

architecture) to the maximum filter kernel used in the C-DEF model.

The scope of this inquiry was limited to comparison of one representative deep learning 

method and one classical machine learning algorithm (C-DEF) as “off-the-shelf” tools for 

whole brain segmentation. As such, we chose not to perform exhaustive hyperparameter 

optimization for either method. It is likely that such optimization could provide performance 

gains for the chosen datasets, but this remains difficult to predict a priori. Moreover, 

it is yet unclear if or when U-Net may definitively exceed overall C-DEF performance 

given additional training data, or if a different network architecture is required. Studies in 

recent years have produced numerous derivations of U-Net intended to boost performance 

in a variety of segmentation tasks (32–34). However, these methods remain largely 

developed and validated on large datasets, making it difficult to evaluate whether proposed 

modifications will enhance performance in a limited training context. Moreover, it is 

important to first establish the baseline performance characteristics of the U-Net model used 

herein in this context prior to investigation of more complicated approaches derived from 

this framework. For these reasons, we chose a 3D patch-based U-Net as our representative 

deep learning method. In the future, we plan to expand this line of inquiry by benchmarking 

some of these recent modifications to probe the impact of model architecture changes 

on training data dependence. Of particular interest for future examination is the recently 

proposed nnU-Net, which has shown impressive results on a wide range of medical image 

segmentation tasks (8).

This study demonstrates that there is an important niche for classical machine learning 

methods such as C-DEF to fill by providing robust models trained on only a few labeled 

examples. Avenues for future study include improvement of C-DEF segmentation of 

subcortical grey matter and comparison of recent U-Net-style methods in a larger whole 

brain segmentation dataset.
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Figure 1: Analysis workflow:
Classification using DErivative-based Features (C-DEF, shaded in blue) and U-Net (shaded 

in green) algorithms for brain segmentation. Preprocessing consisted of co-registration, bias 

correction, and intensity normalization.
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Figure 2: Qualitative assessment of segmentation at various training data sizes:
Output of segmentation performed with varied numbers of training data (5, 10, 15) using C-

DEF and U-Net algorithms shown on a representative slice from a participant in (A) (Male, 

34 years old) the MS cohort and (B) (Female, 56 years old) the HIV cohort. Bottom row 

shows pre-processed input scans and the manually drawn mask for reference. Red arrows 

indicate segmentation errors, while yellow arrows indicate areas of improved segmentation 

with more training data.
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Figure 3: Comparison of U-Net and C-DEF segmentation:
(A) Dice Similarity Coefficient (DSC) of the output of the C-DEF and U-Net models with 

manually annotated mask, when trained with varied numbers of training data (5, 10, 15). 

Asterisks indicate statistically significant differences (* p < 0.05, ** p < 0.005). Note 

that DSC (y-axis) for white and grey matter is scaled 0.7–1.0 for better visualization. (B) 

Bland-Altman analysis of tissue volumes of C-DEF and U-Net trained on data from 5 

participants from the MS (top) and HIV (bottom) cohort. Bias (black line) and 95% CI (red 

dotted line) are indicated.
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Figure 4: Effect of errors in training labels:
Zoomed-in details of segmentation outputs from a representative MS cohort participant 

(Male, 30 years old) using C-DEF-15, U-Net-15, and their difference maps compared to the 

manually annotated mask (blue: mismatched segmentation by C-DEF-15; red: mismatched 

segmentation by U-Net-15; green: mismatched segmentation by both C-DEF-15 and U-

Net-15) for: (A) cerebellum, (B) cortical grey matter boundary, and (C) subcortical grey 

matter structures. Red arrows indicate segmentation errors, while yellow arrows indicate 

correctly labeled segmentation.
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Table 1:

Performance of C-DEF and U-Net models on BraTS cohort using limited training data

Mean Dice Similarity Coefficient [95% CI]

Model Enhancing Tumor Peritumoral Edema Necrotic/Non-enhancing Tumor

C-DEF-5 0.74 [0.72, 0.76] 0.81 [0.80, 0.83] 0.15 [0.13, 0.18]

U-Net-5 0.58 [0.56, 0.60] 0.55 [0.52, 0.57] 0.17 [0.15, 0.20]

C-DEF-10 0.72 [0.70, 0.74] 0.83 [0.81, 0.84] 0.17 [0.15, 0.20]

U-Net-10 0.70 [0.68, 0.72] 0.83 [0.82, 0.85] 0.28 [0.25, 0.31]

C-DEF-15 0.76 [0.74, 0.77] 0.85 [0.83, 0.86] 0.24 [0.22, 0.27]

U-Net-15 0.73 [0.71, 0.75] 0.82 [0.81, 0.84] 0.27 [0.24, 0.30]

C-DEF-20 0.76 [0.74, 0.78] 0.84 [0.82, 0.85] 0.21 [0.19, 0.24]

U-Net-20 0.77 [0.75, 0.79] 0.80 [0.79, 0.82] 0.28 [0.25, 0.31]

C-DEF-40 0.80 [0.78, 0.81] 0.85 [0.84, 0.87] 0.28 [0.25, 0.31]

U-Net-40 0.78 [0.77, 0.80] 0.85 [0.84, 0.87] 0.34 [0.31, 0.38]

C-DEF-80 0.81 [0.80, 0.83] 0.86 [0.85, 0.88] 0.32 [0.29, 0.36]

U-Net-80 0.81 [0.80, 0.83] 0.88 [0.86, 0.89] 0.48 [0.44, 0.52]

C-DEF-160 0.83 [0.82, 0.85] 0.87 [0.86, 0.89] 0.39 [0.36, 0.43]

U-NET-160 0.82 [0.81, 0.84] 0.89 [0.88, 0.91] 0.51 [0.47, 0.55]

C-DEF-All
a 0.83 [0.81, 0.84] 0.88 [0.86, 0.89] 0.43 [0.39, 0.46]

U-Net-All
a 0.83 [0.81, 0.84] 0.89 [0.88, 0.91] 0.51 [0.47, 0.55]

a
trained on data from 295 participants per fold
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