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Abstract

Kidney disease is poorly understood due to the organ’s large cellular diversity. We used single cell 

RNA-sequencing not only to resolve differences in injured kidney tissue cellular composition but 

also in cell type-specific gene expression in mouse models of kidney disease.

This analysis highlighted major changes in cellular diversity in disease, which markedly impacted 

whole-kidney transcriptomics outputs. Cell type-specific differential expression analysis identified 

proximal tubule (PT) cells as the key vulnerable cell type. Through unbiased cell trajectory 

analyses, we show that PT cell differentiation is altered in kidney disease. Metabolism (fatty 

acid oxidation and oxidative phosphorylation) in PT cells showed the strongest and most 

reproducible association with PT cell differentiation and disease. Coupling of cell differentiation 

and metabolism was established by nuclear receptors (ESRRA and PPARA) that directly control 

metabolic and PT cell-specific gene expression in mice and patient samples, while protecting from 

kidney disease in the mouse model.
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Introduction

Kidney disease is becoming a major health issue in modern society. Chronic kidney disease 

(CKD) is the tenth leading cause of death worldwide with a steadily increasing incidence 

affecting eight hundred million people globally (Levin et al., 2017). The large number of 

people affected by CKD is of concern because some will progress to end-stage renal disease 

(ESRD), severely affecting quality of life. In addition, kidney disease is a massive personal 

and societal economic burden (Breyer and Susztak, 2016; Kovesdy et al., 2013).

Genetic studies examining the heritability of kidney function, such as integration of genome 

wide association studies (GWASs) (Wuttke et al., 2019) and functional genomic studies, 

highlighted the role of proximal tubule-specific genes in kidney function (Hellwege et al., 

2019; Park et al., 2018; Qiu et al., 2018). PT cells are highly susceptible to toxic and 

hypoxic injury, representing the primary cause of acute kidney injury (AKI) (Qiu et al., 

2018). PT cell-specific injury observed in AKI probably has the most rapid effect on kidney 
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function. CKD, which is defined by more than 40% decline in GFR for more than 3 months, 

is characterized by PT cell atrophy almost independent of disease etiology. PT cell atrophy 

strongly correlates with kidney function in CKD (Chang-Panesso and Humphreys, 2017; 

Reidy et al., 2014) (Liu et al., 2014) (Kang et al., 2015; Li et al., 2012).

Comprehensive genome-wide kidney tissue transcriptomics analysis has been used to define 

the molecular hallmarks of this complex process, both in patient samples and mouse 

models (Beckerman et al., 2017; Qiu et al., 2018; Woroniecka et al., 2011). These studies 

highlighted a correlation between a large number of transcripts and kidney fibrosis. Cellular 

metabolism, such as genes involved in lipid metabolism, fatty acid oxidation (FAO) and 

oxidative phosphorylation (OXPHOS) showed strong correlation with disease state, both in 

patients and mouse CKD models (Chung et al., 2019; Kang et al., 2015). Pharmacological 

or genetic approaches that enhance FAO and mitochondrial biogenesis improved kidney 

function; however, the exact mechanism is not fully understood (Gomez et al., 2015; Tran et 

al., 2011, Tran et al., 2016; Zheng et al., 2019). Further, mitochondrial defects can lead to 

the leakage of the mitochondrial DNA into the cytoplasm resulting in the activation of the 

cGAS/STING innate immune system pathway, cytokine release and influx of immune cells 

and downstream fibrosis development (Chung et al., 2019: Maekawa et al. 2019).

Single-cell RNA-sequencing (scRNA-seq) analysis is transforming our understanding of 

complex diseases. In our previous study, we identified 21 distinct cell types, including 3 

novel cell types in the kidney (Park et al., 2018). At the same time, we defined cell identity 

genes that can stably and reproducibly classify key kidney cell types in mice and humans 

(Young et al., 2018).

Here we analyzed the transcriptome of different CKD mouse models, human kidney samples 

and human organoids. Prior studies mostly relied on single nuclear sequencing and did 

not properly capture the immune cell diversity (Lake et al., 2019; Wu et al., 2019). We 

identify several PT cell subgroups, and using cell trajectory analyses we show an alteration 

in the differentiation state of PT cells in diseased kidneys. Single-cell epigenetics and 

transcriptomics indicate the critical role of HNF4A, HNF1B (hepatocyte nuclear factor 4A 

and 1B), PPARA (peroxisomal proliferation-activated receptor alpha) and ESRRA (estrogen 

related receptor alpha) in defining PT cell identity. Using mouse knock-out and human 

kidney transcriptomics data we further demonstrate the protective role of ESRRA, which 

links energy metabolism, proximal tubule differentiation and kidney function by directly 

binding to PT cell-specific genes and regulating their expression.

Results

The single-cell landscape shows increased cellular heterogeneity in fibrotic kidneys

To unravel cellular changes associated with kidney fibrosis, first we analyzed the 

transcriptome of 65,091 individual cells from 6 mouse control kidneys and 2 folic acid-

induced fibrotic kidneys (folic acid nephropathy: FAN) (Figure 1A). This is a well- 

established kidney disease model presenting both with structural damage (fibrosis) and 

kidney function decline indicated by serum BUN level (Figure S1A–S1C). We observed that 

PT cells represented the majority of cell types in the dataset. To accurately cluster smaller 
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cell populations, we first focused on non-PT cells (Figure 1B). Our unbiased clustering 

identified 30 cell populations, including kidney epithelial, immune and endothelial cells 

based on marker gene expression (Figure 1C and Figure S1D, Table S1). The proportion 

of cells were relatively stable in biological replicates but were substantially different 

between control and FA samples (Figure S1E). Gene sets previously used to define cell 

types (cell identity genes) showed conserved expression in disease state (Figure S1F). 

Immune cell diversity was markedly increased in the FAN mice (Figure S1D and S1E). 

Such as we identified 14 immune cell clusters in our FAN model while we our previous 

study characterized 5 immune clusters (Park et al., 2018). Amongst the newly identified, 

we observed granulocytes, macrophages, dendritic cells (DCs) and basophils. DCs were 

further subclustered into DC 11b+ (Cd209a and Cd11b), DC 11b- (Cd24a and Clec9a) and 

plasmacytoid DC clusters (Siglech and Cd300c) (Figure 1D and 1E). A large number of 

lymphoid cells were also identified, including B cells, T cells, and natural killer cells (Figure 

1B and 1C). T lymphocytes were subclustered into CD4+ T, Treg, gamma delta T, NKT, 

and CD8+ effector cells (Figure 1F and 1G). We made this dataset publicly available on our 

interactive website (http://susztaklab.com/VisCello/).

Bulk RNA-sequencing strongly influenced by cell fraction changes

We next performed RNA-sequencing of whole-kidney (i.e. bulk tissue) samples, as single-

cell sequencing may suffer from uneven cell drop-out. Differential expression analysis of 

bulk RNA-seq data indicated changes in expression of more than 4,000 genes (2,776 with 

higher and 1,361 with lower expression, using FDR of 0.05 and fold change 2) (Figure 2A). 

Gene ontology analysis highlighted that expression of genes associated with the immune 

system and inflammation were higher in the FAN model (Figure 2A). Analysis of genes 

showing the highest increased expression in the bulk dataset indicated that most such genes 

were exclusively expressed by immune cells (Figure 2B). Genes whose levels were lower 

in the FAN model were enriched for metabolic processes, such as lipid metabolism, FAO 

and OXPHOS (Figure 2A). Genes with lower expression in the FAN model showed high 

enrichment for PT cell expression (Figure 2B), suggesting a strong role for PT cells and 

immune cells driving transcriptional changes in bulk RNA sequencing data. In addition, 

we observed that highly expressed and top differentially expressed genes, including Lyz2, 

Cd52 and Tyrobp, in the bulk RNA-seq data showed similar expression patterns in control 

and FAN samples at a single-cell level (Figure S2A), suggesting that the majority of genes 

showing higher expression in disease were related to immune cell proportion changes rather 

than cell specific changes.

Next, we determined cell proportion changes using single-cell and bulk RNA-seq data. 

We found marked differences in cell proportion, such as a distinct increase in myeloid 

and lymphoid cell proportion (e.g. macrophages (7.2-fold), granulocytes (2.9-fold), Tregs 

(27-fold) and CD8 effector cells (3.8-fold)), while the proportion of tubule epithelial cells 

(e.g., PT (0.55-fold) and distal convoluted tubule (0.23-fold)) was lower in the single-cell 

data of the FAN model (Figure 2C). On the other hand, consistent with prior observations, 

proportion of podocytes did not show clear changes in the FAN model (Figure 2C). 

We also performed in silico deconvolution of bulk RNA-seq data implemented in the 

CellCODE package. This analysis yielded results broadly consistent with the single-cell 
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RNA sequencing data (Figure 2D), such as higher immune cell fractions and lower epithelial 

cell fractions. Finally, cell proportion changes in epithelial and immune cells were confirmed 

by histological analysis (Figure S1A).

To further understand the contribution of cell type-specific and cell fraction changes in 

bulk RNA-seq results, we directly compared the single-cell with the bulk data. After 

adjusting the data to the observed cell fraction changes, the number of genes showing 

differential expression were markedly reduced. Among the 4,137 differentially expressed 

genes in bulk data, only 14, 2, 902 and 753 genes remained significant after adjustment by 

proximal convoluted tubule (PCT), proximal straight tubule (PST), myeloid or lymphoid cell 

fractions, respectively (Figure S2B).

To unravel cell type-specific gene expression changes in the FAN model, we performed 

differential expression analysis in all identified cell types. Keeping in mind the limitation of 

this analysis, such as the complete confounding of the disease state and possible batch effect, 

we found that myeloid cells, such as macrophages, showed a large number of differentially 

expressed genes (Figure 2E). We found that amongst the epithelial cells, PT cells showed the 

largest number of differentially expressed genes (Figure 2E, Table S2). Genes that showed 

lower expression levels in diseased PT cells are solute carrier (cell differentiation-related 

genes) such as Slc5a2 and Slc13a3, as well as genes involved in FAO and OXPHOS (e.g., 

Acsm1, Acsm2, Cpt1a, Acox3) (Figure 2F).

Even though PT cells represented a large portion of the bulk dataset, only a small fraction 

of differentially expressed genes observed in PT cells was shared in the bulk RNA-seq 

data (Figure 2G) and correlation between PT cell-specific differentially expressed genes 

in single-cell and bulk data was weak. Less than 10% of PT cell-specific differentially 

expressed genes showed direction-consistent and observable changes in the bulk gene 

expression data (Figure 2H).

Altered differentiation drives proximal tubule response during fibrosis

To better understand cell state changes in PT cells, we performed sub-clustering and cell 

trajectory analysis of healthy and diseased samples from CKD mouse models. In healthy 

controls, we identified several PT cells subtypes, including PST cells expressing Slc22a30, 

and several subgroups of PCT expressing Slc5a2 and Slc5a12 (Figure 3A, Table S3). RNA 

velocity analysis has opened up new ways of studying cellular differentiation (La Manno 

et al., 2018) by predicting the future state of individual cells. Our analysis indicated that 

in control kidneys, PT cells differentiated into 2 major cell types: PCT and PST segments 

(Figure 3B and 3C). Interestingly, the analysis highlighted that PT cells originated from 

a common precursor-like cell, expressing higher levels of Med28 and Cycs (Figure 3D). 

Importantly, our analysis also suggested that PT cell differentiation did not necessitate cell 

proliferation, as we did not observe changes in the expression of proliferation markers 

(Figure 3D).

PT cells from FAN samples subclustered into 9 groups. Using anchor genes to identify key 

cell types such as PCT and PST segments, we were able to recognize more heterogeneous 

cell populations, including proliferating cells, immune marker (Cd74)-expressing cells, 
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transitional cells and precursor cells expressing higher Igfbp7 (Figure 3E, Table S3). In 

diseased samples, we also identified a prominent proliferating (i.e., Ki67-positive) cell 

population and it appeared that cells entered and exited this Ki67-positive state. These data 

are consistent with a facultative progenitor model in kidney tubule cells (Angelotti et al., 

2012; Kang et al., 2016) (Figure 3F). Notably, we identified a cell population expressing 

Notch2 and Lgr4, previously identified as progenitor and transit amplifying cells in the 

kidney and other organs (de Lau et al., 2011; Zhang et al., 2019). We observed that 

PCT cells co-expressed PST markers, suggesting that under disease conditions PCT cells 

may endure transcriptomic changes impacting on their phenotypic signature. Similar to 

our observation in control samples (Figure 3B), FAN samples showed a differentiation 

trajectory toward PCT and PST segments (Figure 3G and 3H) but followed a less organized 

differentiation path than healthy PT cells (Figure 3G). On the other hand, we failed to 

observe a clear reversal of differentiation of cells already expressing terminal differentiation 

markers such as Slc5a2 or Slc22a30, indicating that a failure of differentiation rather than 

dedifferentiation is the reason for the identified cell-state changes.

Differentiation defects in fibrotic proximal tubules track with changes in lipid metabolism

Next, we opted to take advantage of the continuous cell trajectory analysis using the 

Monocle package by combining all samples under healthy and disease states (Trapnell et 

al., 2014). Initial exploration showed a clear branching of PT cells into PCT and PST 

segments (Figure 4A, 4B and Figure S3A), which was mostly consistent with the RNA 

velocity analysis. To identify genes whose expression changed along the trajectory, we first 

performed trajectory analysis for the PST segment, as this segment is highly susceptible to 

injury (Figure 4C, 4D and Figure S3B). Cells from control and diseased kidneys seemed 

to follow a similar linear trajectory towards PST segment differentiation (i.e., no major 

branching) but FAN samples were significantly depleted from terminally differentiated PT 

cells (two sample proportion test, between cells in red and blue area, p-value < 2.2e−16) 

(Figure 4C and 4E). Trajectory analysis of PCT segment cells showed similar pattern (Figure 

S3C and S3D). These data are consistent with prior observations indicating lower levels of 

terminally differentiated markers in FAN samples (Figure 3G).

When we interrogated genes and pathways that underlie the PT cell differentiation state, we 

found that the expression genes associated with terminal differentiation, such as those with 

ion transport function (i.e., SLC solute careers) increased along the differentiation trajectory 

(Figure 4F). In addition to ion transport, lipid metabolism showed a positive correlation with 

cellular differentiation (Figure 4F–4H and Figure S3E). Moreover, we observed changes in 

FAO genes along the differentiation path from precursor to PT cells in both healthy controls 

and FAN samples (Figure 4I–4L).

We also generated scRNA-seq data from the unilateral ureteral obstruction (UUO) model of 

kidney fibrosis and compared cell trajectories in the UUO and the FAN models. Continuous 

cell trajectory analysis showed selective lack of terminally differentiated PT cells in UUO 

kidneys, recapitulating the results obtained from the FAN model (Figure S3F–S3H). In 

addition, when examining pathways associated with differentiation of PT cells along the 

cell trajectory, we found enrichment for FAO, OXPHOS and ion transport (Figure S3I and 
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S3J). There was a strong (>50%) overlap of gene expression changes along the respective 

differentiation trajectories in the UUO and FAN models (Figure S3K).

Partial epithelial-mesenchymal transition (EMT) has been used to describe the aberrantly 

differentiated PT cells (Grande et al., 2015; Lovisa et al., 2015; Zeisberg and Duffield, 

2010). We found that EMT markers tended to be lower upon PT cell differentiation (Figure 

S3L), we failed to observe significant expression of Zeb, Twist and Snai in the different PT 

cell subclusters in fibrotic samples (Table S4). We also failed to observe cells exhibiting 

classic senescence markers (SASP; senescence associated secretory phenotype) (Table S4).

Proximal tubule differentiation in kidney organoids correlates with metabolic changes

To distinguish whether lipid metabolism and OXPHOS only enhance PT cell-specific genes 

expression or they are true drivers of PT cell maturation, we tested the role of FAO and 

OXPHOS in tubule cell differentiation of developing kidney organoids. Previously, we 

showed three-dimensional (3D) culture systems that recapitulate architectural and functional 

features of the human developing kidney; so-called kidney organoids generated from human 

pluripotent stem cells (hPSCs) (Garreta et al., 2019). We generated hPSCs-kidney organoids 

in free-floating conditions by assembling nephron progenitor cells (NPCs) derived from 

hPSCs (Figure 5A). Bulk gene expression analysis of differentiating organoids indicated an 

increase in expression of PPARGC1A on days 16 and 21. The increase in PPARGC1A 
expression in organoids correlated with the expression of PT cell markers, such as 

SLC27A2, SLC3A1, SLC5A12 (Figure 5B). As bulk RNA expression data cannot provide 

a faithful read-out for proximal tubule differentiation, we performed unbiased scRNA-seq 

analysis (Figure 5C). Clustering analysis based on cell type-specific marker gene expression 

indicated, that in addition to mesenchymal clusters we could also identify a variety of 

kidney cell types resembling those of collecting duct, actively cycling cells, endothelial 

cells, podocytes, loop of Henle and PT cells (Figure 5C and 5D). Next, we specifically 

examined the differentiation trajectory of organoid PT cells. Cells differentiated from a 

SIX1 positive progenitor and gained PT cell marker SLC3A1 expression (Figure 5E). Next, 

we analyzed genes whose expression changed along this trajectory and found that the 

expression of differentiation markers such as solute carriers increased along the trajectory 

and their expression strongly correlated with genes in FAO, including PPARA (Figure 5F). 

Finally, to confirm that FAO is a driver of cellular differentiation, we cultured kidney 

organoids in glycolytic (EGM) or OXPHOS promoting (REGM) media. We found higher 

expression of PPARGC1A mRNA and lipid metabolic genes such as ACOX2, ACOT12, 

and CPT1A, when organoids were cultured in REGM media for 4 days versus EGM media 

(Figure 5G). We further assessed the protein levels of mitochondrial OXPHOS proteins in 

organoids exposed to both REGM and EGM culture media (Figure 5H and Figure S4A, 

S4B). Concomitantly to these metabolic changes, we observed that an REGM lead to an 

increase in the expression of PT cell markers such as SLC34A1, SLC27A2, SLC5A12, 
SLC6A19 and SLC3A1 compared to EGM media (Figure 5G). These results run in parallel 

with our in vitro observations of cultured PT cells from mice (Figure S4C and S4D). In 

addition, organoids exhibited a visibly higher number of proximal tubules as observed by 

immunofluorescence (IF) analysis for LTL labeling (Figure 5I and 5J).
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ESRRA drives proximal tubule differentiation in mouse models and couples metabolism 
with differentiation

In order to define the key transcriptional regulatory organization of PT cells, we analyzed 

mouse kidney single cell open chromatin data (scATACseq) (Cao et al., 2018). Using a 

computation motif search algorithm, we found that the most enriched open binding motifs 

were HNF4A, HNF1B, PPARA and ESRRA in PCT and PST cells (Figure 6A). Our 

single cell gene expression analysis confirmed transcript enrichment for these 4 transcription 

factors in PT cells (Figure S5A). Next, we defined putative PPARA and ESRRA target genes 

by intersecting PCT- or PST-specific open chromatin region at promoters (transcription 

start site ± 5kb) or gene body regions chromatin regions that contained PPARA- or ESRRA-

binding motifs. Gene set enrichment analysis showed enrichment for PPARA- and ESRRA-

target genes (Table S5) in differentiated PST and PCT cells (Figure 6B and Figure S5B). 

PT-specific PPARA and ESRRA target genes were enriched for kidney development, lipid 

metabolism and epithelial transport functions (Figure 6C and Figure S5C).

To functionally confirm the role of ESRRA in cellular differentiation, we treated LTL+ 

PT cells with Esrra siRNA or XCT790, a pharmacological inhibitor (inverse agonist) 

of ESRRA. We observed that reduced Esrra activity led to compromised mitochondrial 

function, as assessed by oxygen consumption rate (OCR) and OXPHOS proteins levels 

as well as decreased mitochondrial DNA content. In addition, reduced Esrra led to lower 

expression of PT differentiation genes (Figure 6D–6G and Figure S6A–S6D). We next 

transfected LTL+ PT cells with ESRRA, PPARA or all four TFs (ESRRA, PPARA, HNF4A 

and HNF1B) plasmids. ESRRA overexpression in PT cells not only improved mitochondrial 

function and mtDNA copy number but also led to an increase in expression SLC genes 

(Figure 6D–6G and Figure S6D–S6F). We found that overexpression of PPARA, HNF1B 

and HNF4A had a synergistic effect as evident by the strong additive effect on cellular 

differentiation, such as SLCs expression (Figure S6E and S6F). To establish the role of 

ESRRA in human proximal tubule cell differentiation, we treated human primary renal 

proximal tubule epithelial cells (HPTCs) and kidney organoids cultured in REGM media 

with XCT790 for 48 hours. Kidney organoids and HPTCs treated with XCT790 showed 

impaired FAO (Figure S6G and S6I) and reduced expression of SLCs genes such as 

SLC3A1, SLC27A2, SLC34A1, SLC6A19, and ATP11A (Figure S6G and S6I). Overall, we 

found that ESRRA inhibition negatively affected PT differentiation as shown by decreased 

LTL fluorescence intensity (Figure S6H).

Finally, to distinguish whether ESRRA directly (via binding of the promoter) or indirectly 

(via improving metabolism) regulates PT cell differentiation, we performed chromatin 

immunoprecipitation (ChIP) coupled to detection by quantitative real-time PCR (ChIP-

qPCR) to study ESRRA transcription factor binding to DNA in PT cells. We found 

enrichment for multiple PT-specific genes, such as Slc5a11, Slc6a13, Slc6a19, Slc13a3, 
Slc7a13, Slc22a6 and Slc22a28, and metabolic genes, such as Adipor2 and Acadm (Figure 

6H).

To define the role of Esrra in kidney disease, we challenged Esrra knock-out mice with 

FA (Figure 6I). We found that the expression of Esrra was lower in FAN and UUO model 

of fibrosis when compared to controls (Figure 6I and Figure S6J). We observed that Esrra 
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knock-out mice showed increased susceptibility to FA-induced kidney injury compared 

to wild-type littermates as detected by histological analysis (Figure S6K). Levels of pro-

fibrotic markers such as Col1a1 and Col3a1 were higher in FA-treated Esrra knock-out 

mice (Figure S6L) compared to wild-type counterparts. Animals showed increased collagen 

accumulation on Sirius red stain (Figure S6M) and increased cell proliferation by Ki67 

staining (Figure S6N). We further confirmed the decrease in SLCs proteins (SLC6A13 

and SLC34A1) and increase in pro-fibrotic proteins (SMA and FN) in Esrra KO mice 

upon FAN injury (Figure 6J and Figure S6O). Further, we found that genetic deletion 

of ESRRA in PT cells was associated with impaired mitochondrial function despite the 

compensatory increase in other nuclear receptors, such as Esrrg and Ppara, (Figure S6P–

S6Q) that improved by re-expression of ESRRA. Similar to prior results, we found that 

PPARA also regulated PT metabolism and cellular differentiation both in vitro and in vivo 
(Figure S4C and S5D) (Kang et al., 2015) indicating a likely complex interaction between 

the different nuclear receptors in PT cells.

ESRRA driven metabolic changes correlates with kidney disease severity in patient 
samples

Finally, we wanted to ascertain whether ESRRA-driven metabolism and PT cell 

differentiation that appears to drive disease development in mouse kidney disease models 

can also be recapitulated in patients with CKD. We analyzed 91 microdissected human 

kidney tubule samples obtained from healthy subjects and from patients with diabetic 

and hypertensive kidney disease (Table S7). First, we examined the expression of genes 

involved in FAO and found a group of genes, which strongly correlated with kidney fibrosis 

(Figure 7A). These genes included ADIPOR2, PPARA, ACSM2A, ACSM3, and APOE, for 

which we had previously demonstrated an increase along the proximal tubule differentiation 

trajectory (Figure 4J). Correlation analysis revealed that the expression of lipid metabolism 

genes showed positive correlation with the expression of PT cell differentiation and negative 

correlation with fibrosis (Figure 7B). In silico deconvolution of bulk transcriptome data 

from 91 human samples showed that PCT and PST cell proportions were decreased in 

fibrotic tissues (Figure 7C). Next, we assessed the effect of cell proportion changes on gene 

expression changes observed in bulk gene profiling data (Figure 7C). Expression of a total 

of 1,980 genes significantly correlated with fibrosis scores in 91 human kidney samples 

analyzed by linear regression using age, gender, race and diabetes and hypertension status 

as covariates (FDR < 0.05). Next, we performed in silico deconvolution analysis of the 

data using CellCODE. Adjusting the model to the 4 cell lineages (PCT, PST, myeloid and 

lymphoid cells) reduced the number of differentially expressed genes (DEGs) from 1,980 to 

22 genes, indicating the key role of cell heterogeneity driving bulk gene expression changes 

(Figure S7A).

Lastly, we examined the expression of ESRRA and its target genes in 431 microdissected 

human kidneys (Table S7). Expression of ESRRA was lower in disease samples and strongly 

correlated both with eGFR and kidney fibrosis (Figure S7B). Protein expression of ESRRA 

was mostly localized to the nuclei of proximal tubules and it was markedly lower in 

human CKD samples (Figure S7C). Expression of ESRRA in human kidney tubule samples 

correlated with lipid metabolism and proximal tubule markers as well as with membrane 
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transporter genes that are ESRRA targets (Figure 7D). These results confirm the relationship 

between proximal tubule (differentiation) state and metabolism via ESRRA and PPARA.

Discussion

Here we present a comprehensive analysis using mouse single-cell RNA and epigenome 

analysis, cultured cells, mouse models, patient samples and kidney organoids to demonstrate 

that PT cells exist in different differentiation states in health and disease conditions. Our 

results highlight PT cellular metabolism as one of the main drivers of PT cell differentiation 

identifying ESRRA as a central key player in coupling metabolism and differentiation by 

directly binding and regulating expression of PT genes. Furthermore, our observations 

describe how ESRRA together with HNF1B, HNF4A, PPARA likely form a complex 

network regulating PT metabolism and differentiation. ESRRA-driven PT metabolism and 

differentiation plays a critical role protecting kidney from injury and correlates with kidney 

disease severity in patient samples.

We show that gene expression changes observed in bulk RNA-seq analysis mostly reflected 

cell heterogeneity of diseased mouse and human kidney samples. For example, proximal 

tubule-specific genes had lower expression levels in bulk RNA-seq analysis; however, many 

of these genes showed no clear change at a single-cell level. Genes that showed higher 

expression in disease samples were mostly genes exclusively expressed in immune cells, 

however, they didn’t show marked changes in the single-cell data when control and disease 

samples were compared. There was a marked increase in cell diversity of healthy and 

diseased samples, mostly related to the increase in the diversity of immune cells.

We provide a high-resolution comprehensive analysis of cell type-specific changes in two 

different mouse kidney fibrosis models. We identified different PT cell subtypes in healthy 

and disease states. In addition, to the known PCT and PST segments, we also identified 

precursor-like cells. Cell heterogeneity was significantly higher in diseased PT cells as we 

identified proliferating cells, immune marker expressing cells and transitional cells (such 

as PCT and PST intermediate cells), and PT cell and LOH intermediate cells. Future 

studies will determine the role of these cells in disease development. Important to note 

that these cell populations represented a continuum between the established PCT and PST 

cells rather than true discrete groups. Using trajectory and clustering methods we identified 

cell state differences amongst PT cells. We identified precursor cells that expressed high 

levels of Igfbp7, but lower levels of differentiated PT cell markers. IGFBP7 is one of the 

best-known biomarkers of AKI (Meersch et al., 2014; Vijayan et al., 2016). Further studies 

shall examine the connection between kidney and urinary IGFBP7 expression levels and 

renal injury as well as outcome.

We found that in diseased kidneys fewer cells were in the terminal differentiation state. 

Increased death of differentiated cells could have contributed to this finding, however, only 

minimal changes in cell death is observed at the stages examined (Bielesz et al., 2010). 

Consistent with prior reports, Wnt expression correlated with cell differentiation in one 

but not in the second kidney fibrosis model (Edeling et al., 2016; He et al., 2009; Kato 

et al., 2011; Rinkevich et al., 2014). Changes in lipid metabolism, FAO and OXPHOS 
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were consistent in both models. This might be consistent with earlier reports that such 

developmental pathways regulate metabolic changes in diseased kidneys (Huang et al., 

2018). Overall, our results indicate that kidney PT cells exist in different states where higher 

expression of cell function genes (e.g., SLCs) strongly correlates with higher expression of 

FAO and OXPHOS genes.

Biologically, coupling of metabolism and cell state makes perfect sense as it harmoniously 

couples energy production and utilization with cellular function. Indeed, coupling of cell 

state and metabolism have been best demonstrated in the field of immunometabolism. For 

example, effector T cells exhibit high glycolysis, whereas regulatory cells have higher FAO 

and mTORC1 activation, which in turn drives effector differentiation while suppressing 

regulatory generation (Angelin et al., 2017; Delgoffe et al., 2009; Michalek et al., 2011). 

Dysregulated metabolism contributes to disease development, as T cells from systemic lupus 

erythematosus patients exhibit increased glycolysis and OXPHOS, whereas increased fatty 

acid biosynthesis and reduced ROS levels are associated with rheumatoid arthritis (Shen 

et al., 2017; Yang et al., 2013; Yin et al., 2015). Recently, sodium glucose cotransporter 

2 inhibitors have shown remarkable success in improving kidney function decline (Barnett 

et al., 2014), it is possible that reducing the cellular energy requirement is part of their 

mechanism of action.

Our results for the first time define the key role of several nuclear receptors, such as 

PPARA, ESRRA in driving PT cell differentiation. ESRRA is a critical transcription factor 

that regulates mitochondrial biogenesis and FAO (Singh et al., 2018, Soriano et al., 2006). 

ESRRA remains an underappreciated nuclear receptor and metabolic target due to its diverse 

role in multiple cellular signaling pathways and its function as a co-regulator of metabolism. 

Here, we show that ESRRA not only transcriptionally regulates mitochondrial and metabolic 

genes but also directly binds to genes associated with PT differentiation such as a variety 

of SLCs. ESRRA target gene expression shows consistent changes in PT cell differentiation 

in vivo in mice and in patients supporting the key role of ESRRA in driving cell state. 

ESRRA overexpression not only improved metabolism and mitochondrial function but also 

PT differentiation and its inhibition resulted in impaired FAO and OXPHOS with altered 

differentiation state. We found that other transcription factors such as ESRRG, PPARA 

levels increased in the absence of ESRRA which might be responsible for the lack of 

phenotypic changes at baseline, however this compensation was insufficient to protect Esrra 
KO mice during kidney injury (Zhao et al., 2018, Marable et al., 2020). Previous studies 

showed the role of Esrrg in kidney tubules (Zhao et al., 2018).

It has been difficult to induce PT cell differentiation in cultured organoids (Combes et al., 

2019; Wu et al., 2018). Using human kidney organoids, we show that FAO and OXPHOS 

directly drive differentiation of PT cells. Our data indicates that increasing the activity of 

Esrra (and Ppara) could be beneficial for PT cell differentiation.

In summary, we show the continuum of PT cell states in health and disease and the 

key role of metabolism in driving PT cell state. ESRRA couples cell differentiation state 

and metabolism by not only regulating the expression of cellular metabolism but also 

the expression of key cell type–specific genes. The work provides new opportunities to 
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manipulate cell fate, PT cell differentiation and metabolism based on their reliance on 

nuclear receptors such as ESRRA.

Limitations of Study

There are several limitations of our study and future studies shall carefully examine changes 

observed in non-PT cells in the context of kidney fibrosis and in patients with kidney 

disease. Follow-up studies should examine the large number of genes and cell type changes 

identified by single-cell analysis. Future studies are needed to study the detailed ESRRA 

regulatory network in the kidney and its interaction with other key PT transcription factors, 

such as PPARA, HNF1B and HNF4A.

STAR METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact: Katalin Susztak. 

ksusztak@pennmedicine.upenn.edu

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—Processed and raw data can be downloaded from NCBI 

GEO (GSE156686 and GSE152765). Furthermore, the data is available via an interactive 

web browser at http://susztaklab.com/VisCello/.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse Models—Animal studies were approved by the Institutional Animal Care and Use 

Committee (IACUC) of the University of Pennsylvania. Mice were housed in the Institute 

pathogen free animal house (12 h dark/light cycle) in a temperature- and humidity-controlled 

environment (23 ± 1°C) and fed with standard mouse diet and water ad libitum. 5- to 

8-week-old male C57BL/6 wild type mice were used in the study. Esrra KO mice were 

kindly provided by Dr. Liming Pei (University of Pennsylvania) and littermates were used 

from in-house matings. All animals were pathogen free and healthy prior to the beginning 

of experiments. For all the mice experiments, mice were randomly assigned to experimental 

groups, unless stated otherwise.

For fenofibrate experiment, the PPARA agonist fenofibrate (50 mg/kg for 3 days and 100 

mg/kg for 5 days) was administered by oral gavage starting one day before the folic 

acid (FA) injection. Mice were injected with FA (250 mg/kg once, dissolved in 300 mM 

NaHCO3) intraperitoneally and sacrificed on day 7. For the unilateral ureteral obstruction 

(UUO) model, mice underwent ligation of the left ureter and were sacrificed on day 7.

Isolation and culture of LTL+ PT cells: Primary mouse proximal tubule epithelial cells 

were isolated from kidneys of 4 weeks old wild type mice and LTL+ cells fractions were 

purified from single cell suspension of PT cells by using biotinylated lotus tetragonolobus 

lectin antibody (LTL) (L-132; Vector Laboratories) and anti-biotin microbeads (MACS 
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Miltenyi Biotec). LTL+ cells were grown in primary cell culture media (RPMI 1640 

supplemented with 10% FBS, 20 ng ml−1 EGF, 20 ng ml−1 bFGF and 1% penicillin-

streptomycin).

Kidney organoids differentiation: ES[4] human embryonic stem cells were grown on 

vitronectin coated plates (1001–015, Life Technologies). Cells were incubated in 0.5mM 

EDTA (Merck) at 37°C for 3 minutes for disaggregation. To avoid the separation of the 

stem cell clusters, cells were then carefully collected into 12 ml supplemented Essential 8 

Basal medium. For cell counting, 1 mL cell suspension was centrifuged for 4 minutes at 

400 g and the pellet was resuspended in 200 μl of AccumaxTM (StemCell Technologies) to 

obtain single cells. Cells were incubated in AccumaxTM at 37°C for 3 minutes and next, 

800 μL of FBS were added to stop the disaggregation. After cell counting (Countess ® 

Automated Cell Counter), 100,000 cells/well were plated on a 24 multi-well plate coated 

with 5μl/ml vitronectin. Cells were incubated in supplemented Essential 8 Basal medium 

at 37°C overnight. The next day (day 0), the differentiation was initiated by treating the 

cells with 8 μM CHIR (Merck) in Advanced RPMI 1640 basal medium (ThermoFisher) 

supplemented with 1% Penicillin-Streptomycin and 1% of GlutaMAXTM (ThermoFisher) 

for 3 days and changing the medium every day. On day 3, CHIR treatment was removed 

and cells were cultured in 200 ng·ml−1 FGF9 (Peprotech), 1 μg·ml−1 heparin (Merck) and 

10 ng·ml-1 activin A (Act A) (Vitro) in supplemented Advanced RPMI for 1 day. On 

day 4, spheroid organoids were generated. Cells were rinsed twice with PBS, collected 

using supplemented Advanced RPMI and plated at 100,000 cells/well on a V-shape 96 

multi-well plate. They were treated with 5 μM CHIR, 200ng·ml-1 FGF9 and 1 μg·ml-1 

Heparin in supplemented Advanced RPMI. Organoids were incubated for 1hour at 37°C, 

CHIR induction was removed and they were incubated in 200 ng·ml-1 FGF9 and 1 μg·ml-1 

Heparin in supplemented Advanced RPMI for 7 days with medium change every other 

day. From day 11, factors were eliminated, and cells were incubated only in supplemented 

Advanced RPMI for 5 days, medium was changed every other day.

METHOD DETAILS

Preparation of single-cell suspension—Euthanized mice were perfused with chilled 

1x PBS via the left ventricle. Kidneys were harvested, minced into approximately 1 mm3 

cubes and digested using Multi Tissue dissociation kit (Miltenyi, 130-110-201). The tissue 

was homogenized using 21G and 26 1/2G syringes. Up to 0.25 g of the tissue was digested 

with 50ul of Enzyme D, 25 ul of Enzyme R and 6.75 μl of Enzyme A in 1 ml of RPMI and 

incubated for 30mins at 37°C. Reaction was deactivated by 10% FBS. The solution was then 

passed through a 40 μm cell strainer. After centrifugation at 400 g for 5mins, cell pellet was 

incubated with 1ml of RBC lysis buffer on ice for 3 mins. Cell number and viability were 

analyzed using Countess AutoCounter (Invitrogen, C10227). This method generated single 

cell suspension with greater than 80% viability.

Single-cell RNA sequencing—Single cell RNA sequencing was performed as described 

in our previous study (Park et al., 2018). Briefly, the single cell suspension was loaded 

onto a well of a 10x Chromium Single Cell instrument (10x Genomics). Barcoding and 

cDNA synthesis were performed according to the manufacturer’s instructions. Qualitative 
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analysis was performed using the Agilent Bioanalyzer High Sensitivity assay. The cDNA 

libraries were constructed using the 10x Chromium™ Single cell 3’ Library Kit according 

to the manufacturer’s original protocol. Libraries were sequenced on an Illumina HiSeq or 

NextSeq 2×150 paired-end kits using the following read length: 26bp Read1 for cell barcode 

and UMI, 8bp I7 index for sample index and 98bp Read2 for transcript.

Alignment and generation of data matrix—Cell Ranger 2.0 (http://10xgenomics.com) 

was used to process Chromium single cell 3’ RNA-seq output. First, “cellranger count” 

aligned the Read2 to the mouse reference genome (mm10) and exons of protein coding 

genes (Ensembl GTFs GRCm38.p4). Sequencing reads that were marked by multiple 

mapping were removed by adjusting the cellranger to unique mapping (marked MM:i:1 

in the bam files). Third, the fastq files extracted from bam files of the first run were used 

again for “cellranger count” to generate data matrix. Finally, the output files for 6 normal 

and 2 FAN samples were aggregated into one gene-cell matrix using “cellranger aggr” with 

read depth normalization by total number of mapped reads.

Data quality control, preprocessing and dimension reduction—Seurat R package 

(version 2.3.4) was used for data QC, preprocessing and dimension reduction analysis. 

Once the gene-cell data matrix was generated, poor quality cells were excluded, such as 

cells with < 200 or > 3,000 expressed genes. Genes that were expressed in less than 10 

cells, mitochondrial genes, ribosomal protein genes and HLA genes, that were reported to 

induce unwanted batch effects, were removed for further analysis (Smillie et al., 2019). 

Cells were also discarded if their mitochondrial gene percentages were over 50%. The data 

were natural log transformed and normalized for scaling the sequencing depth to a total 

of 10,000 molecules per cell, followed by regressing-out the number of UMI and genes. 

Batch effect was corrected by using removeBatchEffect function of edgeR. The expression 

values after batch correction were only used for PCA, t-Distributed Stochastic Neighbor 

Embedding (tSNE) visualization and clustering, and the original expression values before 

batch correction were used for all downstream analyses such as identification of marker 

genes and differentially expressed genes. For the dimension reduction, highly variable genes 

across the single cells were identified using 0.0125 low cutoff and 0.3 high cutoff. PCA 

was performed using the variable genes as input and top 20 PCs were used for initial tSNE 

projection.

Removal of doublet-like cells—Doublet-like cells were identified using DoubletFinder 

which is a computational doublet detection tool with following parameters: 

proportion.artificial = 0.25 and proportion.NN = 0.01(McGinnis et al., 2019). Then, the 

number of expected doublets were calculated for each sample based on expected rates of 

doublets, which are provided by 10x Genomics. After removing the doublet-like cells, all 

steps including normalization, regressing out variables, batch effect removal, and dimension 

reduction were performed again.

Cell clustering analysis—Density-based spatial clustering algorithm, DBSCAN, was 

used to identify cell clusters on the tSNE plot with the eps value 0.4. Clusters were 

removed if their number of cells was less than 20. Proximal tubule clusters expressing a 
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proximal tubule marker, Slc27a2, were separated from the rest of cell clusters in order to 

identify subgroups. PCA and UMAP (Uniform Manifold Approximation and Projection) 

were performed only for the remaining cells. DBSCAN was used to identify cell clusters on 

the UMAP plot with initial setting for the eps value 0.5. Each of the resulting clusters was 

subjected to sub-clustering by a shared nearest neighbor (SNN) modularity optimization-

based clustering algorithm, which is implemented in Seurat package. Resolution 0.5 

was used for sub-clustering of the clusters except T lymphocytes which required higher 

resolution (0.7) to identify T lymphocyte subgroups. Post-hoc differential expression 

analysis was performed for every pair of sub-clusters. Sub-clusters were merged when they 

had 15 or less than 15 (10 differential genes for T lymphocytes) differentially expressed 

genes (average expression difference > 1 natural log with an FDR corrected p<0.01). This 

clustering analysis resulted in 30 cell clusters. PT cell clusters were also subjected to 

sub-clustering. With same procedure used for other clusters, PT cells from control and FAN 

samples were subclustered into 5 and 9 sub-cell types, respectively.

Mouse bulk RNA-sequencing analysis—Total RNAs were isolated using the RNeasy 

mini kit (Qiagen). Sequencing libraries were constructed using the Illumina TruSeq RNA 

Preparation Kit. High-throughput sequencing was performed using Illumina HiSeq4000 with 

100bp single-end according to the manufacturer’s instruction. Adaptor and lower-quality 

bases were trimmed with Trim-galore. Reads were aligned to the Gencode mouse genome 

(GRCm38) using STAR-2.4.1d. The aligned reads were mapped to the genes (GRCm38, 

version 7 Ensembl 82) using HTSeq-0.6.1. Differentially expressed genes between control 

and disease groups were identified using DESeq2 version 1.10.1. To examine the enrichment 

of the differentially expressed genes in single cell clusters, a z-score of normalized 

expression value was first obtained for every single cell. Then, we calculated the mean 

z-scores for individual cells in the same cluster, resulting in 30 values for each gene. The 

z-scores were visualized by heatmap showing the enrichment patterns of the genes across 

the cell types.

Estimation of cell proportions—From single cell datasets, the numbers of cells in each 

cluster were enumerated and normalized by total number of cells for each condition (6 

control and 2 disease samples). Since a number of PT cells in FAN samples showed higher 

expression of apoptosis markers, we removed the cells that express Bax, Bad or Dap from 

all samples only for the cell proportion test. Deconvolution of bulk RNA sequencing data 

was performed to validate the cell proportion changes that were detected in single cell data. 

CellCODE package was used for deconvolution using 30 cell type-specific marker genes 

(Chikina et al., 2015).

Identification of marker genes and differentially expressed genes—
Conserved marker genes between control and UUO samples were identified using 

FindConservedMakers function of Seurat with default options. Average expression 

difference > 0.5 natural log and FDR corrected p value < 0.01 were applied. Cell type-

specific differentially expressed genes were identified using MAST, which is implemented 

in Seurat package with log fold change threshold = 0.2, minimum percent of cells expressing 

the genes=0.05 and adjusted p value < 0.05.
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Cell trajectory analysis

RNA Velocity:  To calculate RNA velocity, Velocyto.R package was used as instructed (La 

Manno et al., 2018). We used Velocyto to impute the single-cell trajectory/directionality 

using the spliced and the unspliced reads. Resulting loom files were merged and loaded 

into R following the instructions. Furthermore, RNA velocity was estimated using gene-

relative model with k-nearest neighbor cell pooling (k = 25). To visualize RNA velocity, 

we performed Principle Component Analysis and used the top 20 principle components 

to calculate UMAP embedding. The parameter n was set at 200, when visualizing RNA 

velocity on the UMAP embedding.

Monocle2:  To construct single cell pseudotime trajectory and to identify genes that change 

as the cells undergo transition, Monocle2 (version 2.4.0) algorithm was applied to the 

cells from proximal tubules and proliferating proximal tubules (Trapnell et al., 2014). To 

show the cell trajectory from the small cell population (proliferating proximal tubules) to 

predominant cell type (proximal tubules), 6,000 randomly selected PT cells and proliferating 

proximal tubules were used for Monocle analysis. Genes for cell ordering were selected if 

they were expressed in ≥ 10 cells, their mean expression value was ≥ 0.05 and dispersion 

empirical value was ≥ 2. Highly variable genes along the pseudotime were identified using 

differential GeneTest function of Monocle2 with q-value < 0.01. The trajectory analysis was 

also performed for precursors and PST cells from the control and FAN samples separately. 

DAVID GO term analysis was performed for the highly variable genes along the control 

and FAN trajectory, and then genes in the lipid metabolism GO term were visualized by 

heatmap.

Single cell ATAC sequencing analysis—Data matrix for PCT and PST cells-specific 

open chromatin regions was downloaded (Cao et al., 2018). HOMER package was used to 

identify known transcription factor binding motifs that are highly enriched in the PCT and 

PST-specific open chromatin regions. GSEA package was used to determine the enrichment 

patterns of ESRRA binding genes in differentiated PT cells and to identify core enrichment 

genes.

Human bulk gene profiling data analysis—Kidney samples were collected from 

nephrectomies. Samples were permanently deidentified and clinical information was 

collected by an honest broker, therefore the study was deemed exempt by the institutional 

review board (IRB) of the University of Pennsylvania. Two datasets were used, one dataset 

included 91 human kidney samples and gene expression analysis was performed using 

Affymetrix U133A arrays (E-MTAB-2502) (Table S7) Raw expression levels of microarray 

data sets were normalized using the RMA algorithm and log transformed. The identified 

marker genes were used as an input for CellCODE deconvolution analysis to estimate 

the cell proportion changes in human patient kidney samples. To assess the effect of cell 

proportions changes on the correlation between gene expression and fibrosis score, we 

implemented linear regression models using age, gender, race and diabetes and hypertension 

status as covariates with and without cell proportions of PCT, PST, myeloid and lymphoid 

cells. The second dataset included 431 samples and gene expression was analyzed using 

RNAseq (Table S7).
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Single Cell Suspension from Kidney organoid—Day 20 mature kidney organoids 

were washed twice with PBS and incubated first with AccumaxTM for 10 min at 37°C, 

followed by Trypsin-EDTA 0.25% incubation in order to dissociate into single cells. Cells 

were spun down at 400 g for 5 min resuspended in ADV RPMI and checked for viability 

using Countess Automated Cell Counter.

Mitotracker Green FM Flow Cytometric Analysis—Developing kidney organoids 

on day 14 of differentiation were cultured in EGM or REGM media for 4 additional 

days. In order to assess mitochondrial mass, organoids were stained with MitoTracker 

Green FM (100 nM), a mitochondrial specific fluorescent dye at 37°C for 30 min. After 

incubation, kidney organoids were washed twice with PBS and disaggregated into single 

cell suspension using AccumaxTM for 10 minutes followed by Trypsin-EDTA 0.25% 

(ThermoFisher) incubation for at least 10 minutes at 37°C. Once cells dissociated, FACS 

buffer (PBS supplemented with 5% of FBS) was added to cease the trypsin activity and 

samples were centrifuged for 5 minutes at 1800 rpm. After removing the supernatant, the 

pellet was resuspended in 300 μl of FACS buffer and the suspension was filtered into FACS 

tubes. Nuclei were stained with DAPI (ThermoFisher). Cells were counted using FACS Aria 

Fusion Instrument (BD Biosciences). FlowJo software version 10 was used for data analysis.

Protein extraction and western blot analysis in kidney organoids—Protein 

was extracted from kidney organoids cultured in EGM or REGM media for 4 days 

using RIPA buffer (Thermofisher) supplemented with complete protease inhibitor cocktail 

(Thermofisher), and centrifuged at 13,000 g for 15 mins at 4°C. The supernatant was 

collected, and protein concentration was measured using a bicinchoninic acid (BCA) protein 

quantification kit (Thermo Scientific). For western blot analyses, 25 ug of protein were 

separated in 10% sodium dodecyl sulphate-polyacrylamide gel (SDS-PAGE) and blotted 

onto nitrocellulose membranes. Membranes were blocked at room temperature for 1 hour 

with TBS 1X- 5% BSA. Membranes were then incubated in primary antibody (dilution 

1:1000) Total OXPHOS cocktail (Abcam) overnight at 4°C. The membranes were then 

washed with PBST (PBS1X + 0.05% Tween20; Merck) for 5 minutes three times and 

incubated with anti-mouse secondary antibody (dilution 1:10,000) (IRDye®680RD Goat 

anti-Mouse; LI-COR). After washing with PBST for 5 minutes twice and with PBS for 5 

minutes once, membrane-bound antibodies were detected by fluorescence with the Odyssey 

® Fc Imaging System. Alpha-tubulin (1:5000; Sigma) was used as a loading control for 

normalization and quantification. Images were analyzed with Image Studio Lite Version 5.2 

software.

Immunofluorescence—Kidney organoids were cultured in EGM or REGM media 

were transferred to 96 well plates. Fixation was performed with paraformaldehide 4% 

(ThermoFisher) for 20 minutes followed by 10 minutes washing in three changes PBS. 

Kidney organoids were incubated in Streptavidin/Biotin Blocking Kit (Vector Laboratories) 

and TBS – 1% triton + 6% donkey serum for 2 h at room temperature. Podocalyxin 

(PODXL, Dilution 1:250) and LTL (Dilution 1:200) antibodies were diluted in TBS-0.5% 

Triton + 1% BSA. Kidney organoids were then treated overnight at 4°C with primary 

antibodies. The next day, organoids were washed with TBS-0.5% triton + 1% BSA for 5 
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minutes three times and incubated with secondary antibody (Dilution 1:500) in TBS-0.5% 

Triton + 1% BSA at room temperature for 2 hours. Subsequently, organoids were washed 

with TBS twice for 5 minutes and nuclei were stained with DAPI (Dilution 1:5000) for 

10 minutes. Organoids were collected with special wide-end tips, and placed on slides and 

mounted with Fluoromount-G (Southern Biotech). Confocal images were acquired using 

Leica SP5 microscope and LTL positive cells were analyzed using Image J.

Mitochondrial DNA analysis—MtDNA copy number is represented by the ratio of 

mitochondrial DNA to nuclear DNA (mtDNA/nDNA). Total DNA was isolated from LTL+ 

PT cells 48 hours after transfection using DNeasy Blood & Tissue Kit. The mtDNA/nDNA 

ratio was determined by quantifying two mitochondrial genes (16S rRNA and ND1) and two 

nuclear genes (HK2 or 18S rRNA) using qPCR (Quiros et al., 2017). The primer sequences 

are listed in Table S6.

PT Cell transfection—PT cells were transfected with Non-targeted (NT) siRNA 

or siEsrra (purchased from Dharmacon) and pcDNA3.0 (vector) or pAd-Track-Esrra/

pcDNA3.1-Ppara/pcDNA3.1-HNF1A/pAd-track-HNF4A (overexpression constructs) (kind 

gift from Dr. Liming Pei, University of Pennsylvania). siRNA and plasmid transfections 

were performed using Lipofectamine 3000. For transfection, cells were seeded in 6-well 

plates, grown for overnight until 60–70% confluent, and then transfected with 100nM 

(final concentration) siRNA/siEsrra and 5μg of vector/ESRRA/PPARA/HNF1B/HNF4A 

overexpression plasmids. Transfection efficiency was determined under fluorescence 

microscope by the presence of Cy3 transfection control (data not shown). Cells were 

harvested and scraped off 48 hours post transfection under different condition.

Oxygen consumption rate (OCR)—The measurement of OCR in PT cells transfected 

with siEsrra or ESRRA plasmid were performed using XFe96 extracellular flux analyzer 

(Seahorse Bioscience) as previously described (Kang et al., 2015). Briefly, PT cells were 

plated at density of 10,000 cells/well in a Seahorse cell culture microplate and transfected 

with siEsrra/ESRRA OE. Cellular OCR was measured 48 hours post-transfection and 

normalized to protein quantity in each well. The final concentration for oligomycin, FCCP, 

rotenone and antimycin used was 2 μM, 1 μM, 1 μM and 1 μM, respectively.

Chromatin immunoprecipitation qPCR—ChIP was performed to evaluate enrichment 

of ESRRA binding regions in targets SLCs genes in PT cells following the manufacturer’s 

instructions (492024, Invitrogen). Briefly, 107 PT cells were cross-linked with 1% 

formaldehyde for 10 min at room temperature. Then the reaction was stopped by adding 

glycine (final concentration, 0.125M). The cells were sonicated in lysis buffer to achieve a 

chromatin size of 100–500 bp. The sonicated chromatin was diluted by using dilution buffer. 

5 μg antibody was coupled with Dynabead protein A and G (1:1 mixed), the mixture was 

incubated with chromatin lysates overnight at 4 °C with rotation. Immune complexes were 

washed with IP buffers. Antibody-bound chromatin was reverse-cross-linked, and the CHIP 

DNA samples were purified for PCR reaction. Primers used for CHIP-qPCR are shown in 

Table S6.
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Fenofibrate treatment—LTL+ PT cells isolated from mouse kidneys were cultured in 

either presence of 1μM fenofibrate (PPARA agonist) to activate PPARA or DMSO in 

primary culture media from Day 0. Cells were harvested for RNA and protein isolation for 

Western Blot on Day 7.

XCT790 treatment—Kidney organoids cultured in REGM media for 7 days were treated 

with 10μM of XCT790 for 48 hours followed by Immunostaining or RNA isolation. Human 

proximal tubule cells (HPTC) and LTL+ mouse PT cells were cultured in REGM media and 

treated with 10 μM of XCT790 or DMSO for 48 hours and 24 hours respectively.

qRT-PCR—RNA was isolated from cells, kidney organoids and kidneys tissue using 

Trizol (Invitrogen). 2 μg RNA was reverse transcribed using the cDNA archival kit (Life 

Technology), and qRT-PCR was run in the ViiA 7 System (Life Technology) machine using 

SYBRGreen Master Mix (Applied Biosystem) and gene-specific primers. The data were 

normalized and analyzed using the ΔΔCt method. The primers sequences used are shown in 

Table S6.

Western Blot—Cells were lysed in radioimmunoprecipitation assay buffer (RIPA; Cell 

Signaling Technology) and protein was quantified by BCA method (Thermo Fisher 

Scientific). Protein samples (10 to 30 μg) were separated by SDS-PAGE and then transferred 

to PVDF membranes. After blocking, for 30 min with 5% milk in TBST and three times 

washing, membranes were incubated overnight with primary antibody (COX IV 1:1000, 

OXPHOS 1:250, GAPDH 1:2000, PGC1a 1:500, SLC6A13 1:1000, SMA 1:1000, FN 

1:1000, ESRRA 1:2000, β-actin 1:20,000) in TBST (see KST). After three washes for 5 

min, membranes were incubated for 45 min at RT to 1 hour with secondary HRP-conjugated 

antibody (1:20,000) in TBS-T. The signal was developed with Immobilon forte western HRP 

substrate (Milipore) and measured using Odyssey®Fc Imaging System (LICOR) equipment 

and software. The following antibodies were used in this study are listed in key resource 

table.

Histological Analysis—Kidneys samples were fixed in 10% neutral formalin and 

paraffin-embedded sections were stained Periodic acid–Schiff (PAS) and hematoxylin 

and eosin (H&E) to analyze the histology of samples. Sirius-red staining (Boekel 

Scientific, #147122) was performed to determine the degree of fibrosis. We performed 

immunocyto- and -histochemistry on paraformaldehyde fixed cells and formalin- fixed, 

paraffin-embedded kidney sections. We used the following primary antibodies: (ESRRA 

(1:200), SLC6A13 (1:100), SLC34A1 (1:100), and SLC7A13 (1:100). Staining was 

visualized using peroxidase-conjugated antibodies to mouse immunoglobulin using the 

Vectastain Elite kit and 3,3-diaminobenzidine (DAB) (Vector Labs). For cell proliferation, 

we used Ki67 (1:150) primary antibody and Alexa Fluor 555 as secondary antibody, and 

nuclei was stained by Hoechst dye.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data Representation and Statistical Analysis—Student’s t-test was used to analyze 

differences between two groups, and One-way or Two-way ANOVA was used to analyze 
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intergroup differences (tukey’s multiple comparisons test). P-values less than 0.05 were 

considered statistically significant. The analysis was performed using GraphPad Prism 5 

(GraphPad software). Densitometry results of Western Blots were quantified using ImageJ 

software. All data are presented as mean ± SEM and other details such as the number of 

replicates and the level of significance is mentioned in figure legends and supplementary 

tables. For mice experiments, animals were randomly allocated to different groups prior the 

experiments. No samples or animals were excluded from analysis. Sample size estimation 

was not performed, and sample size was determined based on the number of available age 

and gender matched animals in the colony. For single-cell data analysis, statistical details are 

provided in designated method section. All samples were processed in blinded fashion.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The cellular diversity of diseased kidney samples.
(A) A schematic diagram illustrating the experimental procedure involving the digestion of 

whole-kidney tissue from 6 control and 2 FAN mice followed by sequencing using a 10x 

Genomics protocol. and transcriptomic analysis of 65,091 individual cells.

(B) Left, the UMAP of 29 distinct cell types identified by unsupervised clustering 

after excluding the proximal tubule cells. Right, the tSNE plot for the entire dataset 

including proximal tubule cells. Assigned cell types are summarized in right panel. 

GEC: glomerular endothelial cells, Endo: endothelial, Podo: podocyte, PT: proximal 

tubule, DLOH: descending loop of Henle, ALOH: ascending loop of Henle, DCT: distal 

convoluted tubule, CNT: connecting tubule, CD-PC: collecting duct principal cell, A-IC: 

alpha intercalated cell, B-IC: beta intercalated cell, CD-Trans: collecting duct transitional 

cell, Granul: granulocyte, Macro: macrophage, DC 11b+: CD11b+ dendritic cell, pDC: 

plasmacytoid DC, Baso: Basophile B: B lymphocyte, Treg: regulatory T cell, Tgd: gamma 

delta T cell, NK: natural killer cell.

(C) Bubble plots of cell cluster marker genes identified in control and FAN samples (size of 

the dot indicates the % positive cells, color indicates relative expression).

(D) Heatmap showing expression pattern of myeloid lineage markers.

(E) Gene expression feature plots of myeloid lineage cells projected onto the UMAP. Msrb1 
(Methionine Sulfoxide Reductase B1): Granul, C1qa (Complement C1q A Chain): Macro, 
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Cd209a (CD209 antigen-like protein A): DC 11b+, Cd24a (CD24a antigen): DC 11b-, Itgam 
(Integrin Subunit Alpha M): DC 11b+, and Fcer1a (Fc Fragment Of IgE Receptor Ia): Baso.

(F) Heatmap showing expression pattern of lymphoid lineage markers.

(G) Gene expression feature plots of lymphoid lineage cells projected onto the UMAP. 

Ccr7 (Chemokine C-C motif receptor 7): CD4 T, Foxp3 (Forkhead box P3): Treg, Il17re 
(Interleukin 17 receptor E): Tgd, Cxcr6 (Chemokine C-X-C motif receptor 6): NKT, Cd8a 
(CD8 antigen, alpha chain): CD8 effector, Klrb1c (Killer cell lectin-like receptor subfamily 

B member 1C): NK1–2, Cd7 (CD7 antigen): NK1 and Irf8 (Interferon regulatory factor 8): 

NK2
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Figure 2. Cell composition and cell type specific changes in kidney fibrosis.
(A) Differentially expressed genes (DEGs) in whole kidneys of control and FAN mice. 

Volcano plot, the x-axis indicates log2 fold change and Y-axis indicates statistical 

significance adjusted p −log10. Gene ontology analysis of genes showing higher (red) and 

lower (blue) in FAN kidneys.

(B) Cell type-specific expression of top DEGs identified in bulk RNA-seq analysis in the 

single-cell dataset. Mean expression values of the genes were calculated in each cluster. The 

color scheme is based on z-score distribution.

(C) Cell proportion changes in control and FAN kidneys revealed by single cell RNA-

sequencing. * indicates significant changes by proportion test.

(D) Cell proportion changes revealed by in silico deconvolution of bulk RNA sequencing 

data.

(E) The numbers of cell type-specific differentially expressed genes identified in control 

FAN kidneys in the 30 cell clusters.

(F) Volcano plot for differentially expressed genes (DEGs) between control and FAN 

proximal tubules identified in the single cell data. X-axis is log2 fold change and Y-axis 

is statistical significance adjusted p −log10.
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(G) Venn diagrams showing the overlaps between the identified differentially expressed 

genes in PT cell by scRNA-seq data and bulk RNA-seq data in control vs FAN kidneys (Up 

arrow: upregulated genes and down arrow : downregulated genes).

(H) Scatter plot showing the correlation of DEGs identified in PT cell and bulk data. X-axis 

shows the fold change expression in PT cells in the single cell data, Y-axis shows the fold 

change expression in whole kidney (bulk) samples.

Dhillon et al. Page 28

Cell Metab. Author manuscript; available in PMC 2022 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Heterogeneous proximal tubule cell populations in fibrotic kidneys
(A) Sub-clustering of PT cells into 5 sub-populations in control kidneys. Feature plots 

showing expression of key PCT (Slc5a2 and Slc5a12) and PST (Slc22a30) segment markers.

(B) RNA velocity analysis of control PT cells. Each dot is one cell and each arrow represent 

the time derivative of the gene expression state.

(C) Feature plots showing expression of key PCT (Slc5a12) and PST (Slc22a30) segment 

markers in control.

(D) Violin plots showing the expression patterns of markers across the PT cell sub-clusters 

in control. The y-axis shows the log-scale normalized read count.

(E) Sub-clustering of PT cells into 9 sub-populations in FAN kidneys. Feature plots 

showing expression of key PCT (Slc5a12) and PST (Slc22a30), Igfbp7 (precursor) and Cd74 
(immune) PT cell state markers.

(F) Violin plots showing the expression patterns of markers across the PT cell sub-clusters in 

FAN. The y axis shows the log-scale normalized read count.

(G) RNA velocity analysis of FAN PT cells. Each dot is one cell and each arrow represent 

the time derivative of the gene expression state.

(H) Feature plots showing expression of key PCT (Slc5a12) and PST (Slc22a30) and 

proliferating (MKi67) PT cell markers.
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Figure 4. Cell trajectory analysis identifies differentiation defect in proximal tubule in fibrosis
(A) Trajectory analysis of PT cells (including proliferating cells) using Monocle, including 

all control and FAN samples.

(B) Feature plots showing expression levels of key cell state markers (Mki67: proliferating 

cell, Slc5a2:PCT, Slc13a3:PST) on the cell trajectory.

(C) Cell trajectory analysis narrowed for PST cluster (cells under red circle in panel A). 

Batches 1–6 represent healthy kidneys, while batches 7–8 were obtained from FAN samples.

(D) Feature plots showing expression levels of key cell state markers (Mki67: proliferating 

cell, Slc22a30:PST, Slc13a3:PST) on the cell trajectory.

(E) Distributions of cells along the pseudo-time trajectory. Note the shift of Normal (blue) 

and FAN samples (yellow).

(F) Functional annotation (gene ontology) analysis of genes showing changes along the 

trajectory (cells highlighted by red and blue circles on panel C).

(G) Average expression levels of the highly variable genes that are involved in lipid 

metabolism along the cell trajectory.

(H) Feature plots showing expression levels of the lipid metabolism genes (Acsm3, Mogat1, 
Ppara) along the cell trajectory.

(I) Cell trajectory analysis for PST and precursor clusters identified in control kidneys 

(Figure 3A).
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(J) Heatmap showing the expression changes of highly variable FAO genes along the cell 

trajectory in control kidneys.

(K) Cell trajectory analysis for PST and precursor clusters identified in FAN samples 

(Figure 3E).

(L) Heatmap showing the expression changes of highly variable FAO genes along the cell 

trajectory in FAN samples.
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Figure 5. FAO and OXPHOS drives proximal tubule differentiation in human kidney organoid.
(A) Experimental scheme for the generation of human kidney organoid. Briefly, hPSCs were 

first differentiated into posterior primitive streak (PPS) fate then to intermediate mesoderm 

(IM). Cells were aggregated (day 0, D0) and further differentiated in 3D culture into renal 

vesicle (RV) and nephron stage. At D20 of differentiated kidney organoids were stained for 

podocalyxin (PODXL: podocyte marker, yellow), Wilm’s tumor 1 (WT1, red), and Lotus 

tetragonolobus Lectin (LTL: PT marker, green). Scale Bar=200μM.

(B) Transcript expression levels (in bulk organoids) of PPARGC1A, SLC3A1, SLC5A12 
and SLC27A2 on day 4, 8, 12, 16 and 20 of organoid differentiation. Data are represented 

as mean ± SEM. n = 2 independent experimental replicates analyzed from a pool of 12 

organoids/group.

(C) Single-cell RNA-seq analysis of human kidney organoid. UMAP showing 9 distinct cell 

types identified by unsupervised clustering. Mesench: mesenchymal cells, CD: collecting 

duct, Endo: endothelial cells, cycling: cell cycling cells, Podo: podocytes, LOH: loop of 

Henle and PT: proximal tubule.

(D) Feature plots of key cell type markers (DES, COL21A1, GATA3; mesenchyme, 

NPHS1; podocytes, SLC3A1;PT cell, SLC12A1;LOH, PCNA, CCNA2;proliferating cells, 

PECAM11;endothelial cells).

Dhillon et al. Page 32

Cell Metab. Author manuscript; available in PMC 2022 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(E) Expression SIX1 (nephron progenitor marker), MKI67 (proliferation maker) and 

SLC3A1 (PT cell marker) along the differentiation trajectory.

(F) Heatmap showing the expression changes of highly variable genes involved in FAO 

identified (Figure 4J, 4L) along the organoid cell differentiation trajectory.

(G) Expression level of genes associated with FAO (PPARGC1A, ACOX2, and CPT1A), 

and PT cell markers (ATP11A, ACOX12, SLC27A2, SLC34A1, SLC3A1, SLC5A2, 

and SLC6A19) in kidney organoids cultured in EGM and REGM media. The data are 

represented as mean ± SEM. n ≥ 2 independent experimental replicates from a pool of 12 

organoids/group; *P < 0.05, **P < 0.01 ***P < 0.001 and ****P < 0.0001 paired Student’s 

t-test.

(H) Quantification of changes in the protein expression OXPHOS proteins in organoids 

cultured in EGM or REGM. Tubulin is used as loading control. The data are represented as 

mean ± SEM. n = 3 independent experimental replicates from a pool of 16 organoids/group; 

*P < 0.05, **P < 0.01 ***P < 0.001 and ****P < 0.0001 two-way ANOVA, followed by 

Bonferroni post-test.

(I) Representative immunofluorescence staining of LTL (green) and PODXL (red) in kidney 

organoids cultured in EGM and REGM. Scale Bar=400μM (EGM) and 500μM (REGM).

(J) Quantification of LTL positive cells in kidney organoids cultured in EGM or REGM. 

Y-axis represent relative fluorescence. The data are presented as mean ± SEM. n = 3 

organoids/group.
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Figure 6. ESRRA drives the PT differentiation state and protects from kidney disease
(A) Top transcription factor-binding motifs significantly enriched in PT cell-specific open 

chromatin regions that are identified from mouse single cell ATAC-sequencing. P-values and 

percent of target sequences among all open chromatin regions are shown in the table on 

right.

(B) Gene Set Enrichment Analysis (GSEA) enrichment plot of ESRRA target genes along 

PST cell differentiation.

(C) Heatmap showing the expression changes of ESRRA target genes along the PST 

differentiation trajectory (ordered from Figure 4C) grouped by functional annotation (kidney 

development, transmembrane transport and lipid metabolism).

(D) Oxygen consumption rate (OCR) (pmol/min/μg of protein) and mtDNA copy number 

(ratio of mtDNA to nuclear DNA) in LTL+ PT cells transfected with non-target siRNA 

(siNT: black) and ESRRA siRNA (siEsrra: Red) for 2 days. * P < 0.05, ** P < 0.01, *** P < 

0.001 vs. siNT.

(E) OCR and mtDNA copy no. in LTL+ PT cells transfected with vector alone (black) and 

ESRRA expressing vector (ESSRA OE: Blue) for 48 hours. * P < 0.05, ** P < 0.01, *** P < 

0.001 vs. vector.
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(F) Protein levels of OXPHOS, ESRRA, SLC6A13, and SLC34A1 in LTL+ PT cells 

transfected with siEsrra (upper panel) or ESRRA OE (lower panel) shown by Western Blot. 

β-actin was used as loading control.

(G) Relative mRNA levels of Esrra and variety of SLCs markers (Slc7a13, Slc6a13, 
Slc22a6, Slc5a11, Slc27a2, and Slc34a1) in LTL+ PT cells transfected with siNT, siEsrra 
(red) and ESRRA OE plasmid (blue). * P < 0.05, ** P < 0.01, *** P < 0.001 vs. siNT/

vector.

(H) ChIP-qPCR of ESRRA showed enrichment in genes including SLCs markers (Slc7a13, 
Slc6a13, Slc22a28, Slc5a11, Slc6a19, and Slc13a3) and metabolic genes (Adipor2 and 

Acadm) in LTL+ PT cells compared to IgG control.

(I) Relative gene expression of Esrra measured by qRT-PCR in kidneys of wild type, Esrra 

knock-out mice, sham or FAN treated mice. * P < 0.05, ** P < 0.01, *** P < 0.001 vs. WT.

(J) Protein levels of SLC6A13, SLC34A1, FN, SMA, and ESRRA in kidneys of wild type, 

Esrra knock-out mice, sham or FAN treated mice were analyzed by Western Blot. GAPDH 

was used as loading control.
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Figure 7. ESRRA-driven metabolic changes correlate with kidney disease severity in patient 
samples
(A) Relative expression levels of the highly variable lipid metabolism genes that were 

identified along the mouse PT cell differentiation trajectory (Figure 4) in 91 microdissected 

human tubules. The human kidney samples were ordered based on the degree of fibrosis.

(B) Heatmap showing Pearson’s correlation coefficient between lipid metabolism genes, PT 

cell markers and fibrosis markers in the human samples (yellow positive correlation, purple 

negative correlation, intensity indicates the strength of correlation).

(C) Heatmap showing the relative cell fraction changes, calculated by in silico deconvolution 

(CellCODE) of the 91 human kidney RNA profiling data. The human kidney samples were 

ordered based on their fibrosis scores.

(D) Heatmap showing correlation coefficients between lipid metabolism genes, PT cell 

markers and transmembrane transport genes that contain ESRRA binding motifs in their 

promoter or gene body and fibrosis markers in the human samples (yellow positive 

correlation, purple negative correlation, intensity indicates the strength of correlation).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Primary antibodies for Immunoblots

Anti-COX IV antibody Abcam Cat#Ab16056

Total OXPHOS Rodent WB Antibody Cocktail Abcam Cat#ab110413

GAPDH CST(14C10) Cat#2118

PGC1a Calbiochem Cat#KP9803

SLC6A13 Invitrogen Cat#PA5-68331

α-Tubulin Sigma Cat# T9026

SMA Sigma Cat# A5228

FN Abcam Cat#Ab2413

ESRRA CST Cat#CS 13826

β-actin Millipore Cat#A3854

Secondary antibodies for Immunoblots

Anti-mouse IgG, HRP-linked Antibody CST Cat#CS 7076S

Anti-rabbit IgG, HRP-linked Antibody CST Cat# CS 7074S

Antibodies for Immunohistochemistry (IHC)

ESRRA CST Cat#CS 13826

SLC34A1 Novus Biologicals Cat#NBP2-42216

SLC7A13 Creative Diagnostics Cat#CABT-BL3359

SLC6A13 Invitrogen Cat#PA5-68331

Antibodies for Immunofluorescence (IF)

LTL Vector laboratories Cat#FL-1321-2

PODXL Thermofischer Cat# 39-3800

IRDye®680RD LI-COR Cat# 926-68070

Ki67 CST Cat# CS12202

A555 Life technology Cat# A31572

Antibodies for FACS

LTL Vector laboratories Cat#B-1325

Biological Samples

Human kidney samples Chung et al., 2019 N/A

Chemicals, Peptides, and Recombinant Proteins

MitoTracker Green Life Technology Cat#M7514

Collagenase IV Life Technologies Cat#17104019

Trypan blue solution Sigma Cat#T8154

Protease inhibitor cocktail Roche Cat#11836153001

EDTA solution Life Technologies Cat#15575-038

Accumax Stem Cell Technologies Cat#07921
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REAGENT or RESOURCE SOURCE IDENTIFIER

Phosphate buffered saline (PBS) pH 7.4 (1x) Life Technologies Cat#1001-015

Essential 8 medium Life Technologies Cat#A1517001

Vitronectin Life Technologies Cat#A14700

Fenofibrate Sigma CAS#49562-28-9

RPMI 1640 Gibco Cat#21875-034

EGM media Lonza Cat#CC-3162

REGM media Lonza Cat#CC-4127

RIPA buffer Cell signaling Cat#9806

SYBR Green PCR Master Mix Applied Biosystem Cat#KK4605

Fluoromount-G Southern Biotech Cat# 0100-01

XCT790 Tocris Cat#3928

Folic Acid Fisher Scientific Cat#AC216630500

Lipofectamine 3000 ThermoFisher Cat#11668027

CHIR99021 Merck Cat#SML1046; CAS: 252917-06-9

Recombinant human FGF9 PeproTech Cat#100-23

Heparin Merck Cat#H3149; CAS: 9041-08-1

Activin A Vitro Cat#338-AC-050

Dimethyl Sulfoxide (DMSO) Merck Cat#D2650; CAS: 67-68-5

Cell culture grade distilled water Life Technologies Cat#15230-089

Paraformaldehyde solution 4% in PBS Santa Cruz Cat#sc-281692

Hoechst Molecular probes Cat# H-1399

Critical Commercial Assays

BCA Protein Assay Kit Thermo Scientific Cat#23225

Multi Tissue dissociation kit Miltenyi Cat#130-110-201

Anti-Biotin microbeads Miltenyi Cat#130-090-485

cDNA Reverse Transcription Kit Applied Biosystems Cat#4368813

Rneasy Mini Kit Qiagen Cat#74106

MAGnify™ ChIP Kit Thermo Scientific Cat# 492024

DNeasy Blood & Tissue Kits Qiagen Cat#69506

Seahorse XF Cell Mito Stress Test kit Agilent Technologies Cat#103708-100

Seahorse XFe96 FluxPak mini Agilent Technologies Cat#102601-100

VECTASTAIN® Elite ABC-HRP Kit Vector laboratories Cat# PK-6100

Streptavidin/Biotin blocking kit Vector laboratories Cat#SP-2002

Deposited Data

scATAC seq data (Cao et al., 2018) GSE117089

scRNA-seq of FAN kidneys of mice GEO GSE156686

scRNA seq data kidney organoids GEO GSE152765

Experimental Models: Organisms/Strains

ESRRA Knock-out Dr. Vincent Giguère Research Lab McGill University
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REAGENT or RESOURCE SOURCE IDENTIFIER

Oligonucleotides

Primers for qPCR, mtDNA copy no., and ChIP-
qPCR, see Table S6

This paper N/A

Recombinant DNA

pAd-track-Esrra Dr. Liming Pei lab University of Pennsylvania

pcDNA3.1-Ppara Dr. Liming Pei lab University of Pennsylvania

pc-DNA3.1-HNF1B Dr. Liming Pei lab University of Pennsylvania

pAd-track-HNF4A Dr. Liming Pei lab University of Pennsylvania

Experimental Models: Cell Lines

ES[4] Human Embryonic Stem Cell line The National Bank of Stem Cells 
(ISCIII,Madrid)

https://www.isciii.es/

Software and Algorithms

ImageJ NIH https://imagej.nih.gov/ij

Prism 5 Graphpad Software https://www.graphpad.com/scientific-software/
prism

Image Studio Lite Version 5.2 software LICOR https://www.licor.com/bio/image-studio-lite/d5

FlowJo Software FlowJo N/A

Cell Ranger 2.0 10x Genomics https://support.10xgenomics.com/single-cell-
gene-expression/software/downloads/latest

Seurat R package 2.3.4 open source https://satijalab.org/seurat/

DoubletFinder open source https://github.com/chris-mcginnis-ucsf/
DoubletFinder

STAR-2.4.1d open source https://github.com/alexdobin/STAR

HTSeq-0.6.1 open source https://htseq.readthedocs.io/en/release_0.11.1/
history.html#version-0-6-1

DESeq2 1.10.1 open source https://bioconductor.org/packages/release/bioc/
html/DESeq2.html

CellCODE open source https://github.com/mchikina/CellCODE/

Velocyto open source https://github.com/velocyto-team/velocyto.R

Monocle2 2.4.0 open source http://cole-trapnell-lab.github.io/monocle-release/

Other
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