
Breedbase: a digital ecosystem for modern plant breeding
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Abstract

Modern breeding methods integrate next-generation sequencing and phenomics to identify plants with the best characteristics and great-
est genetic merit for use as parents in subsequent breeding cycles to ultimately create improved cultivars able to sustain high adoption
rates by farmers. This data-driven approach hinges on strong foundations in data management, quality control, and analytics. Of crucial im-
portance is a central database able to (1) track breeding materials, (2) store experimental evaluations, (3) record phenotypic measurements
using consistent ontologies, (4) store genotypic information, and (5) implement algorithms for analysis, prediction, and selection decisions.
Because of the complexity of the breeding process, breeding databases also tend to be complex, difficult, and expensive to implement
and maintain. Here, we present a breeding database system, Breedbase (https://breedbase.org/, last accessed 4/18/2022). Originally initi-
ated as Cassavabase (https://cassavabase.org/, last accessed 4/18/2022) with the NextGen Cassava project (https://www.nextgencassava.
org/, last accessed 4/18/2022), and later developed into a crop-agnostic system, it is presently used by dozens of different crops and
projects. The system is web based and is available as open source software. It is available on GitHub (https://github.com/solgenomics/, last
accessed 4/18/2022) and packaged in a Docker image for deployment (https://hub.docker.com/u/breedbase, last accessed 4/18/2022).
The Breedbase system enables breeding programs to better manage and leverage their data for decision making within a fully integrated
digital ecosystem.
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Introduction
Modern plant breeding is a data-intensive process requiring mul-
tiple diverse datasets to be integrated and assessed in decision
making. In classical plant breeding, promising individuals are in-
tentionally interbred to generate a diverse population of progeny,
from which individuals with the best phenotypic characteristics
are selected to be used as elite parents in subsequent breeding
cycles or released as improved cultivars (Breseghello and Coelho
2013). Modern plant breeding extends classical breeding with the
use of marker-assisted selection and genomic selections (GS) to
augment phenotypic selection (Ribaut and Hoisington 1998).
Furthermore, with the emergence of high-throughput phenotyp-
ing technologies as tools for breeding, the number of potential
phenotypes to be tracked has vastly increased (White et al. 2012;
Andrade-Sanchez et al. 2013).

The development of inexpensive genotyping technologies al-
low even small breeding programs to acquire high-density geno-
typing data for a large portion of their germplasm. The
availability of this genomic data has enabled more efficient
approaches to evaluate important and complex traits in the
breeding process (VanRaden 2008). One such approach is GS,
which combines genomic and phenomic data to develop a predic-
tive model that can be used to estimate genotypic or breeding
values (Meuwissen and Goddard 2001). Since genotyping is both
less expensive and faster than phenotypic selection, GS can re-
sult in significant acceleration of the breeding cycle with con-
comitant faster increases in gain. A challenge for genome-based
breeding methods is the establishment of an adequate data man-
agement infrastructure to integrate the complex datasets span-
ning the breeding process (Volk et al. 2021). This represents a
severe constraint to mainstreaming predictive breeding to small
breeding programs, particularly in developing countries.

To address these data management challenges, we initiated a
system called Cassavabase (https://cassavabase.org/, last
accessed 4/18/2022) for the NextGen Cassava project building on
a genomics codebase developed for many years for the
Solanaceae called SGN (https://solgenomics.net/, last accessed 4/
18/2022) (Mueller, Solow, et al. 2005; Menda et al. 2008; Bombarely
et al. 2011; Fernandez-Pozo, Menda, et al. 2015). With an initial fo-
cus on tomato and sequencing its genome (Mueller, Tanksley,
et al. 2005; Tomato Genome Consortium 2012), SGN already con-
tained a comprehensive genomics database with a strong pheno-
type management component (Menda et al. 2008), a number of
genomics-centric tools (Mueller et al. 2008; Tecle et al. 2010;
Fernandez-Pozo, Rosli, et al. 2015), and a rudimentary version of a
genotyping storage backend (Fernandez-Pozo, Menda, et al. 2015).
Cassavabase is an open-source, web-based breeding data man-
agement and analysis system built with the ability to manage the
GS process (Tecle et al. 2014). As more instances of the software
were deployed for other crops, the system expanded to better
meet each project’s needs by adding further breeding-related
tools, such as image-based or near-infrared spectroscopy (NIRS)-
based phenotyping tools (Hershberger et al. 2021). To reflect that
the underlying software and database are amenable to any crop
and to promote adoption by new communities, we named the
system “Breedbase” (https://breedbase.org/, last accessed 4/18/
2022). Major clonal crops using Breedbase currently are cassava
(https://cassavabase.org/, last accessed 4/18/2022), yam (https://
yambase.org/, last accessed 4/18/2022), banana (https://musa
base.org/, last accessed 4/18/2022), and sweetpotato (https://
sweetpotatobase.org/, last accessed 4/18/2022), collectively
known as the RTBbases (https://rtbbase.org/, last accessed 4/18/

2022); however, major nonclonal crops using Breedbase include
wheat (https://wheat.triticeaetoolbox.org/, last accessed 4/18/
2022) and rice (https://ricebase.org/, last accessed 4/18/2022).
Breeding and research groups have adopted the system as well,
such as the Gore Lab at Cornell University (https://gorelabbase.
sgn.cornell.edu/, last accessed 4/18/2022).

The purpose of Breedbase is to enable a digital ecosystem that
contains an integrated breeding workflow. Processes and data
comprising germplasm banks, parental selection, crossing design,
experimental design, data collection, analyses, and decision-
making tools are aggregated into a single system. This improves
efficiency and reduces data errors that can happen when using
disjointed informatics tools, for instance when transferring and
restructuring data for analyses (Cobb et al. 2019). When data are
loaded into a database, many checks can be performed to make
sure the data are consistent and in line with specified quality
control criteria.

Many breeders, especially in smaller programs that cannot al-
locate resources to data management tools, maintain their data
in spreadsheets. While spreadsheets provide a straightforward
way to manage data and analyses, they suffer from a number of
drawbacks, even with relatively small volumes of data. For exam-
ple, it is difficult to precisely merge data across different spread-
sheets, often resulting in errors and data quality issues, or to
visualize or analyze data across spreadsheets. Data in spread-
sheets are typically not normalized, resulting in typographical
issues, inconsistent identifiers, liberal use of synonyms, and simi-
lar issues that make the data hard to aggregate. Nevertheless, the
largest problem with spreadsheets is that their storage is not cen-
tralized; in fact, they are often stored on personal computers and
laptops, often in multiple inconsistent versions, with potentially
limited backup strategies and little recourse if accidental data
loss occurs or if a person leaves the breeding program, taking all
the breeding data with them. Breeding programs can be very
large, encompassing many locations with many collaborators; as
such, spreadsheets hinder collaboration because data cannot be
accessed in a consistent state by many people at once.
Furthermore, with genome-based breeding, spreadsheets become
unworkable, as it is difficult to maintain and analyze potentially
very large genotypic datasets in spreadsheets in any useful way.
It is important to note that using a database is not sufficient for
managing a modern breeding cycle—the entire breeding process
needs to be integrated around the database to create an efficient
digital ecosystem.

Breedbase implements a robust system of breeding workflows,
data management procedures, and analysis tools to address
breeder informatics problems. Here we present the rationale, de-
sign, implementation, and major use cases for Breedbase.

Materials and methods
Implementation
The Breedbase data architecture is built around a Postgres
(https://postgresql.org/, last accessed 4/18/2022) relational data-
base with a schema that is mainly derived from Chado (Jung et al.
2011), with some historic, pre-Chado tables from SGN, as well as
minor customizations (Fernandez-Pozo, Menda, et al. 2015)
(Fig. 1a). In relational databases, information is systematically
structured into concepts represented as tables (“normalization”),
a format that facilitates many aspects of data management. The
information in the different tables can be joined based on pri-
mary and foreign keys, which are usually numeric values
assigned to every row in a table. For some data types, such as
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genotypic data, Breedbase uses non-SQL extensions built into

Postgres, such as JSONb-based data structures (Morales, Bauchet

et al. 2020). The application layer is implemented in Perl, using

the Moose object system, based on the Model-View-Controller

Catalyst web framework (https://metacpan.org/pod/

Catalyst::Manual, last accessed 4/18/2022), with Mason as the

templating toolkit (https://metacpan.org/pod/Mason). The sys-

tem uses an object-relational layer based on DBIx::Class, with the

main Chado classes organized in the Bio::Chado::Schema name-

space. For statistical analyses and some of the data visualiza-

tions, the R language and add-on R packages (https://r-project.

org/, last accessed 4/18/2022) are used. Image analyses and ma-

chine learning models are implemented in Python TensorFlow

(https://www.tensorflow.org/, last accessed 4/18/2022 ) and

OpenCV (https://opencv.org/, last accessed 4/18/2022) (Morales,

Kaczmar, et al. 2020). The frontend graphical user interface (GUI)

development has recently transitioned away from Mason compo-

nents to JavaScript, with a heavy reliance on asynchronous

JavaScript requests. Almost all functionalities are implemented

as RESTful services, allowing for a more interactive user experi-

ence and reusable codebase. JavaScript frameworks used for the

GUI include JQuery (https://openjsf.org/, last accessed 4/18/2022),

D3.js (https://d3js.org/, last accessed 4/18/2022), Bootstrap
(https://getbootstrap.com/, last accessed 4/18/2022), and Brapi.js
(https://brapi.org/, last accessed 4/18/2022). The entire Breedbase
system is built on open source software and is packaged in a
Docker image for deployment (https://docker.com/, last accessed
4/18/2022). For interoperability with other breeding database and
tools, Breedbase implements the BrAPI 2.0 specification (Selby
et al. 2019).

In terms of user interface, the goal of Breedbase is to provide a
standard, modern web interface for all breeding tools. Breedbase is
essentially a cloud-based app, obviating the need for the user to
install any software. For anyone with web-browsing experience, the
interface should be intuitive and straightforward, and it is continu-
ously improved based on user-driven feedback. In Breedbase, pro-
cesses are presented in an interactive workflow system, providing
step-by-step guidance to breeders and users in accomplishing spe-
cific tasks. A few of the widely used interfaces include the Wizard,
Lists, and Datasets tools, which will be described in more detail later.

Use cases
The initial development of BreedBase focused on addressing the
data collection and management stages necessary to facilitate GS
within a breeding program, including:

Fig. 1. a) Breedbase platform architecture. User interface: To offer a dynamic, highly interactive user interface, several JavaScript libraries are
implemented including D3, JQuery, and Bootstrap. RESTful APIs, including a full BrAPI 2.0 implementation, handle the communication between the
front and back end, allowing fast calculations without reloading the website. HTML5 for interactive graphical display, allowing instant reorganization of
visual elements. The Bootstrap framework is used for modern and dynamic page templating. Middleware layer: A Perl software stack including Mason
components to connect to the user interface, a Catalyst a web application framework, Moose an object oriented perl library and DBIX::Class an object-
relational mapper to connect to SQL code. In addition, BrAPI libraries are used. Finally a job cluster scheduler, Slurm is implemented to allocate server
resources and ensure scalability. Data source layer: Breedbase operates on a relational database using Postgres. Postgres 12.0 offers “Big data” solutions
including parallel query execution and optimized binary JSON data type handling. Binary JSON (JSONB) is a simple data structure designed to be storage
space and scan-speed efficient. In Breedbase, JSONB is used in various data types including genotypic (marker) information. In addition to the relational
database a standard file system space is available for flat files. Finally, other databases can communicate to a Breedbase instance to provide additional
back-end for marker data [i.e. Genomic Open Source Informatic Initiative (GOBii)] or to exchange germplasm information for example.
b) Breedbase codevelopment process. User–developers interactions are promoted using various media. Users have online access to documentation
(https://solgenomics.github.io/sgn/, last accessed 4/18/2022), video tutorials, or through onsite training. Software development goals are extensively
discussed between developers, data managers, breeders, and other appropriate stakeholders. Agile development allows short-term product release.
Suggested improvements, issues, and bugs discovered in Breedbase are submitted and tracked on the public GitHub issue tracking software (https://
github.com/, last accessed 4/18/2022). Software development progress is tracked using a version control system and Docker releases. c) Cassavabase, a
breedbase instance: data content overview. Cassavabase involves national and international breeding programs (22) from various African and South
American countries (15) and currently has 1,131 registered users. Cassavabase hosts various data types including high-density and low-density
genotyping assays (35,000), plot-based phenotypic data points (near 15 million), images from plants and plots from trials (5107) and locations (435).
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• Manage accessions and pedigrees in the database, with
ontology-based descriptions and support for rich metadata
including images

• Design field layouts and track all field metadata
• Load historical data from breeding programs
• Collect phenotypic data on tablets in the field and upload the

subsequent phenotypes
• Manage genotypic data associated with the accessions
• Enable genome-based predictive breeding by calculating cor-

relations between phenotypes and genotypes, and predict
phenotypes from genotypes [the solGS tool (Tecle et al. 2014),
https://cassavabase.org/solgs/search, last accessed 4/18/
2022]

• Support controlled crossing using customized tracking tools

More recently, a number of other use cases were pursued:

• Advanced statistical analyses including principal component
analysis (PCA), stability analysis (AMMI) (Duarte and Pinto
2002) heritability calculations (Holland et al. 2010), mixed
model analysis, and genome-wide association studies
(GWAS)

• Marker-assisted breeding
• Processing and analysis of unoccupied aerial vehicle image

data
• Image analysis
• NIRS data storage and analysis

Plant breeding operations requiring decision support within a
growing season include 3 broad activities: crossing, evaluations,
and selections. These activities typically include setup of crossing
and trial experiments (design, labeling), data and seed collection,
genotyping, and subsequent statistical analysis. Breedbase offers
support for each of these components through online tools. To
streamline accessibility and usage for key routine activities,
Breedbase has established workflow components. Each workflow
offers the user a guided process for a targeted activity. For exam-
ple, the trial creation workflow comprises trial creation, planting
material and checklist creation, randomization and statistical de-
sign selection, field visualization, and storage. During this pro-
cess, field trial experiment parameters (see Phenotyping Trials
section) are input into Breedbase and the relevant experimental
design is calculated using open source R libraries such as
Agricolae (De Mendiburu et al. n.d.) or Digger (Coombes 2009). The
experimental layout is calculated and displayed, and can be
reviewed and potentially improved by rerunning randomization
before the trial design is stored in Breedbase. Additional parame-
ters such as field management factors (i.e. agronomic manage-
ment or fertilizer application) can also be entered. Similar
workflows exist for other activities, such as phenotyping and gen-
otyping.

Development process
The development process can be broadly described as agile (Beck
and Andres 2004; James and Shane 2008), in which short-term
goals are defined and implemented, and subsequently further re-
fined based on new feedback from users; agile teams provide for
short release cycles and continuous improvement to the software
(Fig. 1b). Progress is tracked using a version control system with
built-in issue tracking software (GitHub, https://github.com/).
New features are discussed with breeders and other stakeholders.
Issues and bugs discovered in Breedbase are tracked on the public
GitHub issue tracker. A programmer is then assigned to a ticket,
and will create an issue-specific topical git branch in the relevant
code repositories, and implements the required changes in the

branch, including tests and edits to the user documentation.
When the implementation is ready for release, a pull request is
generated on GitHub and a reviewer is assigned. In the review,
the code is verified for errors, programming style, tests, and docu-
mentation. If the reviewer approves the pull request, the code is
merged into the master branch. The test-driven software devel-
opment approach is tightly integrated with our development pro-
cess, consisting of unit and integration tests. A ticket meeting is
held once a week and all open pull requests and important tick-
ets are discussed. If all the pull requests were merged success-
fully, and no issues are discovered with tests or other checks, a
new release tag is created, the new version is deployed in produc-
tion, and a new Docker image is released. Since Breedbase is open
source, programmers outside of the core development team are
able to make contributions to the code base via the same process.
The Breedbase project has had 40þ contributors addressing vari-
ous issues and improvements (https://github.com/solgenomics/
sgn/graphs/contributors).

Ontologies
A key aspect of data integration is the necessity of standardiza-
tion. Breedbase is based on the Chado database schema, which
relies heavily on controlled vocabularies and ontologies to de-
scribe its data, and requires numerous ontologies for its internal
functioning. In many ways, it can be described as an ontology-
based database. For the breeding application, data standardiza-
tion in the form of trait catalogs is especially important when
several sites or breeding programs share data in the database.
Without standardization, the data would not be comparable, lim-
iting the utility of an integrated database. The creation and main-
tenance of trait ontologies is a considerable task. The Crop
Ontology (CO) project was developed by CGIAR to define and
maintain relevant breeding ontologies (Shrestha et al. 2012). All
the RTBbases use the CO vocabularies and collaborate with CO
and breeders to improve and expand these vocabularies (Arnaud
et al. 2020). If no ontologies are available, they have to be created,
which can be a lengthy and arduous task. The Prot�eg�e tool
(https://protege.stanford.edu/) (Musen 2015) is commonly used
by curators for editing ontologies before upload to CO and
Breedbase. The Trait Dictionary Template along with the
Guidelines (Pietragalla et al. 2020), available in the CO website, re-
main useful to collect the trait details from the research commu-
nity and reach consensus. Each species is allocated a code by the
CO coordination team to identify the ontology and crop reposito-
ries are created in the Planteome Github to secure the ontology
version management. An online term submission form is accessi-
ble in Breedbase for users wishing to suggest missing traits or
modifications to the CO (https://submit.rtbbase.org, last accessed
4/18/2022).

Interoperability and BrAPPs
Databases must interoperate with a variety of tools to perform
their functions in data acquisition, analysis, and data export.
Recently, a standard called the Breeding Application
Programming Interface (BrAPI; https://brapi.org/) was developed
to exchange breeding data (Selby et al. 2019), which breeding
databases can implement to provide a standard interoperability
layer. Standardized application programming interfaces (APIs) al-
low Breedbase to integrate and interface with a broader set of
BrAPI-enabled applications, or BrAPPs, that can be written across
diverse programming languages including Android, R, and
JavaScript. The BrAPI R package allows data retrieval from
Breedbase for further statistical processing within the R
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environment. JavaScript-based BrAPPs provide dynamic visuali-

zation of plant breeding data, such as pedigrees exploration, ex-

perimental field maps, and data from multiple trials. BrAPPs can

interact with data from any BrAPI compliant database, such as

Breedbase or the Breeding Management System (Fig. 1a).

Activities such as dynamic data filtering, trial comparison, box

plotting, and a comparative genetic map viewer are also imple-

mented with BrAPPs on Breedbase. Breedbase fully supports

BrAPI version 2.0 and is committed to updating the system for fu-

ture versions of this essential infrastructure.

Querying Breedbase
Breedbase has a number of query options, which are grouped in

the “Search” menu. The most important data types each have a

search (“Accessions and plots,” “Trials,” “Organisms,” “Crosses,”

etc.). A powerful combined search is available in the form of the

Search Wizard (Fig. 2).

The Search Wizard and datasets
The Search Wizard allows users to slice their data in different

dimensions, such as breeding programs, locations, years, and so

forth. The data in the database can be thought of as a

multidimensional cube which is cut along different dimensions,

providing an intersection that represents the data of interest.

This approach is conceptually related to a query method called

Online Analytical Processing (Celko 2006). The current Wizard

presents 4 boxes, for 4 different dimensions, which can be se-

lected using pull down menus (Fig. 2). For example, a user who is

interested in the performance of cassava clones evaluated by

IITA in 2017 and 2018 at the Mokwa station in Nigeria can use the

wizard to find this information. Working from left to right, the

user selects as the first dimension “Breeding Programs,” which

displays all the breeding programs in the database in the first

box. The user then selects “IITA” from the individual breeding

programs listed in the box. When the user selects “Years” in the

second box, all the years for which data for IITA exist are listed.

In this example, the user selects 2017 and 2018. Finally, after

selecting locations in the third box, the user specifies “Mokwa.”

When trials or accessions are selected, phenotypic and genotypic

data corresponding to the selection can be downloaded using

buttons below the Wizard boxes. The Wizard also allows the

combination of current selections to be stored in the database

under a user-given name, representing an intersect of data of in-

terest in the database. This stored selection is called a “dataset.”

Fig. 2. Screenshot of the “Search Wizard” interface, a central query function on Breedbase. With the Search Wizard, the data in the database can be
intersected by dimensions, such as locations, years, breeding programs, and traits. For each dimension, a number of elements can be selected. The
individual selected dimensions can be stored in lists, and the combined selections can be saved as a dataset. Both lists and datasets can be used to feed
data into various tools on Breedbase.
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Datasets are used across Breedbase to efficiently reference a
complex query with a simple, assigned name. Tools that support
the dataset concept in Breedbase include solGS, GWAS, the heri-
tability tool, the stability analysis, and the general mixed model
tool.

Quick search
A quick search is provided in the upper right corner of the menu
bar that searches a keyword across all data types in the database,
and is a fast way to retrieve named objects such as stocks and
genes.

Special searches
Topic-specific searches are available from the Search menu, in-
cluding a trial search, a trait search, searches for genotyping data
(including genotyping protocols, projects, and plates), an image
search that searches image descriptions and associated tags, and
a user search that searches the users of the database. All these
searches work in a straightforward and consistent way: a search
form is filled in with search criteria, and the search is submitted
to the database. A list with matched search results is displayed,
from which links are provided to the corresponding detail pages.

Analysis tools
Breedbase is more than a static collection of data, as it enables
users to explore and analyze data in the database. Once data is
uploaded to the database, users can view summary statistics,
evaluate phenotypic variances, and identify observations with
missing or outlier data. They can filter observations in a trial
based on a range of trait or traits values. For an experiment phe-
notyped in multiple environments, they can evaluate trait perfor-
mance across environments using pairwise comparison scatter
plots and histograms.

Breedbase also has tools for ANOVA, correlation, PCA, data
partitioning using K-means clustering, genomic prediction,
GWAS, selection index calculation, genetic gain visualization,
and linear mixed models. With the Search Wizard, as explained
above, users can construct datasets that can be used as inputs to
various tools. Most tools follow a similar blueprint in terms of
user interface: (1) select the dataset of interest from a drop-down
menu of all available datasets, (2) adjust parameters for the tool,
(3) submit the calculation for analysis, and (4) display the results.
For some tools that require heavy computation, an email can be
optionally sent to the user with a link to the results. Query imple-
mentation is a relatively complex task in the programming of a
tool, but the Wizard enables the modularization of algorithms
into Breedbase with relatively little glue-code, facilitating tool
coverage expansion. Results such as predictions from solGS and
adjusted means from mixed models can be saved in the database
as analysis results. These results can be used like primary data in
downstream analyses such as the selection index tool to help
identify favorable germplasm.

Managing a breeding program using Breedbase:
accessions, phenotyping, crossing, and
genotyping data
General principles
Plant breeding involves the collection of a wide variety of data
types at different time points and locations, and across different
scenarios (e.g. field, laboratory, seed storage). To give users flexi-
bility and mobility in data collection, smartphone-based applica-
tions are often required. Android applications, such as
PhenoApps (http://phenoapps.org/, last accessed 4/18/2022), are

developed with this perspective (Rife and Poland 2014). Breedbase
has adopted the PhenoApps tool suite created by Kansas State
University.

PhenoApps include applications for phenotyping (Field Book),
cross management (Intercross), sample collection (Coordinate),
and inventory management (Inventory). Breedbase has worked to
build in native support for these applications and integrate them
into best practices workflows. Since internet access is not avail-
able at all field sites, the functionality has been developed to al-
low configuration of these applications prior to field data
collection. Field layouts, plant accessions, and traits to be mea-
sured can be loaded onto mobile devices through special interfa-
ces in Breedbase. Following collection, data are imported back
into Breedbase. Because all the trial information in the collection
device was initially downloaded from Breedbase, required identi-
fiers can easily be matched with the existing data in the data-
base. This process is called “round-tripping,” and is a crucially
important concept for high quality data management.

List management
Breeding activities often require the maintenance of lists of vari-
ous types—for example, a list of accessions to plant, traits to
measure, or trials to evaluate—and, consistent with digital eco-
system principles, these lists should be managed entirely through
the database. Accordingly, Breedbase implements comprehen-
sive list management functions. By default, lists are associated
with the user that creates the list. The main list interface can be
reached by clicking on the Lists link on the top right of the tool-
bar, which appears when logged in. A dialog appears that allows
users to view, create, and edit new lists. Each list has a data type
from an internal ontology called “list_type,” which includes terms
for “accessions,” “trials,” “traits,” “years,” etc. Lists are collections
of text elements that correspond to names of database objects.
Lists can be validated against names that are already present in
the database. A validated list can then be used to submit data to
various tools, including the Wizard, right on the website.
Sometimes, it can be useful to share a list with other users, and
this can be achieved by making a list public by clicking the appro-
priate checkbox in the list detail view. Public lists are shown in a
separate section, and become visible to all users. They can be
“unshared” if needed.

Germplasm management
Germplasm is the foundation of a breeding program and plays a
similarly important role in a database such as Breedbase. In plant
breeding programs, tracking and characterization of germplasm
is a major challenge. Germplasm in this context includes acces-
sions, stocks, varieties, or, in clonal crops, clones. Breedbase com-
monly uses the term “accession.” Breedbase is prepopulated with
the complete plant section of the NCBI taxonomy database, de-
fining all known species with their associated genus, abbrevia-
tion, common name, and GenBank taxon identifier. Researchers
using Breedbase can usually find their crops of interest within
the 100,000þ organisms available. Accessions are always created
in association with one of these organisms.

Some instances of Breedbase, such as Cassavabase and
Sweetpotatobase, are designed to only contain germplasm of
their respective species; however, it is possible for a single in-
stance of Breedbase to be used for a variety of crop species.
Combining many crop species into a single instance can compli-
cate the search interfaces and lead to bloated databases; how-
ever, aggregating all data allows for more consistent and
queryable data. Alternatively, separating instances can lead to
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potentially duplicated and inconsistent data, but can be benefi-
cial for fostering communities.

In Breedbase, there are 2 distinct concepts that describe acces-
sions: (1) an accession that can be ordered from a seed bank,
which may have been selfed and could be genetically quite pure,
or landraces. These are “long-term use” accessions (i.e. historical
germplasm, parental inbred lines), which may be actively main-
tained and can be obtained easily; whereas (2), are “short-term
use” accessions (i.e. intermediate generations) that are produced
in a breeding program and may go through a few rounds of selec-
tion, but most of which will be discarded in the process. These
accessions may also not be genetically pure, as they may result
from crosses between relatively distant parents.

To create an accession in Breedbase, only a unique name and
the organism species name are required. As with all objects
stored in a relational database, Postgres will create a primary key
identifier for each object, using a data structure called a se-
quence, which is used to link the accession to other objects in the
database using a foreign key. This means that even if the acces-
sion name is modified, it will still retain all the connections to
other objects of the original entry. Germplasm can be further an-
notated with configurable properties from the Multi-Crop
Passport Descriptors standards (Food and Agriculture
Organization of the United Nations 2018) and BrAPI standards
(Selby et al. 2019); these properties include “variety,” “donor,”
“donor institute,” “donor PUI,” “country of origin,” “institute code,”
“institute name,” “notes,” “accession number,” and “PUI.”
Germplasm can be added to the database using the interactive
list tool (see previous section) or an Excel file upload; the Excel
file upload also allows for storing and updating of all attributes
listed above. The first step in the initiation of a breeding program
is to load relevant accessions into the database. This is critical, as
the naming of accessions is often not uniform between breeding
programs and the community at large. In some cases, a single
name can refer to several different accessions or a single acces-
sion may have many different names or synonyms, often the re-
sult of historical transcription error or case inconsistency. Before
the first upload, it is therefore essential to define a standard
unique name and set of possible synonyms for each accession.
Though Breedbase allows for synonyms of accession names, they
should also be unique. It is best practice to use synonyms only to
find accessions and not when performing routine tasks with the
database during the breeding process. Whenever new accession
names are encountered, Breedbase provides a workflow to com-
pare new names to all existing accessions in the database. In this
workflow, a user can consolidate synonyms, for instance to add
“Tx 303” as a synonym of “TX303.”

After initial accession upload, it is often necessary to add
more accessions, increasing the chance of generating duplicated
accessions in the database, or other upload issues. As is the case
with synonyms, many of these problems result from poorly de-
fined accession identifiers with capitalization inconsistencies and
special characters such as slashes, dots, dashes, underlines, and
spaces. Although we recommend avoiding such special charac-
ters, especially in primary identifiers, it is not always feasible, no-
tably with legacy data. To ease upload and tracking of such
cases, Breedbase has a fuzzy search (also called approximate
string matching search) component, enabling an accurate quality
control of existing similar germplasm names in the database.

Phenotyping trials
Phenotyping trials are a core activity of plant breeding programs,
and must be carefully designed. Trial designs can either be

generated directly in Breedbase using the integrated, comprehen-
sive trial design tool or uploaded using Excel files formatted with
a Breedbase-provided template. Trial metadata fields include
breeding program, location, name, trial type, year, plot dimen-
sions, field size, and trial design type. Supported statistical trial
design types currently include alpha lattice, lattice, augmented,
split plot, partially replicated, and Wescott designs. Designs
should also include the ordinal row and column positions of each
plot as it is planted in the field, so Breedbase allows this informa-
tion to be added either during or after design storage. Once a trial
design is finalized, it is stored in the Breedbase schema. Within
Breedbase, a field trial links phenotypic observations to the ex-
perimental layout under a specific statistical design.

Row crops usually use the concept of plot as the minimal en-
tity for data collection, but many specialty crops (i.e. vegetables)
require data collection on a per plant or per tissue basis.
Breedbase allows plant- and tissue-level entry creation for each
plot in a trial, resulting in database entries and identifiers at each
level, which can also be encoded in barcode labels for data collec-
tion.

Crossing
To collect data from crosses, Breedbase requires the creation of a
top-level crossing experiment; the crossing experiment is defined
with a unique name, a breeding program, a location, a year, and
a description. The individual crosses performed are then stored
under the crossing experiment and defined by a cross unique id,
parents, and a cross type. The cross type can be one of the follow-
ing: biparental, self, sib, open pollinated, bulk, bulk selfed, bulk
and open-pollinated, doubled haploid, polycross, reciprocal, or
multicross. Depending on the type of cross performed, different
metadata must be provided; for example, in a biparental cross,
information from both the male and female parent is required,
whereas in an open-pollinated cross, information on only the fe-
male is required. In the case of an open-pollinated cross, a popu-
lation name representing a group of male germplasm can be
given as the male parent. In addition to cross unique id, which
captures specific details of each cross, users have the option to
group crosses having the same parental genotypes via family
name for downstream progeny analysis.

Breedbase tracks parental information from crosses in 2 ways:
(1) through the accession names of the female and male parents,
allowing for simple ancestry tracking of AxB pedigrees for the
progeny from a cross. When a cross is created in Breedbase, the
pedigree between progeny and parental germplasm is automati-
cally created as well. This first form of parental tracking is ap-
plied in all cases when a cross is created in Breedbase. (2)
Through the plot or plant names of the male and female parents.
The plot or plant names of the parents are related to the field
trial in which they are planted, as is described in the above field
trial section. This approach allows detailed tracking of female
and male parents used in crossing, but is optional in Breedbase
because of the difficulty in recording this information in many
cases.

Recording information on parental plots is facilitated by mo-
bile data collection platforms. Of note are customized Open Data
Kit (ODK) Android applications, such as BTract and the
PhenoApps app Intercross. BTract assigns and prints a unique
cross barcode label after scanning barcodes to track the precise
male and female plots or plants involved in the pollination.
Through ODK data synchronization, the cross information can be
uploaded into Breedbase. Intercross can be used to scan parental
barcodes and associate a unique cross id to the performed cross.
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The output from Intercross can also be uploaded directly into
Breedbase.

In crossing experiments that include evaluation of crosses,
Breedbase can store annotations regarding properties of the
cross. Default properties include pollination date, tag number,
number of flowers, number of bags, number of fruits, and num-
ber of seeds; however, these properties are set in the configura-
tion file for the Breedbase instance, allowing researchers
flexibility in defining these terms. Breedbase also supports track-
ing of tissue culture samples.

Crosses can be created individually using an interactive inter-
face on Breedbase or can be uploaded in bulk using an Excel
spreadsheet by providing cross unique ids, cross types, and
parents involved. Once each cross unique id is saved in
Breedbase, additional data can be added or uploaded using the
cross unique id as an identifier. Progeny of the cross can be saved
as new germplasm in the database, automatically creating pedi-
grees for the new germplasm.

Genotyping data
High-density genotyping data are a complex data type that have
become an important resource in modern breeding programs due
to the advent of low-cost next-generation sequencing and geno-
typing technologies (Thomson 2014). Breedbase offers simple lab-
oratory information management functionalities from field
tissue sampling to SNP data storage. Functions include tissue
samples collection and tracking via plot barcodes and PCR plate
formats (i.e. 96 or 384 wells), genotyping protocol definition, data
storage, and subsequent analytics (Tecle et al. 2014; Morales,
Bauchet, et al. 2020).

The primary means of organizing genotyping data between se-
quencing events is the “genotyping protocol” in Breedbase. A
“genotyping protocol” consists of a specific set of genotypic
markers and records all metadata about how the genotypes were
produced, including the reference genome and specifics about,
analytical platform and related variant calling software. The
“genotyping protocols” can be grouped in Breedbase under a
“genotyping project” which displays all relevant genotyping data
and provides an overview, which is especially useful for very ac-
tive genotyping programs.

Multiple genotyping technologies can be stored in Breedbase
from low density genotyping (i.e. Kompetitive allele-specific PCR,
KASP) to high density genotyping such as genotyping-by-se-
quencing or DArT-seq (Elshire et al. 2011; Kilian et al. 2012;
Semagn et al. 2014). The preferred method for uploading high-
density genotyping data to Breedbase is through variant call
format (VCF) files. VCF provides for compact representation of
genotypic scores for large numbers of samples and markers
(Danecek et al. 2011). PostgreSQL nonrelational functionalities al-
low Breedbase to store high-density genotyping data in JavaScript
object notation (JSON) structures within the larger relational
database schema (ISO/IEC TR 19075-6:2017 2018). Breedbase
particularly relies on the binary JSON (JSONb) data type for
compressed data storage and faster retrieval (Morales, Bauchet,
et al. 2020).

Genotyping data can be queried alongside relationally stored
phenotypic and experimental information for analyses, including
computation of a genomic relationship matrix for user specified
germplasm and computation of a GWAS for user specified germ-
plasm and phenotypic traits (VanRaden 2008). Queries spanning
specific markers or marker sets and experimental information
can be readily constructed. Genotyping data results can be down-
loaded as VCF files from the Search Wizard web interface.

The genotyping data are also used in the Genomic Selection tool,
solGS, to predict GEBVs of genotyped lines.

Authentication and authorization
During breeding processes, a potentially large number of people
will need to access the database to download, upload, modify, or
delete data. This requires a fine-tuned layer of authentication
and authorization management in the database. Breedbase
requires a user to login for most functionalities (authentication).
Every user account is associated with “roles” that determine what
the user will be allowed to do in the system (authorization).
Currently, there are 3 major roles: user, submitter, and curator.
The user role allows read-only access. With the submitter role, a
user can upload data, and can modify or delete data that they
themselves uploaded. The curator role allows a user to modify
any type of data. In addition, every breeding program in the data-
base has a corresponding role that controls authorization over
specific breeding program activities, such as creating and upload-
ing trial data.

Cassavabase, the flagship Breedbase database
Cassavabase (https://cassavabase.org/) is the breeding database
for the NextGen Cassava project (https://nextgencassava.org/,
last accessed 4/18/2022). The NextGen Cassava partners, IITA
(Ibadan, Nigeria), NRCRI (Umudike, Nigeria), NaCRRI
(Namulonge, Uganda), TARI (Ukiriguru, Tanzania), Embrapa
(Cruz das Almas, Brazil), and CIAT (Cali, Colombia) use
Cassavabase for their breeding programs, starting as early as
2014. To date, Cassavabase has accumulated an immense
amount of cassava breeding data (Fig. 1c), consisting of informa-
tion on more than 500,000 cassava accessions, characterized by
over 19 million phenotypic measurements in over 4,000 trials,
and nearly 35,000 genotyping experiments. This shows that the
Breedbase system can scale to fairly large datasets and large,
multi-institute and multinational programs.

Other instances of Breedbase
In addition to Cassavabase, Breedbase has been deployed for
various crops, notably for other Roots, Tuber and Banana (RTB)
crops (https://rtbbase.org/, last accessed 4/18/2022) in the
CGIAR: banana, (https://musabase.org/, last accessed 4/18/
2022), sweetpotato (https://sweetpotatobase.org/, last accessed
4/18/2022), and yam (https://yambase.org/, last accessed 4/18/
2022). In addition, several dozen Breedbase instances are cur-
rently deployed for other crops, such as rice (https://ricebase.
org/, last accessed 4/18/2022), wheat (https://wheat.triticeaetool
box.org/, last accessed 4/18/2022), oat (https://oat.triticeaetool
box.org/, last accessed 4/18/2022), kelp (https://sugarkelpbase.
org/, last accessed 4/18/2022), potato, and maize. While the
aforementioned projects use Breedbase for mainly breeding in-
formatics purposes, other Breedbase instances focus on geno-
mics. These include SGN (https://solgenomics.net/; Fernandez-
Pozo, Menta, et al. 2015), which focuses on tomato and other
Solanaceae, fern (https://fernabase.org/, last accessed 4/18/2022;
Li et al. 2018), Erysimum (https://erysimum.org/, last accessed 4/
18/2022; Züst et al. 2020), and milkweed (https://milkweedbase.
org/, last accessed 4/18/2022). In addition, a Breedbase instance
has been deployed to characterize a tritrophic vector-borne dis-
ease system, the citrus greening disease (https://citrusgreening.
org/, last accessed 4/18/2022) (Saha et al. 2017). An instance
named ImageBreed has been deployed for high-throughput im-
aging of maize and alfalfa field experiments (https://image
breed.org/, last accessed 4/18/2022; Morales, Kaczmar, et al.
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2020). A number of academic labs and breeding companies also
use Breedbase for data management within their programs. The
Breeding Insight project (https://breedinginsight.org/, last
accessed 4/18/2022), which creates breeding databases for USDA
breeding programs, has also adopted the Breedbase system as a
foundation for their breeding solutions.

Discussion
Breeding is a complex process involving many different types of
data, especially considering genome-based breeding methods at

the current state of the art. Creating and maintaining breeding
databases is therefore generally considered to be time-
consuming and expensive. Many large breeding companies main-
tain their own databases and software for managing breeding
processes and selection, but this is not an option for smaller pro-
grams. The lack of bespoke databases is especially true in re-
source poor areas of the world, where the need for plant
improvement is often the greatest. A free, user-driven, and open
source platform such as Breedbase that integrates a complete
digital ecosystem for breeding will help close the gap for these
programs as well as many smaller to mid-sized organizations.

Box 1. Providing data management tools for small grains breeders: the Triticeae Toolbox adaptation of Breedbase

As documented in this article, Breedbase provides many features for working breeding programs. The mission of The Triticeae
Toolbox (T3) is to provide these features to a diverse audience of small grains breeding programs, by mandate in the United States,
and by extension globally.

The development of T3 is motivated by the belief that larger datasets provide greater power to identify genetic effects that are
relevant to all breeders. Across wheat, oat, and barley, T3 stores 5,600 trials, comprising over 1,800,000 phenotypic data points on
over 30,000 lines with genotype data. From there, T3 seeks to provide breeders with results from analyses that tap into these data,
in the hope that this will help breeders gain insights from their own data. The primary example we have in this area is a function
to show marker trait associations identified among all trials submitted to T3 with adequate marker density, and meta-analyzed to
determine robust associations across trials. The next milestone on the roadmap of this function is to develop marker imputation
functionality on T3 that will present genotype trials with uniform high-density marker scores, enabling meta-analysis over more
trials. Indeed, marker data are a critical rationale for T3’s mission: the database contains data on many lines that now are con-
nected to current populations primarily through the marker alleles segregating.

An important advantage of a web-based data management platform is that it links the data to the world of knowledge available
on the web. T3 provides that connectivity by providing links to external information on markers, traits, and germplasm. Our pri-
mary partners in that regard are GrainGenes, Wheat Expression Browser, and the Wheat KnetMiner (Hassani-Pak et al. 2021). For
example, a marker trait association close to a gene can be used to connect that trait to JBrowse (https://jbrowse.org/, last accessed
4/18/2022), to gene expression data (expVIP and EMBL-EBI) or to a knowledge network, KnetMiner. Traits in Breedbase are defined
using collaborative ontologies crucial to forging these links: the ontologies represent agreements on naming traits and gene func-
tions that enable meaningful bridges across knowledge platforms.

The diversity of T3 users means that they will not operate together as an integrated breeding organization. Rather each breeding
program submitting data to T3 will want data privacy and ease in determining what data becomes incorporated into the public
production database. Currently, all data on the production database is available to anyone. We plan on implementing privacy set-
tings specifying data visibility as public or restricted. Absent this feature, we now work with a few users by providing them with
separate instances of T3 that are not publicly visible but can easily transmit datasets to the T3 production database when ready.

The wide range of T3 users also means that we expect them to have varying degrees of familiarity with the Breedbase platform.
To allow users to test the addition and modification of datasets without modifying curated data by mistake, T3 has created sand-
box instances for each crop. Users can freely upload data to the sandbox, ensure that the uploaded data added to the database is
correct, and then easily publish the data to the production instance. A data curator checks the submitted data before adding it to
the production database. The Breedbase system was crucial in establishing these features and reduced duplication of effort.

Box 2. Usage example

Recently, Ogbonna et al. (2021) leveraged legacy breeding data to investigate the genetic architecture of cyanide content in cassava,
a key trait in food safety. Authors performed a retrospective analysis, mining historical cyanide data from the African IITA breed-
ing program (18 locations, 23 years, and 393 trials) and Colombian CIAT (41 locations, 11 years, and 155 trials) program from the
Breedbase instance cassavabase.org. Recycling open source, standardized, breeding data in conjunction with novel genotypic data
provided a high statistical power and allowed the detection of key loci controlling cassava root cyanide content using GWAS. Such
loci would otherwise have gone undetected, and was identified only because of the availability of the Breedbase digital ecosystem.
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Still, Breedbase databases can scale significantly to large breed-
ing programs with hundreds of thousands of accessions and mil-
lions of phenotypic scores.

Integration in breeding programs
Even the best breeding data management tools will fail to deliver
if breeding programs do not use them or use them incorrectly. A
significant effort is required to integrate a breeding database into
the workflow of a breeding organization, as data management is
central to the work of modern breeding programs but remains a
shortcoming. Breeding activities need to be closely tracked; to en-
sure complete integration, all materials, operations, and opera-
tors need to be systematically recorded and reviewed throughout
the process. This is important to enable analyses, improve data
quality, and to identify sources of errors in real time and post
hoc.

It is important for breeding programs to work closely with
groups that have significant experience in data management,
which can also help the breeding programs to understand their
needs, and to train staff better in the use of the database. In the
RTB breeding programs, we found it to be helpful to designate
specific staff as Data Managers, who receive extensive database
training. Data Managers have spent time at the BTI to learn more
about the database developments, and can provide additional
training and help on the ground in the breeding programs. They
also provide timely feedback on the tools and features based on
their first hand experiences, which is vital for the improvement
of the database. We have put a significant effort in user training
through in-person workshops, reciprocal visits, and training
materials, such as a complete on-line manual, slideshows, and
most recently a YouTube channel with recorded workshops.

In our experience, one of the bottlenecks in implementing a
breeding database is the availability of standardized trait ontolo-
gies for the crop in question. Especially in larger projects, it can
be difficult for all breeders to agree on a common ontology, in-
cluding common sample preparation and measurement proto-
cols, as well as measurement units. Without this
standardization, a database loses much of its appeal as it
becomes impossible to aggregate and reconcile disparate data.
This challenge cannot be understated as it is a major obstacle es-
pecially when phenotypic data is collected across different loca-
tions for a variety of crops and has to be stored in a single
integrated system. We have focused on developing ontologies
and common vocabularies to address this issue but it can be
harder than expected, as there are often diverging and strong
opinions on these matters. In addition, breeding programs intro-
duce new traits to be measured, for example, quality traits, and
there needs to be a process to integrate such new terms into the
ontology. Fortunately, the CO project (Shrestha et al. 2012) has
created trait ontologies for a wide range of crops, which we con-
tribute to and many Breedbase instances rely on. CO has also de-
fined processes for updating and developing the ontologies,
which allows new traits and methods to be introduced to breed-
ing programs with relative ease.

Future developments
Progress in the last few years in digital agriculture has been enor-
mous and will continue to be so in the foreseeable future. New
genotyping and phenotyping technologies, such as NIRS, are con-
stantly being developed or improved. Breeding databases must
coevolve with the technological advances to remain relevant, re-
quiring significant effort in refactoring and implementation.
Systems that easily adapt to new technologies will have a distinct

advantage; in terms of software development strategies, agile
software development will be more efficient than older waterfall-
type models. Another area of improvement is that of algorithms
and other aspects of methodology. With a strong connection to
the R programming language, it is relatively easy to implement
new algorithms in Breedbase, as they often require little modifi-
cation from standalone scripts to work within Breedbase. At its
core, Breedbase uses a relational database with integrated JSON
data storage, which provides a healthy balance between highly
structured, normalized data and flexibility. However, other sys-
tems, such as graph databases and highly parallelized solutions
like Hadoop, or a combination thereof, are becoming popular and
may be integrated into Breedbase in the future.

All of the Breedbase codes are open source and readily avail-
able on the code sharing site GitHub (https://github.com/solge
nomics).

Conclusions
Breedbase provides a fully open-source, scalable, and feature-
rich breeding digital ecosystem that has been in use at the RTB
crops breeding centers of the CGIAR for many years, starting with
the NextGen Cassava database, Cassavabase (https://cassava
base.org/). The system has now been adopted by various breeding
programs including vegetable and grain crops and maintains an
open and collaborative approach to software development, allow-
ing database customization for each research community while
sustaining a common framework. Our hope is that Breedbase,
and the digital ecosystem that it provides, can contribute, in a
small way, to solving the world’s big problems with food scarcity
and food quality, and thus contribute to improving subsistence
farmers’ lives around the world.

Web resources
https://github.com/solgenomics/—Github repositories for
Breedbase code, last accessed 4/18/2022

https://hub.docker.com/r/breedbase/breedbase#—Docker im-
age for Breedbase server, last accessed 4/18/2022

https://breedbase.org/—Breedbase demo site, last accessed 4/
18/2022

https://cassavabase.org/—Cassavabase, the flagship
Breedbase site, last accessed 4/18/2022

https://musabase.org/—Breedbase site for banana breeding,
last accessed 4/18/2022

https://yambase.org/—Breedbase site for yam breeding, last
accessed 4/18/2022

https://sweetpotatobase.org/—Breedbase site for sweet potato
breeding, last accessed 4/18/2022

https://www.youtube.com/channel/
UC3jrvvzGKKEHzOriDBgnj0A—YouTube channel for Breedbase,
last accessed 4/18/2022

Data availability
All codes are available from Github (https://github.com/solge
nomics) and docker hub (https://hub.docker.com/r/breedbase/
breedbase#).
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