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Whole-genome sequencing reveals host 
factors underlying critical COVID-19
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Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host 
genetic variation influences the development of illness requiring critical care1 or 
hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of 
Mortality in Critical Care) study enables the comparison of genomes from individuals 
who are critically ill with those of population controls to find underlying disease 
mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals 
compared with 48,400 controls to discover and replicate 23 independent variants 
that significantly predispose to critical COVID-19. We identify 16 new independent 
associations, including variants within genes that are involved in interferon signalling 
(IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen 
secretor status (FUT2). Using transcriptome-wide association and colocalization to 
infer the effect of gene expression on disease severity, we find evidence that implicates 
multiple genes—including reduced expression of a membrane flippase (ATP11A), and 
increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization 
provides evidence in support of causal roles for myeloid cell adhesion molecules 
(SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially 
druggable targets. Our results are broadly consistent with a multi-component model 
of COVID-19 pathophysiology, in which at least two distinct mechanisms can 
predispose to life-threatening disease: failure to control viral replication; or an 
enhanced tendency towards pulmonary inflammation and intravascular coagulation. 
We show that comparison between cases of critical illness and population controls is 
highly efficient for the detection of therapeutically relevant mechanisms of disease.

Critical illness in COVID-19 is both an extreme disease phenotype and 
a relatively homogeneous clinical definition; it includes patients with 
hypoxaemic respiratory failure5 with acute lung injury6, and excludes 
many patients with non-pulmonary clinical presentations7, who are 
known to have divergent responses to therapy8. In the UK, individu-
als in the critically ill group are younger, less likely to have significant 

comorbidity and more severely affected than a general hospitalized 
cohort5, characteristics which may amplify observed genetic effects. 
In addition, as development of critical illness is in itself a key clinical 
end-point for therapeutic trials8, using critical illness as a phenotype 
in genetic studies enables the detection of directly therapeutically 
relevant genetic effects1.
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Using microarray genotyping in 2,244 cases, we previously discov-
ered that critical COVID-19 is associated with genetic variation in the 
host immune response to viral infection (OAS1, IFNAR2 and TYK2) and 
the inflammasome regulator DPP91. In collaboration with international 
groups, we extended these findings to include a variant near TAC4 
(rs77534576)3. Several variants have been associated with milder phe-
notypes, including the ABO blood-type locus2, a pleiotropic inversion 
in chr17q21.319 and associations in five additional loci, including the T 
lymphocyte-associated transcription factor, FOXP43. An enrichment of 
rare loss-of-function variants in candidate interferon signalling genes 
has been reported4, but this has yet to be replicated at genome-wide 
significance thresholds10,11.

In partnership with Genomics England, we performed whole-genome 
sequencing (WGS) to improve the resolution and deepen the 
fine-mapping of significant signals and thereby provide further bio-
logical insight into critical COVID-19. Here we present results from 
a cohort of 7,491 critically ill patients from 224 intensive care units, 
compared with 48,400 control individuals, describing the discovery 
and validation of 23 gene loci for susceptibility to critical COVID-19 
(Extended Data Fig. 1).

Genome-wide association study analysis
After quality control procedures, we used a logistic mixed model regression, 
implemented in SAIGE12, to perform association analyses with unrelated 
individuals (critically ill cases, n = 7,491; controls, n = 48,400 (100,000 
Genomes Project (100k) cohort, n = 46,770; mild COVID-19, n = 1,630) 
(Methods, Supplementary Table 2). A total of 1,339 of these cases were 
included in the primary analysis for our previous report1. Genome-wide 
association studies (GWASs) were performed separately for genetic 
ancestry groups (ncases/ncontrols: European (EUR) 5,989/42,891; South Asian 
(SAS) 788/3,793; African (AFR) 440/1,350; East Asian (EAS) 274/366), 
and combined by inverse-variance-weighted fixed effects meta-analysis 
using METAL (Methods). We established the independence of signals 
using GCTA-cojo, and we validated this with conditional analysis using 
individual-level data with SAIGE (Methods, Supplementary Table 6). To 
reduce the risk of spurious associations arising from genotyping or pipeline 
errors, we required supporting evidence from variants in linkage disequi-
librium (LD) for all genome-wide-significant variants: observed z-scores for 
each variant were compared with imputed z-scores for the same variant, 
with discrepant values being excluded (see Methods, Supplementary Fig. 2).

Table 1 | Lead variants from independent association signals in the per-population GWAS and multi-ancestry meta-analysis

chr:pos (hg38) rsID REF ALT RAF OR ORCI P Phgib2.23m Preg Consequence Gene Cit.

1:155066988 rs114301457 C T* 0.0058 2.4 1.82–3.16 6.8 10 10× − 0.00011* − Synonymous EFNA4 −

1:155175305‡ rs7528026 G A* 0.032 1.4 1.24–1.55 7.16 10 9× − 0.00012* − Intron TRIM46 −

1:155197995 rs41264915 A* G 0.89 1.3 1.19–1.37 1.02 10 12× − 1.51× −10 9* − Intron THBS3 3

2:60480453‡ rs1123573 A* G 0.61 1.1 1.09–1.18 9.85× −10 10 0.000018* − Intron BCL11A −

3:45796521 rs2271616 G T* 0.14 1.3 1.21–1.37 9.9× −10 17 4.95× −10 9* − 5′ UTR SLC6A20 3

3:45859597 rs73064425 C T* 0.077 2.7 2.51–2.94 1.97 10 133× − 1.02× −10 77* − Intron LZTFL1 2

3:146517122 rs343320 G A* 0.081 1.2 1.16–1.35 4.94× −10 9 0.00028* − Missense PLSCR1 −

5:131995059 rs56162149 C T* 0.17 1.2 1.13–1.26 7.65× −10 11 0.00074* − Intron ACSL6 −

6:32623820 rs9271609 T* C 0.65 1.1 1.09–1.19 3.26× −10 9 0.89 − − HLA-DRB1 −

6:41515007‡ rs2496644 A* C 0.015 1.4 1.32–1.60 7.59 10 15× − 3.17 10 7× − * − Intron LINC01276 3

9:21206606 rs28368148 C G* 0.013 1.7 1.45–2.09 1.93 10 9× − 0.0024 0.00089 Missense IFNA10 −

11:34482745 rs61882275 G* A 0.62 1.1 1.10–1.20 1.61× −10 10 1.9× −10 10* − Intron ELF5 −

12:132489230 rs56106917 GC G* 0.49 1.1 1.09–1.18 2.08× −10 9 0.00047* − Upstream FBRSL1 −

13:112889041 rs9577175 C T* 0.23 1.2 1.12–1.24 3.71× −10 11 1.29 10 6× − * − Downstream ATP11A −

15:93046840‡ rs4424872 T* A 0.0079 2.4 1.87–3.01 8.61 10 13× − − 0.29 Intron RGMA −

16:89196249 rs117169628 G A* 0.15 1.2 1.12–1.26 4.4 10 9× − 6.57× −10 9* − Missense SLC22A31

17:46152620 rs2532300 T* C 0.77 1.2 1.10–1.22 4.19 10 9× − 2.49× −10 9* − Intron KANSL1 9

17:49863260 rs3848456 C A* 0.029 1.5 1.33–1.70 4.19 10 11× − 1.34× −10 7* − Regulatory . 3

19:4717660 rs12610495 A G* 0.31 1.3 1.27–1.38 3.91× −10 36 5.74× −10 19* − Intron DPP9 1

19:10305768 rs73510898 G A* 0.093 1.3 1.19–1.37 1.57 10 11× − 0.00016* − Intron ZGLP1 −

19:10352442 rs34536443 G C* 0.05 1.5 1.36–1.65 6.98× −10 17 4.06 10 11× − * − Missense TYK2 1

19:48697960 rs368565 C T* 0.44 1.1 1.1–1.2 3.55× −10 11 0.00087* − Intron FUT2 −

21:33230000 rs17860115 C A* 0.32 1.2 1.19–1.3 9.69× −10 22 1.77 10 18× − * − 5′ UTR IFNAR2 1

21:33287378 rs8178521 C T* 0.27 1.2 1.12–1.23 3.53 10 12× − 8.02× −10 6* − Intron IL10RB −

21:33959662 rs35370143 T TAC* 0.083 1.3 1.17–1.36 1.24 10 9× − 2.33× −10 7* − Intron LINC00649 −

Variants and the reference and alternative allele are reported according to GRCh38. The three variants discovered in multi-ancestry meta-analysis but not in the European ancestry GWAS are 
labelled with ‡, and † indicates genome-wide significant heterogeneity. REF and ALT columns indicate the reference and alternative alleles; an asterisk (*) indicates the risk allele. For each  
variant, we report the risk allele frequency in Europeans (RAF), the odds ratio and 95% confidence interval (OR and ORCI), and the association P value. ‘Consequence’ indicates the predicted 
worst consequence type across GENCODE basic transcripts predicted by VEP (v.104), and ‘Gene’ indicates the VEP-predicted gene, but not necessarily the causal mediator. For the HLA locus, 
the gene that was identified by HLA allele analysis is displayed. An asterisk (*) next to the replication P value (Phgib2.23m - HGI B2 and 23andMe; or Preg- Regeneron) indicates that the lead signal 
(from multi-ancestry meta-analysis) is replicated with a Bonferroni-corrected P < 0.002 (0.05/25) with a concordant direction of effect. The ‘Cit.’ column lists citation numbers for the first  
publication of confirmed genome-wide associations with critical illness or (in brackets) any COVID-19 phenotype.
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In population-specific analyses, we discovered 22 independent 
genome-wide-significant associations in the EUR ancestry group (Fig. 1, 
Supplementary Fig. 11, Table 1) at a P value threshold adjusted for mul-
tiple testing (2.2 × 10−08; Supplementary Table 5). In multi-ancestry 
meta-analysis, we identified an additional three independent 
genome-wide-significant association signals (Fig. 1, Table 1).

To assess the sensitivity of our results to mismatches of demographic 
characteristics between cases and controls (Supplementary Figs. 9, 10),  
we performed an age-, sex- and body mass index (BMI)-matched case–
control analysis (Supplementary Figs. 18–21). As there is a theoretical 
risk of mismatch between cases and 100,000 Genomes Project partici-
pants in risk factors for exposure (for example, shielding behaviour) 
or susceptibility to critical COVID-19 (for example, immunosuppres-
sion), we performed a sensitivity analysis using only the cohort with 
mild COVID-19 (see above; Supplementary Table 10). In both of these 
analyses, allele frequencies and directions of effect were concordant 
for all lead signals.

We inferred credible sets of variants using Bayesian fine-mapping 
with susieR13, by analysing the GWAS summaries of 17 regions of 
genomic length 3 Mb that were flanking groups of lead signals. We 
obtained 22 independent credible sets of variants for EUR and an addi-
tional 2 from the trans-ancestry meta-analysis with a posterior inclusion 
probability greater than 0.95 (Extended Data Table 1, Supplementary 
Information). Fine-mapping of the association signals revealed puta-
tive causal variants for both previously reported and novel association 
signals (see Supplementary Information, Extended Data Table 1). In 12 
out of the 24 fine-mapped signals, the credible sets included 5 or fewer 
variants, and for 8 signals we detected variants with predicted missense 
or worse consequence across each credible set (Extended Data Table 1). 
We were able to fine-map multiple independent signals at previously 
identified loci (Fig. 3, Extended Data Figs. 2, 4). For example, the signal 
in the 3p21.31 region2, was fine-mapped into two independent associa-
tions, with the credible set for the first refined to a single variant in the 

5′ untranslated region (UTR) of SLC6A20 (chr3:45796521:G:T, rs2271616, 
odds ratio (OR): 1.29, 95% confidence interval (CI):1.21–1.37), and the 
second credible set including multiple variants in downstream and 
intronic regions of LZTFL1 (Fig. 3). Among the novel signals, at 3q24 and 
9p21.3 we detected missense variants that affect PLSCR1 and IFNA10, 
respectively (chr3:146517122:G:A, rs343320, p.His262Tyr, OR: 1.24, 95% 
CI: 1.15–1.33, CADD: 22.6; chr9:21206606:C:G, rs28368148, p.Trp164Cys, 
OR:1.74, 95% CI: 1.45–2.09, CADD: 23.9). Both are predicted to be del-
eterious by the Combined Annotation Dependent Depletion (CADD) 
tool14. Structural predictions for these variants suggest functional 
effects (Extended Data Fig. 5). We assessed whether the main signals of 
this study were underlain by rarer variants with a lower minor allele fre-
quency (MAF) (less than 0.02%) than our GWAS default threshold (less 
than 0.5%), by including rarer variant summaries when fine-mapping, 
but no additional variants were added to the main credible sets (Sup-
plementary Table 9).

Consistent with our expectation that genetic susceptibility has a 
stronger role in younger individuals, age-stratified analysis (individuals 
of younger than 60 years old versus individuals of 60 years old or above) 
in the EUR group revealed a signal in the 3p21.31 region with a signifi-
cantly stronger effect in the younger age group (chr3:45801750:G:A, 
rs13071258, OR: 3.34, 95% CI: 2.98–3.75 versus OR: 2.1, 95% CI 1.88–2.34), 
which is in strong LD (r2 = 0.947) with the main GWAS signal indexed 
by rs73064425. Sex-specific analysis did not reveal significant effects 
(Supplementary Fig. 17).

Replication
For replication, we performed a meta-analysis of summary statistics 
generously shared by 23andMe and the COVID-19 Host Genetics Ini-
tiative (HGI) data freeze 6 (B2). As a previous analysis of GenOMICC1 
contributes a substantial part of the signal at each locus in HGI v.6, 
and leave-one-out analyses were not available, we removed the signal 

EFNA4
THBS3

SLC6A20

LZTFL1

PLSCR1
ACSL6

HLA-DRB1 IFNA10 ELF5 FBRSL1
ATP11A

RGMA

SLC22A31
KANSL1

DPP9

ZGLP1 TYK2

FUT2

IFNAR2

IL10RB

LINC00649

2

4

8

16

32

64

128

192

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X
Chromosome

–l
og

10
(P

)

a
= 1.04

0

50

100

0 2 4 6
Expected –log10(P)

O
b

se
rv

ed
 –

lo
g 10

(P
)

EFNA4

TRIM46

THBS3
BCL11A

SLC6A20

LZTFL1

PLSCR1
ACSL6

HLA-DRB1

LINC01276

IFNA10
ELF5 FBRSL1

ATP11A

SLC22A31

KANSL1

DPP9

ZGLP1

TYK2

FUT2

IFNAR2

IL10RB

LINC00649

2

4

8

16

32

64

128

192

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X
Chromosome

b

0

50

100

150

0 2 4 6

–l
og

10
(P

)

O
b

se
rv

ed
 –

lo
g 10

(P
)

Expected –log10(P)

= 1.01

Fig. 1 | GWAS results for the EUR ancestry group, and multi-ancestry 
meta-analysis. Manhattan plots are shown on the left and quantile–quantile 
(QQ) plots of observed versus expected P  values on the right, with genomic 
inflation (λ) displayed for each analysis. Highlighted results in blue in the 
Manhattan plots indicate variants that are LD-clumped (r2 = 0.1, P2 = 0.01, EUR 
LD) with the lead variants at each locus. Gene name annotation indicates genes 

that are affected by the predicted worst consequence type of each lead variant 
(annotation by Variant Effect Predictor (VEP)). For the HLA locus, the gene that 
was identified by HLA allele analysis is annotated. The GWAS was performed 
using logistic regression and meta-analysed by the inverse variant method. 
The red dashed line shows the Bonferroni-corrected P value: P = 2.2 × 10−8.
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from GenOMICC cases in HGI v.6 using mathematical subtraction to 
ensure independence (Methods). Using LD clumping to find variants 
genotyped in both the discovery and replication studies, we required 
P < 0.002 (0.05/25) and concordant direction of effect (Table 1, Sup-
plementary Table 8) for replication. We interrogated two variants that 
failed replication in this set in a second GWAS meta-analysis of hospi-
talized patients with COVID-19 from UK Biobank, AncestryDNA, Penn 
Medicine Biobank and Geisinger Health Systems, which included a 
total of 9,937 individuals who were hospitalized with COVID-19 and 
1,059,390 control individuals. This led to a further successful replicated 
finding, in IFNA10 (Table 1).

We replicated 23 of the 25 significant associations that were iden-
tified in the population-specific and/or multi-ancestry GWASs. One 
of the non-replicated signals (rs4424872) corresponds to a rare 
variant that may not be well represented in the replication datasets— 
which are dominated by single-nucleotide polymorphism (SNP) genotyp-
ing data—but which also had significant heterogeneity among ancestries. 
The second non-replicated signal is within the human leukocyte antigen 
(HLA) locus, which has complex LD (see below).

HLA region
The lead variant in the HLA region, rs9271609, lies upstream of the 
HLA-DQA1 and HLA-DRB1 genes. To investigate the contribution of 
specific HLA alleles to the observed association in the HLA region, 
we imputed HLA alleles at a four-digit (two-field) level using HIBAG15. 
The only allele that reached genome-wide significance was 
HLA-DRB1*04:01 (OR: 0.80, 95% CI: 0.75–0.86, P = 1.6 × 10−10 in EUR), 
which has a stronger P value than the lead SNP in the region (OR: 0.88, 
95% CI: 0.84–0.92, P = 3.3 × 10−9 in EUR) and is a better fit to the data 
(Akaike information criterion (AIC): AICDRB1*04:01 = 30,241.34; AICleadSNP =  
30,252.93) (Extended Data Fig. 6). HLA-DRB1*04:01 has been previ-
ously reported to confer protection against severe disease in a small 
cohort of European ancestry16.

Gene burden testing
To assess the contribution of rare variants to critical illness, we 
performed gene-based analysis using SKAT-O as implemented in 

SAIGE-GENE17 on a subset of 12,982 individuals from our cohort (7,491 
individuals with critical COVID-19 and 5,391 control individuals), for 
which the genome-sequencing data were processed with the same 
alignment and variant calling pipeline. We tested the burden of rare 
(MAF < 0.5%) variants considering the predicted variant consequence 
type (tested variant counts provided in the Supplementary Informa-
tion). We assessed burden using a strict definition for damaging vari-
ants (high-confidence putative loss-of-function (pLoF) variants as 
identified by LOFTEE18) and a lenient definition (pLoF plus missense 
variants with CADD ≥ 10)14, but found no significant associations at a 
gene-wide-significance level. Moreover, all individual rare variants 
included in the tests had P values greater than 10−5.

Consistent with other recent work11, we did not find any significant 
gene burden test associations among the 13 genes previously reported 
from an interferon-pathway-focused study4 (tests for all genes had 
P > 0.05; Supplementary Information), and we did not replicate the 
reported association19–21 in TLR7 (EUR P = 0.30 for pLoF and P = 0.075 
for missense variants).

Transcriptome-wide association study analysis
To infer the effect of genetically determined variation in gene expression 
on disease susceptibility, we performed a transcriptome-wide associa-
tion study (TWAS) using gene expression data (GTEx v.8; ref. 22) for two 
disease-relevant tissues: lung and whole blood. We found significant 
associations between critical COVID-19 and predicted expression in lung 
(14 genes) and blood (6 genes) (Supplementary Fig. 23) and in an all-tissue 
meta-analysis (GTEx v.8; 51 genes) (Supplementary Fig. 24). Expression 
signals for 16 genes significantly colocalized with susceptibility (Fig. 2). 
As the LD structure of the HLA is complex, we only assessed colocalization 
for the significant association, HLA-DRB1. Although it was not significant 
in our TWAS analysis, expression quantitative trait loci (eQTLs) in the 
proximity of the association significantly colocalize with the GWAS signal 
for both blood and lung (both PPH4 > 0.8; Supplementary Information).

We repeated the TWAS analysis using models of intron excision rate 
from GTEx v.8 to obtain a splicing TWAS, which revealed significant 
signals in lung (16 genes) and whole blood (9 genes), and in an all-tissue 
meta-analysis (33 genes); 11 of these had strongly colocalizing splicing 
signals (Supplementary Information).
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Fig. 2 | Gene-level Manhattan plot showing results from the TWAS 
meta-analysis and highlighting genes that colocalize with GWAS signals or 
have strong metaTWAS associations. The highlighting colour is different for 
the lung and blood tissue data that were used for colocalization, and we also 
distinguish loci that were significant in both. Results are grouped according to 
two classes for the posterior probability of colocalization (PPH4): P > 0.5 and 

P > 0.8. If a variant is placed in both classes, then the colour that corresponds to 
the higher probability class is shown. Arrowheads indicate the direction of 
change in gene expression associated with an increased disease risk. The red 
dashed line shows the Bonferroni-corrected significance threshold for the 
metaTWAS analysis at P = 2.3 × 10−6.
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Mendelian randomization
We performed generalized summary-data-based Mendelian randomi-
zation (GSMR)23 in a replicated outcome study design using the pro-
tein quantitative trait loci (pQTLs) from the INTERVAL study24. GSMR 
incorporates information from multiple independent SNPs and pro-
vides stronger evidence of a causal relationship than single-SNP-based 
approaches. Of 16 proteome-wide-significant associations in this study, 
8 were replicated in an external dataset at a Bonferroni-corrected  
P value threshold of P < 0.0031 (P < 0.05/16; Extended Data Table 2, 
Extended Data Fig. 7) .

Discussion
We report 23 replicated genetic associations with critical COVID-19, which 
were discovered in only 7,491 cases. This demonstrates the efficiency 
of the design of the GenOMICC study, an open-source25 international 
research programme (https://genomicc.org) that focuses on extreme 
phenotypes: patients with life-threatening infectious disease, sepsis, 
pancreatitis and other critical illness phenotypes. GenOMICC detects 
greater heritability and stronger effect sizes than other study designs 
across all variants (Supplementary Figs. 22, 14). In COVID-19, critical 
illness is not only an extreme susceptibility phenotype, but also a more 
homogeneous one: we have shown previously that critically ill patients 
with COVID-19 are more likely to have the primary disease process—
hypoxaemic respiratory failure5—and that patients in this group have a 
divergent response to immunosuppressive therapy compared to other 
hospitalized patients8. We detect distinct signals at several of the associ-
ated loci, in some cases implicating different biological mechanisms.

Five of the variants associated with critical COVID-19 have direct roles 
in interferon signalling and broadly concordant predicted biological 
effects. These include a probable destabilizing amino acid substitu-
tion in a ligand, IFNA10 (Trp164Cys, Extended Data Fig. 5), and—as we 
reported previously1—reduced expression of a subunit of its receptor 
IFNAR2 (Fig. 2). IFNAR2 signals through a kinase that is encoded by 
TYK21. Although the lead variant in TYK2 in WGS is a protein-coding 
variant with reduced STAT1 phosphorylation activity26, it is also associ-
ated with significantly increased expression of TYK2 (Fig. 2, Methods). 
Fine-mapping reveals a significant association with an independent 
missense variant in IL10RB, a receptor for type III (lambda) interferons 
(rs8178521; Table 1). Finally, we detected a lead risk variant in phos-
pholipid scramblase 1 (chr3:146517122:G:A, rs343320; PLSCR1) which 
disrupts a nuclear localization signal that is important for the antivi-
ral effect of interferons27 (Extended Data Fig. 5). PLSCR1 controls the 
replication of other RNA viruses, including vesicular stomatitis virus, 
encephalomyocarditis virus and influenza A virus27,28.

Although our genome-wide gene-based association tests did not 
replicate any findings from a previous pathway-specific study of rare 
deleterious variants4, our results provide robust evidence implicating 
reduced interferon signalling in susceptibility to critical COVID-19. 
Notably, systemic administration of interferon in two large clinical 
trials, albeit late in disease, did not reduce mortality29,30.

We found significant associations in genes that are implicated in 
lymphopoesis and in the differentiation of myeloid cells. BCL11A is 
essential for B and T lymphopoiesis31 and promotes the differentiation 
of plasmacytoid dendritic cells32. TAC4, reported previously3, encodes 
a regulator of B cell lymphopoesis33 and antibody production34, and 
promotes the survival of dendritic cells35. Finally, although the strongest 
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fine-mapping signal at 5q31.1 (chr5:131995059:C:T, rs56162149) is in 
an intron of ACSL6 with significant effects on expression (Supple-
mentary Information), the credible set includes a missense variant in 
CSF2 (encoding granulocyte–macrophage colony stimulating factor; 
GM-CSF) of uncertain significance (chr5:132075767:T:C; Extended Data 
Table 1). We have previously shown that GM-CSF is strongly up-regulated 
in critical COVID-1936, and it is already under investigation as a target 
for therapy37. Mendelian randomization results are consistent with 
a direct link between the plasma levels of a closely related cytokine 
receptor subunit, IL3RA, and critical COVID-19 (Extended Data Table 2).

Fine-mapping, colocalization and TWAS analyses provide evidence 
for increased expression of MUC1 as the mediator of the association 
with rs41264915 (Supplementary Table 12). This suggests that mucins 
could have a therapeutically important role in the development of 
critical illness in COVID-19.

Mendelian randomization provides genetic evidence in support of a 
causal role for coagulation factors (F8) and platelet activation (PDGFRL) 
in critical COVID-19 (Extended Data Table 2, Extended Data Fig. 7), consist-
ent with autopsy6, proteomic38 and therapeutic39 evidence. Perhaps more 
importantly, we identify specific and closely related intercellular adhesion 
molecules that have known roles in the recruitment of inflammatory cells 
to sites of inflammation, including E-selectin (SELE), intercellular adhesion 
molecule 5 (ICAM5) and DC-SIGN (dendritic-cell-specific ICAM3-grabbing 
non-integrin; CD209), which may provide additional therapeutic targets. 
DC-SIGN (CD209) mediates pathogen endocytosis and antigen presenta-
tion, and is known to be involved in multiple viral infections, including 
SARS-CoV and influenza A virus. It has affinity for SARS-CoV-240,41.

Our previous report of an association between the OAS gene cluster 
and severe disease was robustly replicated in an external cohort1, but 
does not meet genome-wide significance in the present analysis (Sup-
plementary Table 7). This may indicate a change in the observed effect 
size because any effect that is detected in GWASs is more likely to have 
been sampled from the larger end of the range of possible effect sizes 
—the ‘winner’s curse’. Alternatively, it may indicate either a change in the 
population of patients (cases or controls) or a change in the pathogen. 
For example it is possible that—as with the other coronaviruses that are 
known to infect humans42—more recent variants of SARS-CoV-2 have 
evolved to overcome this host antiviral defence mechanism.

Limitations
In contrast to microarray genotyping, WGS is a rapidly evolving and rela-
tively new technology for GWASs, with relatively few sources of popula-
tion controls. We selected a control cohort from the 100,000 Genomes 
Project, which was sequenced and analysed using a different platform and 
bioinformatics pipeline compared with the case cohort (Extended Data 
Fig. 1). However, to minimize the risk of false-positive associations due 
to technical artifacts, extensive quality measures were used (Methods). 
In brief, we masked low-quality genotypes, filtered for genotype signal 
using a low threshold for missingness and performed a control–control 
relative allele frequency filter using a subset of samples processed with 
both bioinformatics pipelines. Finally, we required all significant associa-
tions to be supported by local variants in LD, which may be excessively 
stringent (Methods). Although this approach may remove some true asso-
ciations, our priority is to maximize confidence in the reported signals. 
Of 25 variants that meet this requirement, 23 are externally replicated, 
and the remaining 2 may be true associations that are yet to be replicated 
owing to a lack of coverage or power in the replication datasets.

The design of our study incorporates genetic signals for every stage 
in the disease progression into a single phenotype. This includes estab-
lishment of infection, viral replication, inflammatory lung injury and 
hypoxaemic respiratory failure. Although we can have considerable 
confidence that the replicated associations with critical COVID-19 we 
report are robust, we cannot determine at which stage in the disease pro-
cess, or in which tissue, the relevant biological mechanisms are active.

Conclusions
These genetic associations identify biological mechanisms that may 
underlie the development of life-threatening COVID-19, several of which 
may be amenable to therapeutic targeting. Furthermore, we demon-
strate the value of WGS for fine-mapping loci in a complex trait. In the 
context of the ongoing global pandemic, translation to clinical practice 
is an urgent priority. As with our previous work, biological and molecu-
lar studies—and, where appropriate, large-scale randomized trials—will 
be essential before our findings can be translated into clinical practice.
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Royal Berkshire NHS Foundation Trust team
Mark Brunton90, Jess Caterson90, Holly Coles90, Matthew Frise90, Sabi Gurung Rai90, 
Nicola Jacques90, Liza Keating90, Emma Tilney90, Shauna Bartley90 & Parminder Bhuie90

Broomfield Hospital team
Sian Gibson91, Amanda Lyle91, Fiona McNeela91, Jayachandran Radhakrishnan91 & 
Alistair Hughes91

Northumbria Healthcare NHS Foundation Trust team
Bryan Yates92, Jessica Reynolds92, Helen Campbell92, Maria Thompsom92, Steve Dodds92 & 
Stacey Duffy92

Whiston Hospital team
Sandra Greer93, Karen Shuker93 & Ascanio Tridente93

Croydon University Hospital team
Reena Khade94, Ashok Sundar94 & George Tsinaslanidis94



York Hospital team
Isobel Birkinshaw95, Joseph Carter95, Kate Howard95, Joanne Ingham95, Rosie Joy95, 
Harriet Pearson95, Samantha Roche95 & Zoe Scott95

Heartlands Hospital team
Hollie Bancroft96, Mary Bellamy96, Margaret Carmody96, Jacqueline Daglish96, Faye Moore96, 
Joanne Rhodes96, Mirriam Sangombe96, Salma Kadiri96 & James Scriven96

Ashford and St Peter’s Hospital team
Maria Croft97, Ian White97, Victoria Frost97 & Maia Aquino97

Barnet Hospital team
Rajeev Jha98, Vinodh Krishnamurthy98, Lai Lim98, Rajeev Jha98, Vinodh Krishnamurthy98 & 
Li Lim98

East Surrey Hospital team
Edward Combes99, Teishel Joefield99, Sonja Monnery99, Valerie Beech99 & Sallyanne Trotman99

Ninewells Hospital team
Christine Almaden-Boyle100, Pauline Austin100, Louise Cabrelli100, Stephen Cole100, 
Matt Casey100, Susan Chapman100, Stephen Cole100 & Clare Whyte100

Worthing Hospital team
Yolanda Baird101,102, Aaron Butler101,102, Indra Chadbourn101,102, Linda Folkes101,102, Heather Fox101,102, 
Amy Gardner101,102, Raquel Gomez101,102, Gillian Hobden101,102, Luke Hodgson101,102, 
Kirsten King101,102, Michael Margarson101,102, Tim Martindale101,102, Emma Meadows101,102, 
Dana Raynard101,102, Yvette Thirlwall101,102, David Helm101,102 & Jordi Margalef101,102

Southampton General Hospital team
Kristine Criste103, Rebecca Cusack103, Kim Golder103, Hannah Golding103, Oliver Jones103, 
Samantha Leggett103, Michelle Male103, Martyna Marani103, Kirsty Prager103, Toran Williams103, 
Belinda Roberts103 & Karen Salmon103

The Alexandra Hospital team
Peter Anderson104, Katie Archer104, Karen Austin104, Caroline Davis104, Alison Durie104, 
Olivia Kelsall104, Jessica Thrush104, Charlie Vigurs104, Laura Wild104, Hannah-Louise Wood104, 
Helen Tranter104, Alison Harrison104, Nicholas Cowley104, Michael McAlindon104, 
Andrew Burtenshaw104, Stephen Digby104, Emma Low104, Aled Morgan104, Naiara Cother104, 
Tobias Rankin104, Sarah Clayton104 & Alex McCurdy104

Sandwell General Hospital and City Hospital team
Cecilia Ahmed105, Balvinder Baines105, Sarah Clamp105, Julie Colley105, Risna Haq105, 
Anne Hayes105, Jonathan Hulme105, Samia Hussain105, Sibet Joseph105, Rita Kumar105, 
Zahira Maqsood105 & Manjit Purewal105

Blackpool Victoria Hospital team
Leonie Benham106, Zena Bradshaw106, Joanna Brown106, Melanie Caswell106, Jason Cupitt106, 
Sarah Melling106, Stephen Preston106, Nicola Slawson106, Emma Stoddard106 & Scott Warden106

Royal Glamorgan Hospital team
Bethan Deacon107, Ceri Lynch107, Carla Pothecary107, Lisa Roche107, Gwenllian Sera Howe107, 
Jayaprakash Singh107, Keri Turner107, Hannah Ellis107 & Natalie Stroud107

The Royal Oldham Hospital team
Jodie Hunt108, Joy Dearden108, Emma Dobson108, Andy Drummond108, Michelle Mulcahy108, 
Sheila Munt108, Grainne O’Connor108, Jennifer Philbin108, Chloe Rishton108, Redmond Tully108 & 
Sarah Winnard108

Glasgow Royal Infirmary team
Susanne Cathcart109, Katharine Duffy109, Alex Puxty109, Kathryn Puxty109, Lynne Turner109, 
Jane Ireland109 & Gary Semple109

St James’s University Hospital and Leeds General Infirmary team
Kate Long110, Simon Whiteley110, Elizabeth Wilby110 & Bethan Ogg110

University Hospital North Durham team
Amanda Cowton111,112, Andrea Kay111,112, Melanie Kent111,112, Kathryn Potts111,112, Ami Wilkinson111,112, 
Suzanne Campbell111,112 & Ellen Brown111,112

Fairfield General Hospital team
Julie Melville113, Jay Naisbitt113, Rosane Joseph113, Maria Lazo113, Olivia Walton113 & Alan Neal113

Wythenshawe Hospital team
Peter Alexander114, Schvearn Allen114, Joanne Bradley-Potts114, Craig Brantwood114, 
Jasmine Egan114, Timothy Felton114, Grace Padden114, Luke Ward114, Stuart Moss114 & 
Susannah Glasgow114

Royal Alexandra Hospital team
Lynn Abel115, Michael Brett115, Brian Digby115, Lisa Gemmell115, James Hornsby115, 
Patrick MacGoey115, Pauline O’Neil115, Richard Price115, Natalie Rodden115, Kevin Rooney115, 
Radha Sundaram115 & Nicola Thomson115

Good Hope Hospital team
Bridget Hopkins116, James Scriven116, Laura Thrasyvoulou116 & Heather Willis116

Tameside General Hospital team
Martyn Clark117, Martina Coulding117, Edward Jude117, Jacqueline McCormick117, Oliver Mercer117, 
Darsh Potla117, Hafiz Rehman117, Heather Savill117 & Victoria Turner117

Royal Derby Hospital team
Charlotte Downes118, Kathleen Holding118, Katie Riches118, Mary Hilton118, Mel Hayman118, 
Deepak Subramanian118 & Priya Daniel118

Medway Maritime Hospital team
Oluronke Adanini119, Nikhil Bhatia119, Maines Msiska119 & Rebecca Collins119

Royal Victoria Infirmary team
Ian Clement120, Bijal Patel120, A. Gulati120, Carole Hays120, K. Webster120, Anne Hudson120, 
Andrea Webster120, Elaine Stephenson120, Louise McCormack120, Victoria Slater120, 
Rachel Nixon120, Helen Hanson120, Maggie Fearby120, Sinead Kelly120, Victoria Bridgett120 & 
Philip Robinson120

Poole Hospital team
Julie Camsooksai121, Charlotte Humphrey121, Sarah Jenkins121, Henrik Reschreiter121, 
Beverley Wadams121 & Yasmin Death121

Bedford Hospital team
Victoria Bastion122, Daphene Clarke122, Beena David122, Harriet Kent122, Rachel Lorusso122, 
Gamu Lubimbi122, Sophie Murdoch122, Melchizedek Penacerrada122, Alastair Thomas122, 
Jennifer Valentine122, Ana Vochin122, Retno Wulandari122 & Brice Djeugam122

Queens Hospital Burton team
Gillian Bell123, Katy English123, Amro Katary123 & Louise Wilcox123

North Manchester General Hospital team
Michelle Bruce124, Karen Connolly124, Tracy Duncan124, Helen T. Michael124, 
Gabriella Lindergard124, Samuel Hey124, Claire Fox124, Jordan Alfonso124, Laura Jayne Durrans124, 
Jacinta Guerin124, Bethan Blackledge124, Jade Harris124, Martin Hruska124, Ayaa Eltayeb124, 
Thomas Lamb124, Tracey Hodgkiss124, Lisa Cooper124 & Joanne Rothwell124

Aberdeen Royal Infirmary team
Angela Allan125, Felicity Anderson125, Callum Kaye125, Jade Liew125, Jasmine Medhora125, 
Teresa Scott125, Erin Trumper125 & Adriana Botello125

Derriford Hospital team
Liana Lankester126, Nikitas Nikitas126, Colin Wells126, Bethan Stowe126 & Kayleigh Spencer126

Manchester Royal Infirmary team
Craig Brandwood127, Lara Smith127, Richard Clark127, Katie Birchall127, Laurel Kolakaluri127, 
Deborah Baines127 & Anila Sukumaran127

Salford Royal Hospital team
Elena Apetri128, Cathrine Basikolo128, Bethan Blackledge128, Laura Catlow128, Bethan Charles128, 
Paul Dark128, Reece Doonan128, Jade Harris128, Alice Harvey128, Daniel Horner128, 
Karen Knowles128, Stephanie Lee128, Diane Lomas128, Chloe Lyons128, Tracy Marsden128, 
Danielle McLaughlan128, Liam McMorrow128, Jessica Pendlebury128, Jane Perez128, 
Maria Poulaka128, Nicola Proudfoot128, Melanie Slaughter128, Kathryn Slevin128, Melanie Taylor128, 
Vicky Thomas128, Danielle Walker128, Angiy Michael128 & Matthew Collis128

William Harvey Hospital team
Tracey Cosier129, Gemma Millen129, Neil Richardson129, Natasha Schumacher129, 
Heather Weston129 & James Rand129

Queen Elizabeth University Hospital team
Nicola Baxter130, Steven Henderson130, Sophie Kennedy-Hay130, Christopher McParland130, 
Laura Rooney130, Malcolm Sim130 & Gordan McCreath130

Bradford Royal Infirmary team
Louise Akeroyd131, Shereen Bano131, Matt Bromley131, Lucy Gurr131, Tom Lawton131, 
James Morgan131, Kirsten Sellick131, Deborah Warren131, Brian Wilkinson131, Janet McGowan131, 
Camilla Ledgard131, Amelia Stacey131, Kate Pye131, Ruth Bellwood131 & Michael Bentley131

Bristol Royal Infirmary team
Jeremy Bewley132, Zoe Garland132, Lisa Grimmer132, Bethany Gumbrill132, Rebekah Johnson132, 
Katie Sweet132, Denise Webster132 & Georgia Efford132

Norfolk and Norwich University Hospital (NNUH) team
Karen Convery133, Deirdre Fottrell-Gould133, Lisa Hudig133, Jocelyn Keshet-Price133, 
Georgina Randell133 & Katie Stammers133

Queen Elizabeth Hospital Gateshead team
Maria Bokhari134, Vanessa Linnett134, Rachael Lucas134, Wendy McCormick134, Jenny Ritzema134, 
Amanda Sanderson134 & Helen Wild134



Article
Sunderland Royal Hospital t ea m
Anthony Rostron135, Alistair Roy135, Lindsey Woods135, Sarah Cornell135, Fiona Wakinshaw135, 
Kimberley Rogerson135 & Jordan Jarmain135

Aintree University Hospital team
Robert Parker136, Amie Reddy136, Ian Turner-Bone136, Laura Wilding136 & Peter Harding136

Hull Royal Infirmary team
Caroline Abernathy137, Louise Foster137, Andrew Gratrix137, Vicky Martinson137, Priyai Parkinson137, 
Elizabeth Stones137 & Llucia Carbral-Ortega138

University College Hospital team
Georgia Bercades139, David Brealey139, Ingrid Hass139, Niall MacCallum139, Gladys Martir139, 
Eamon Raith139, Anna Reyes139 & Deborah Smyth139

Royal Devon and Exeter Hospital team
Letizia Zitter140, Sarah Benyon140, Suzie Marriott140, Linda Park140, Samantha Keenan140, 
Elizabeth Gordon140, Helen Quinn140 & Kizzy Baines140

The Royal Papworth Hospital team
Lenka Cagova141, Adama Fofano141, Lucie Garner141, Helen Holcombe141, Sue Mepham141, 
Alice Michael Mitchell141, Lucy Mwaura141, Krithivasan Praman141, Alain Vuylsteke141 & 
Julie Zamikula141

Ipswich Hospital team
Bally Purewal142, Vanessa Rivers142 & Stephanie Bell142

Southmead Hospital team
Hayley Blakemore143, Borislava Borislavova143, Beverley Faulkner143, Emma Gendall143, 
Elizabeth Goff143, Kati Hayes143, Matt Thomas143, Ruth Worner143, Kerry Smith143 & 
Deanna Stephens143

Milton Keynes University Hospital team
Louise Mew144, Esther Mwaura144, Richard Stewart144, Felicity Williams144, Lynn Wren144 & 
Sara-Beth Sutherland144

Royal Hampshire County Hospital team
Emily Bevan145, Jane Martin145, Dawn Trodd145, Geoff Watson145 & Caroline Wrey Brown145

Great Ormond St Hospital and UCL Great Ormond St Institute of Child Health NIHR 
Biomedical Research Centre team
Olugbenga Akinkugbe146, Alasdair Bamford146, Emily Beech146, Holly Belfield146, Michael Bell146, 
Charlene Davies146, Gareth A. L. Jones146, Tara McHugh146, Hamza Meghari146, Lauran O’Neill146, 
Mark J. Peters146, Samiran Ray146 & Ana Luisa Tomas146

Stoke Mandeville Hospital team
Iona Burn147, Geraldine Hambrook147, Katarina Manso147, Ruth Penn147, 
Pradeep Shanmugasundaram147, Julie Tebbutt147 & Danielle Thornton147

University Hospital of Wales team
Jade Cole148, Michelle Davies148, Rhys Davies148, Donna Duffin148, Helen Hill148, Ben Player148, 
Emma Thomas148 & Angharad Williams148

Basingstoke and North Hampshire Hospital team
Denise Griffin149, Nycola Muchenje149, Mcdonald Mupudzi149, Richard Partridge149, 
Jo-Anna Conyngham149, Rachel Thomas149, Mary Wright149 & Maria Alvarez Corral149

Arrowe Park Hospital team
Reni Jacob150, Cathy Jones150 & Craig Denmade150

Chesterfield Royal Hospital Foundation Trust team
Sarah Beavis151, Katie Dale151, Rachel Gascoyne151, Joanne Hawes151, Kelly Pritchard151, 
Lesley Stevenson151 & Amanda Whileman151

Musgrove Park Hospital team
Patricia Doble152, Joanne Hutter152, Corinne Pawley152, Charmaine Shovelton152 & Marius Vaida152

Peterborough City Hospital team
Deborah Butcher153,154, Susie O’Sullivan153,154 & Nicola Butterworth-Cowin153,154

Royal Hallamshire Hospital and Northern General Hospital team
Norfaizan Ahmad155, Joann Barker155, Kris Bauchmuller155, Sarah Bird155, Kay Cawthron155, 
Kate Harrington155, Yvonne Jackson155, Faith Kibutu155, Becky Lenagh155, Shamiso Masuko155, 
Gary H. Mills155, Ajay Raithatha155, Matthew Wiles155, Jayne Willson155, Helen Newell155, 
Alison Lye155, Lorenza Nwafor155, Claire Jarman155, Sarah Rowland-Jones155, David Foote155, 
Joby Cole155, Roger Thompson155, James Watson155, Lisa Hesseldon155, Irene Macharia155, 
Luke Chetam155, Jacqui Smith155, Amber Ford155, Samantha Anderson155, Kathryn Birchall155, 
Kay Housley155, Sara Walker155, Leanne Milner155, Helena Hanratty155, Helen Trower155, 
Patrick Phillips155, Simon Oxspring155 & Ben Donne155

Dumfries and Galloway Royal Infirmary team
Catherine Jardine156, Dewi Williams156 & Alasdair Hay156

Royal Bolton Hospital team
Rebecca Flanagan157, Gareth Hughes157, Scott Latham157, Emma McKenna157, 
Jennifer Anderson157, Robert Hull157 & Kat Rhead157

Lister Hospital team
Carina Cruz158 & Natalie Pattison158

Craigavon Area Hospital team
Rob Charnock159, Denise McFarland159 & Denise Cosgrove159

Southport and Formby District General Hospital team
Ashar Ahmed160, Anna Morris160, Srinivas Jakkula160 & Arvind Nune160

Calderdale Royal Hospital team
Asifa Ali161,162, Megan Brady161,162, Sam Dale161,162, Annalisa Dance161,162, Lisa Gledhill161,162, 
Jill Greig161,162, Kathryn Hanson161,162, Kelly Holdroyd161,162, Marie Home161,162, Diane Kelly161,162, 
Ross Kitson161,162, Lear Matapure161,162, Deborah Melia161,162, Samantha Mellor161,162, 
Tonicha Nortcliffe161,162, Jez Pinnell161,162, Matthew Robinson161,162, Lisa Shaw161,162, Ryan Shaw161,162, 
Lesley Thomis161,162, Alison Wilson161,162, Tracy Wood161,162, Lee-Ann Bayo161,162, Ekta Merwaha161,162, 
Tahira Ishaq161,162 & Sarah Hanley161,162

Prince Charles Hospital team
Bethan Deacon163, Meg Hibbert163, Carla Pothecary163, Dariusz Tetla163, 
Christopher Woodford163, Latha Durga163 & Gareth Kennard-Holden163

Royal Bournemouth Hospital team
Debbie Branney164, Jordan Frankham164, Sally Pitts164 & Nigel White164

Royal Preston Hospital team
Shondipon Laha165, Mark Verlander165 & Alexandra Williams165

Whittington Hospital team
Abdelhakim Altabaibeh166, Ana Alvaro166, Kayleigh Gilbert166, Louise Ma166, Loreta Mostoles166, 
Chetan Parmar166, Kathryn Simpson166, Champa Jetha166, Lauren Booker166 & Anezka Pratley166

Princess Royal Hospital team
Colene Adams167, Anita Agasou167, Tracie Arden167, Amy Bowes167, Pauline Boyle167, 
Mandy Beekes167, Heather Button167, Nigel Capps167, Mandy Carnahan167, Anne Carter167, 
Danielle Childs167, Denise Donaldson167, Kelly Hard167, Fran Hurford167, Yasmin Hussain167, 
Ayesha Javaid167, James Jones167, Sanal Jose167, Michael Leigh167, Terry Martin167, 
Helen Millward167, Nichola Motherwell167, Rachel Rikunenko167, Jo Stickley167, Julie Summers167, 
Louise Ting167, Helen Tivenan167, Louise Tonks167, Rebecca Wilcox167, Denise Skinner168, 
Jane Gaylard168, Dee Mullan168 & Julie Newman168

Macclesfield District General Hospital team
Maureen Holland169, Natalie Keenan169, Marc Lyons169, Helen Wassall169, Chris Marsh169, 
Mervin Mahenthran169, Emma Carter169 & Thomas Kong169

Royal Surrey County Hospital team
Helen Blackman170, Ben Creagh-Brown170, Sinead Donlon170, Natalia Michalak-Glinska170, 
Sheila Mtuwa170, Veronika Pristopan170, Armorel Salberg170, Eleanor Smith170, Sarah Stone170, 
Charles Piercy170, Jerik Verula170, Dorota Burda170, Rugia Montaser170, Lesley Harden170, 
Irving Mayangao170, Cheryl Marriott170, Paul Bradley170 & Celia Harris170

Hereford County Hospital team
Susan Anderson171, Eleanor Andrews171, Janine Birch171, Emma Collins171, Kate Hammerton171 & 
Ryan O’Leary171

University Hospital of North Tees team
Michele Clark172 & Sarah Purvis172

Lincoln County Hospital team
Russell Barber173, Claire Hewitt173, Annette Hilldrith173, Karen Jackson-Lawrence173, 
Sarah Shepardson173, Maryanne Wills173, Susan Butler173, Silvia Tavares173, Amy Cunningham173, 
Julia Hindale173 & Sarwat Arif173

Royal Cornwall Hospital team
Sarah Bean174, Karen Burt174 & Michael Spivey174

Royal United Hospital team
Carrie Demetriou175, Charlotte Eckbad175, Sarah Hierons175, Lucy Howie175, Sarah Mitchard175, 
Lidia Ramos175, Alfredo Serrano-Ruiz175, Katie White175 & Fiona Kelly175

Royal Brompton Hospital team
Daniele Cristiano176, Natalie Dormand176, Zohreh Farzad176, Mahitha Gummadi176, 
Kamal Liyanage176, Brijesh Patel176, Sara Salmi176, Geraldine Sloane176, Vicky Thwaites176, 
Mathew Varghese176 & Anelise C. Zborowski176



University Hospital Crosshouse team
John Allan177, Tim Geary177, Gordon Houston177, Alistair Meikle177 & Peter O’Brien177

Basildon Hospital team
Miranda Forsey178, Agilan Kaliappan178, Anne Nicholson178, Joanne Riches178, Mark Vertue178, 
Miranda Forsey178, Agilan Kaliappan178, Anne Nicholson178, Joanne Riches178 & Mark Vertue178

Glan Clwyd Hospital team
Elizabeth Allan179, Kate Darlington179, Ffyon Davies179, Jack Easton179, Sumit Kumar179, 
Richard Lean179, Daniel Menzies179, Richard Pugh179, Xinyi Qiu179, Llinos Davies179, 
Hannah Williams179, Jeremy Scanlon179, Gwyneth Davies179, Callum Mackay179, Joanne Lewis179 & 
Stephanie Rees179

West Middlesex Hospital team
Metod Oblak180, Monica Popescu180 & Mini Thankachen180

Royal Lancaster Infirmary team
Andrew Higham181, Kerry Simpson181 & Jayne Craig181

Western General Hospital team
Rosie Baruah182, Sheila Morris182, Susie Ferguson182 & Amy Shepherd182

Chelsea and Westminster NHS Foundation Trust team
Luke Stephen Prockter Moore183, Marcela Paola Vizcaychipi183, Laura Gomes de Almeida 
Martins183 & Jaime Carungcong183

The Queen Elizabeth Hospital team
Inthakab Ali Mohamed Ali184, Karen Beaumont184, Mark Blunt184, Zoe Coton184, 
Hollie Curgenven184, Mohamed Elsaadany184, Kay Fernandes184, Sameena Mohamed Ally184, 
Harini Rangarajan184, Varun Sarathy184, Sivarupan Selvanayagam184, Dave Vedage184 & 
Matthew White184

King’s Mill Hospital team
Mandy Gill185, Paul Paul185, Valli Ratnam185, Sarah Shelton185 & Inez Wynter185

Watford General Hospital team
Siobhain Carmody186 & Valerie Joan Page186

University Hospital Wishaw team
Claire Marie Beith187, Karen Black187, Suzanne Clements187, Alan Morrison187, 
Dominic Strachan187, Margaret Taylor187, Michelle Clarkson187, Stuart D’Sylva187 & 
Kathryn Norman187

Forth Valley Royal Hospital team
Fiona Auld188, Joanne Donnachie188, Ian Edmond188, Lynn Prentice188, Nikole Runciman188, 
Dario Salutous188, Lesley Symon188, Anne Todd188, Patricia Turner188, Abigail Short188, 
Laura Sweeney188, Euan Murdoch188 & Dhaneesha Senaratne188

George Eliot Hospital NHS Trust team
Michaela Hill189, Thogulava Kannan189 & Laura Wild189

Barnsley Hospital team
Rikki Crawley190, Abigail Crew190, Mishell Cunningham190, Allison Daniels190, Laura Harrison190, 
Susan Hope190, Ken Inweregbu190, Sian Jones190, Nicola Lancaster190, Jamie Matthews190, 
Alice Nicholson190 & Gemma Wray190

The Great Western Hospital team
Helen Langton191, Rachel Prout191, Malcolm Watters191 & Catherine Novis191

Harefield Hospital team
Anthony Barron192, Ciara Collins192, Sundeep Kaul192, Heather Passmore192, 
Claire Prendergast192, Anna Reed192, Paula Rogers192, Rajvinder Shokkar192, Meriel Woodruff192, 
Hayley Middleton192, Oliver Polgar192, Claire Nolan192, Vicky Thwaites192 & Kanta Mahay192

Rotherham General Hospital team
Dawn Collier193, Anil Hormis193, Victoria Maynard193, Cheryl Graham193, Rachel Walker193 & 
Victoria Maynard193

Ysbyty Gwynedd team
Ellen Knights194, Alicia Price194, Alice Thomas194 & Chris Thorpe194

Diana Princess of Wales Hospital team
Teresa Behan195, Caroline Burnett195, Jonathan Hatton195, Elaine Heeney195, Atideb Mitra195, 
Maria Newton195, Rachel Pollard195 & Rachael Stead195

Russell’s Hall Hospital team
Vishal Amin196, Elena Anastasescu196, Vikram Anumakonda196, Komala Karthik196, 
Rizwana Kausar196, Karen Reid196, Jacqueline Smith196, Janet Imeson-Wood196, Denise Skinner168, 
Jane Gaylard168, Dee Mullan168 & Julie Newman168

St Mary’s Hospital team
Alison Brown197, Vikki Crickmore197, Gabor Debreceni197, Joy Wilkins197 & Liz Nicol197

University Hospital Lewisham team
Waqas Khaliq198, Rosie Reece-Anthony198 & Mark Birt198

Colchester General Hospital team
Alison Ghosh199 & Emma Williams199

Queen Elizabeth the Queen Mother Hospital team
Louise Allen200, Eva Beranova200, Nikki Crisp200, Joanne Deery200, Tracy Hazelton200, 
Alicia Knight200, Carly Price200, Sorrell Tilbey200, Salah Turki200 & Sharon Turney200

Royal Albert Edward Infirmary team
Joshua Cooper201, Cheryl Finch201, Sarah Liderth201, Alison Quinn201 & Natalia Waddington201

Victoria Hospital team
Tina Coventry202, Susan Fowler202, Michael MacMahon202 & Amanda McGregor202

Eastbourne District General Hospital team
Anne Cowley203,204 & Judith Highgate203,204

Cumberland Infirmary team
Alison Brown205, Jane Gregory205, Susan O’Connell205, Tim Smith205 & Luigi Barberis205

New Cross Hospital team
Shameer Gopal206, Nichola Harris206, Victoria Lake206, Stella Metherell206 & Elizabeth Radford206

The Princess Alexandra Hospital team
Amelia Daniel207, Joanne Finn207, Rajnish Saha207, Nikki White207 & Amy Easthope207

Salisbury District Hospital team
Phil Donnison208, Fiona Trim208 & Beena Eapen208

Dorset County Hospital team
Jenny Birch209, Laura Bough209, Josie Goodsell209, Rebecca Tutton209, Patricia Williams209, 
Sarah Williams209 & Barbara Winter-Goodwin209

University College Dublin team
Ailstair Nichol210, Kathy Brickell210, Michelle Smyth210 & Lorna Murphy210

Glangwili General Hospital team
Samantha Coetzee211, Alistair Gales211, Igor Otahal211, Meena Raj211 & Craig Sell211

Gloucestershire Royal Hospital team
Paula Hilltout212, Jayne Evitts212, Amanda Tyler212 & Joanne Waldron212

Yeovil Hospital team
Kate Beesley213, Sarah Board213, Agnieszka Kubisz-Pudelko213, Alison Lewis213, Jess Perry213, 
Lucy Pippard213, Di Wood213 & Clare Buckley213

Leicester Royal Infirmary team
Peter Barry214, Neil Flint214, Patel Rekha214 & Dawn Hales214

Royal Manchester Children’s Hospital team
Lara Bunni215, Claire Jennings215, Monica Latif215, Rebecca Marshall215 & Gayathri Subramanian215

Royal Victoria Hospital team
Peter J. McGuigan216, Christopher Wasson216, Stephanie Finn216, Jackie Green216, Erin Collins216 & 
Bernadette King216

Wrexham Maelor Hospital team
Andy Campbell217, Sara Smuts217, Joseph Duffield217, Oliver Smith217, Lewis Mallon217 & 
Claire Watkins217

Walsall Manor Hospital team
Liam Botfield218, Joanna Butler218, Catherine Dexter218, Jo Fletcher218, Atul Garg218, 
Aditya Kuravi218, Poonam Ranga218 & Emma Virgilio218

Darent Valley Hospital team
Zakaula Belagodu219, Bridget Fuller219, Anca Gherman219, Olumide Olufuwa219, 
Remi Paramsothy219, Carmel Stuart219, Naomi Oakley219, Charlotte Kamundi219, David Tyl219, 
Katy Collins219, Pedro Silva219, June Taylor219, Laura King219, Charlotte Coates219, 
Maria Crowley219, Phillipa Wakefield219, Jane Beadle219, Laura Johnson219, Janet Sargeant219 & 
Madeleine Anderson219

Warrington General Hospital team
Ailbhe Brady220, Rebekah Chan220, Jeff Little220, Shane McIvor220, Helena Prady220, 
Helen Whittle220 & Bijoy Mathew220
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Warwick Hospital team
Ben Attwood221 & Penny Parsons221

University Hospitals Coventry and Warwickshire NHS Trust team
Geraldine Ward222 & Pamela Bremmer222

University Hospital Monklands team
West Joe223, Baird Tracy223 & Ruddy Jim223

Princess of Wales Hospital team
Ellie Davies224, Lisa Roche224 & Sonia Sathe224

Northwick Park Hospital team
Catherine Dennis225, Alastair McGregor225, Victoria Parris225, Sinduya Srikaran225 & 
Anisha Sukha225

Raigmore Hospital team
Rachael Campbell226, Noreen Clarke226, Jonathan Whiteside226, Mairi Mascarenhas226, 
Avril Donaldson226, Joanna Matheson226, Fiona Barrett226, Marianne O’Hara226, Laura Okeefe226 & 
Clare Bradley226

Royal Free Hospital team
Christine Eastgate-Jackson227, Helder Filipe227, Daniel Martin227, Amitaa Maharajh227, 
Sara Mingo Garcia227, Glykeria Pakou227 & Mark De Neef227

Scunthorpe General Hospital team
Kathy Dent228, Elizabeth Horsley228, Muhammad Nauman Akhtar228, Sandra Pearson228, 
Dorota Potoczna228 & Sue Spencer228

West Cumberland Hospital team
Melanie Clapham229, Rosemary Harper229, Una Poultney229, Polly Rice229, Tim Smith229, 
Rachel Mutch229 & Luigi Barberis229

Airedale General Hospital team
Lisa Armstrong230, Hayley Bates230, Emma Dooks230, Fiona Farquhar230, Brigid Hairsine230, 
Chantal McParland230 & Sophie Packham230

Birmingham Children’s Hospital team
Rehana Bi231, Barney Scholefield231 & Lydia Ashton231

Liverpool Heart and Chest Hospital team
Linsha George232, Sophie Twiss232 & David Wright232

Pilgrim Hospital team
Manish Chablani233, Amy Kirkby233 & Kimberley Netherton233

Prince Philip Hospital team
Kim Davies234, Linda O’Brien234, Zohra Omar234, Igor Otahal234, Emma Perkins234, Tracy Lewis234 
& Isobel Sutherland234

Furness General Hospital team
Karen Burns235 & Andrew Higham235

Scarborough General Hospital team
Ben Chandler236, Kerry Elliott236, Janine Mallinson236 & Alison Turnbull236

Southend University Hospital team
Prisca Gondo237, Bernard Hadebe237, Abdul Kayani237 & Bridgett Masunda237

Alder Hey Children’s Hospital team
Taya Anderson238, Dan Hawcutt238, Laura O’Malley238, Laura Rad238, Naomi Rogers238, 
Paula Saunderson238, Kathryn Sian Allison238, Deborah Afolabi238, Jennifer Whitbread238, 
Dawn Jones238 & Rachael Dore238

Torbay Hospital team
Matthew Halkes239, Pauline Mercer239 & Lorraine Thornton239

Borders General Hospital team
Joy Dawson240, Sweyn Garrioch240, Melanie Tolson240 & Jonathan Aldridge240

Kent and Canterbury Hospital team
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Methods

Ethics
GenOMICC study: GenOMICC was approved by the following 
research ethics committees: Scotland ‘A’ Research Ethics Commit-
tee (15/SS/0110) and Coventry and Warwickshire Research Ethics 
Committee (England, Wales and Northern Ireland) (19/WM/0247). 
Current and previous versions of the study protocol are available 
at https://genomicc.org/protocol/. 100,000 Genomes project: the 
100,000 Genomes project was approved by the East of England—
Cambridge Central Research Ethics Committee (REF 20/EE/0035). 
Only individuals from the 100,000 Genomes project for whom WGS 
data were available and who consented for their data to be used for 
research purposes were included in the analyses. UK Biobank study: 
ethical approval for the UK Biobank was previously obtained from 
the North West Centre for Research Ethics Committee (11/NW/0382). 
The work described herein was approved by UK Biobank under 
application number 26041. Geisinger Health Systems (GHS) study: 
approval for DiscovEHR analyses was provided by the GHS Institu-
tional Review Board under project number 2006-0258. AncestryDNA 
study: all data for this research project were from individuals who 
provided prior informed consent to participate in AncestryDNA’s 
Human Diversity Project, as reviewed and approved by our external 
institutional review board, Advarra (formerly Quorum). All data were 
de-identified before use. Penn Medicine Biobank study: appropriate 
consent was obtained from each participant regarding the storage 
of biological specimens, genetic sequencing and genotyping, and 
access to all available EHR data. This study was approved by the 
institutional review board of the University of Pennsylvania and 
complied with the principles set out in the Declaration of Helsinki. 
Informed consent was obtained for all study participants. 23andMe 
study: participants in this study were recruited from the customer 
base of 23andMe, a personal genetics company. All individuals 
included in the analyses provided informed consent and answered 
surveys online according to the 23andMe protocol for research in 
humans, which was reviewed and approved by Ethical and Independ-
ent Review Services, a private institutional review board (http://
www.eandireview.com).

Recruitment of cases (patients with COVID-19)
Patients were recruited to the GenOMICC study in 224 UK intensive 
care units (https://genomicc.org). All individuals had confirmed 
COVID-19 according to local clinical testing and were deemed, in the 
view of the treating clinician, to require continuous cardiorespiratory 
monitoring. In UK practice this kind of monitoring is undertaken in 
high-dependency or intensive care units.

Recruitment of control individuals
Mild or asymptomatic control individuals. Participants were recruited 
to the mild COVID-19 cohort on the basis of having experienced mild 
(non-hospitalized) or asymptomatic COVID-19. Participants volun-
teered to take part in the study via a microsite and were required to 
self-report the details of a positive COVID-19 test. Volunteers were 
prioritized for genome sequencing on the basis of demographic match-
ing with the critical COVID-19 cohort considering self-reported ances-
try, sex, age and location within the UK. We refer to this cohort as the 
COVID-19 mild cohort.

Control individuals from the 100,000 Genomes project. Partici-
pants were enrolled in the 100,000 Genomes Project from families 
with a broad range of rare diseases, cancers and infection by 13 regional 
NHS Genomic Medicine Centres across England and in Northern Ire-
land, Scotland and Wales. For this analysis, participants for whom a 
positive SARS-CoV-2 test had been recorded as of March 2021 were not 
included owing to uncertainty in the severity of COVID-19 symptoms. 

Only participants for whom genome sequencing was performed from 
blood-derived DNA were included and participants with haematologi-
cal malignancies were excluded to avoid potential tumour contami-
nation.

DNA extraction
For severe cases of COVID-19 and mild cohort controls, DNA was 
extracted from whole blood either manually using a Nucleon Kit 
(Cytiva) and resuspended in 1 ml TE buffer pH 7.5 (10 mM Tris-Cl pH 7.5, 
1 mM EDTA pH 8.0), or automated on the Chemagic 360 platform using 
the Chemagic DNA blood kit (PerkinElmer) and re-suspended in 400 μl 
elution buffer. The yield of the DNA was measured using Qubit and 
normalized to 50 ng μl−1 before sequencing. For the 100,000 Genomes 
Project samples, DNA was extracted from whole blood at designated 
extraction centres following sample handling guidance provided by 
Genomics England and NHS England.

WGS
Sequencing libraries were generated using the Illumina TruSeq DNA 
PCR-Free High Throughput Sample Preparation kit and sequenced with 
150-bp paired-end reads in a single lane of an Illumina Hiseq X instru-
ment (for 100,000 Genomes Project samples) or a NovaSeq instrument 
(for the COVID-19 critical and mild cohorts).

Sequencing data quality control. All genome sequencing data were re-
quired to meet minimum quality metrics and quality control measures 
were applied for all genomes as part of the bioinformatics pipeline. The 
minimum data requirements for all genomes were: more than 85 × 10−9 
bases with Q ≥ 30 and at least 95% of the autosomal genome covered at 
15× or higher calculated from reads with mapping quality greater than 
10 after removing duplicate reads and overlapping bases, after adaptor 
and quality trimming. Assessment of germline cross-sample contamina-
tion was performed using VerifyBamID and samples with more than 3% 
contamination were excluded. Sex checks were performed to confirm 
that the sex reported for a participant was concordant with the sex 
inferred from the genomic data.

WGS alignment and variant calling
COVID-19 cohorts. For the critical and mild COVID-19 cohorts, se-
quencing data alignment and variant calling were performed with 
Genomics England pipeline 2.0, which uses the DRAGEN software 
(v.3.2.22). Alignment was performed to genome reference GRCh38 
including decoy contigs and alternative haplotypes (ALT contigs), with 
ALT-aware mapping and variant calling to improve specificity.

100,000 Genomes Project cohort. All genomes from the 100,000 
Genomes Project cohort were analysed with the Illumina North Star 
Version 4 Whole Genome Sequencing Workflow (NSV4, v.2.6.53.23); 
which comprises the iSAAC Aligner (v.03.16.02.19) and Starling Small 
Variant Caller (v.2.4.7). Samples were aligned to the Homo Sapiens NCBI 
GRCh38 assembly with decoys.

A subset of the genomes from the cancer program of the 100,000 
Genomes Project were reprocessed (alignment and variant calling) 
using the same pipeline used for the COVID-19 cohorts (DRAGEN 
v.3.2.22) for equity of alignment and variant calling.

Aggregation
Aggregation was conducted separately for the samples analysed 
with Genomics England pipeline 2.0 (severe cohort, mild cohort, 
cancer-realigned 100,000 Genomes Project) and those analysed 
with the Illumina North Star Version 4 pipeline (100,000 Genomes 
Project).

For the first three, the WGS data were aggregated from single-sample 
gVCF files to multi-sample VCF files using GVCFGenotyper (GG) v.3.8.1, 
which accepts gVCF files generated by the DRAGEN pipeline as input. GG 
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outputs multi-allelic variants (several ALT variants per position on the 
same row), and for downstream analyses the output was decomposed 
to bi-allelic variants per row using the software vt v.0.57721. We refer 
to the aggregate as aggCOVID_vX, in which X is the specific freeze.The 
analysis in this manuscript uses data from freeze v.4.2 and the respec-
tive aggregate is referred to as aggCOVID_v4.2.

Aggregation for the 100,000 Genomes Project cohort was performed 
using Illumina’s gvcfgenotyper v.2019.02.26, merged with bcftools 
v.1.10.2 and normalized with vt v.0.57721.

Sample quality control
Samples that failed any of the following four BAM-level quality control 
filters: freemix contamination > 3%, mean autosomal coverage < 25×, 
per cent mapped reads < 90% or per cent chimeric reads > 5% were 
excluded from the analysis.

In addition, a set of VCF-level quality control filters were applied 
after aggregation on all autosomal bi-allelic single-nucleotide variants 
(SNVs) (akin to gnomAD v.3.1)18. Samples were filtered out on the basis 
of the residuals of eleven quality control metrics (calculated using 
bcftools) after regressing out the effects of sequencing platform 
and the first three ancestry assignment principal components (PCs) 
(including all linear, quadratic and interaction terms) taken from the 
sample projections onto the SNP loadings from the individuals of 1000 
Genomes Project phase 3 (1KGP3). Samples were removed that were 
four median absolute deviations (MADs) above or below the median 
for the following metrics: ratio of heterozygous to homozygous, ratio 
of insertions to deletions, ratio of transitions to transversions, total 
deletions, total insertions, total heterozygous SNPs, total homozy-
gous SNPs, total transitions and total transversions. For the number of 
total singletons (SNPs), samples were removed that were more than 8 
MADs above the median. For the ratio of heterozygous to homozygous 
alternative SNPs, samples were removed that were more than 4 MADs 
above the median.

After quality control, 79,803 individuals were included in the analy-
sis with the breakdown according to cohort shown in Supplementary 
Table 2.

Selection of high-quality independent SNPs
We selected high-quality independent variants for inferring kinship 
coefficients, performing PCA, assigning ancestry and for the condition-
ing on the genetic relatedness matrix by the logistic mixed model of 
SAIGE and SAIGE-GENE. To avoid capturing platform and/or analysis 
pipeline effects for these analyses, we performed very stringent variant 
quality control as described below.

High-quality common SNPs. We started with autosomal, bi-allelic 
SNPs which had a frequency of higher than 5% in aggV2 (100,000 Ge-
nomes Project participant aggregate) and in the 1KGP3. We then re-
stricted to variants that had missingness < 1%, median genotype quality 
control > 30, median depth (DP) ≥ 30 and at least 90% of heterozygote 
genotypes passing an ABratio binomial test with P value > 10−2 for aggV2 
participants. We also excluded variants in complex regions from the list 
available in https://genome.sph.umich.edu/wiki/Regions_of_high_link-
age_disequilibrium_(LD) (lifted over for GRCh38), and variants where 
the REF/ALT combination was CG or AT (C/G, G/C, A/T, T/A). We also 
removed all SNPs that were out of Hardy–Weinberg equilibrium (HWE) 
in any of the AFR, EAS, EUR or SAS super-populations of aggV2, with 
a P value cut-off of PHWE < 10−5. We then LD-pruned using PLINK v.1.9 
with r2 = 0.1 and in 500-kb windows. This resulted in a total of 63,523 
high-quality sites from aggV2.

We then extracted these high-quality sites from the aggCOVID_v4.2 
aggregate and further applied variant quality filters (missingness < 1%,  
median quality control > 30, median depth ≥ 30 and at least 90% of hete-
rozygote genotypes passing an ABratio binomial test with P value > 10−2),  
per batch of sequencing platform (that is, HiseqX, NovaSeq6000).

After applying variant filters in aggV2 and aggCOVID_v4.2, we merged 
the genomic data from the two aggregates for the intersection of the 
variants, which resulted in a final total of 58,925 sites.

High-quality rare SNPs. We selected high-quality rare (MAF < 0.005) 
bi-allelic SNPs to be used with SAIGE for aggregate variant testing (AVT) 
analysis. To create this set, we applied the same variant quality control 
procedure as with the common variants: We selected variants that had 
missingness < 1%, median quality control > 30, median depth ≥ 30 and at 
least 90% of heterozygote genotypes passing an ABratio binomial test 
with P value > 10−2 per batch of sequencing and genotyping platform 
(that is, HiSeq + NSV4, HiSeq + Pipeline 2.0, NovaSeq + Pipeline 2.0). 
We then subsetted those to the following groups of minor allele count 
(MAC) and MAF categories: MAC 1, 2, 3, 4, 5, 6–10, 11–20, MAC 20–MAF 
0.001, MAF 0.001–0.005.

Relatedness, ancestry and principal components
Kinship. We calculated kinship coefficients among all pairs of samples 
using the software PLINK v.2.0 and its implementation of the KING ro-
bust algorithm. We used a kinship cut-off of <0.0442 to select unrelated 
individuals with argument “–king-cutoff”.

Genetic ancestry prediction. To infer the ancestry of each individual, 
we performed principal component analysis (PCA) on unrelated 1KGP3 
individuals with GCTA v.1.93.1_beta software using high-quality common 
SNPs43, and inferred the first 20 PCs. We calculated loadings for each SNP, 
which we used to project aggV2 and aggCOVID_v4.2 individuals onto 
the 1KGP3 PCs. We then trained a random forest algorithm from the R 
package randomForest with the first 10 1KGP3 PCs as features and the 
super-population ancestry of each individual as labels. These were ‘AFR’ 
for individuals of African ancestry, ‘AMR’ for individuals of American 
ancestry, ‘EAS’ for individuals of East Asian ancestry, ‘EUR’ for individuals 
of European ancestry and ‘SAS’ for individuals of South Asian ancestry. We 
used 500 trees for the training. We then used the trained model to assign 
a probability of belonging to a certain super-population class for each 
individual in our cohorts. We assigned individuals to a super-population 
when class probability ≥ 0.8. Individuals for whom no class had probability 
≥ 0.8 were labelled as ‘unassigned’ and were not included in the analyses.

PCA. After labelling each individual with predicted genetic ancestry, 
we calculated ancestry-specific PCs using GCTA v.1.93.1_beta43. We 
computed 20 PCs for each of the ancestries that were used in the as-
sociation analyses (AFR, EAS, EUR and SAS).

Variant quality control
Variant quality control was performed to ensure high quality of vari-
ants and to minimize batch effects due to using samples from different 
sequencing platforms (NovaSeq6000 and HiseqX) and different variant 
callers (Strelka2 and DRAGEN). We first masked low-quality genotypes 
setting them to missing, merged aggregate files and then performed 
additional variant quality control separately for the two major types of 
association analyses, GWAS and AVT, which concerned common and 
rare variants, respectively.

Masking. Before any analysis, we masked low-quality genotypes using 
the bcftools setGT module. Genotypes with DP < 10, genotype quality 
(GQ) < 20 and heterozygote genotypes failing an ABratio binomial test 
with P value < 10−3 were set to missing.

We then converted the masked VCF files to PLINK and bgen format 
using PLINK v.2.0.

Merging of aggregate samples. Merging of aggV2 and aggCOVID_v4.2 
samples was done using PLINK files with masked genotypes and the 
merge function of PLINK v.1.944. for variants that were found in both 
aggregates.
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GWAS analyses
Variant quality control. We restricted all GWAS analyses to common 
variants applying the following filters using PLINK v.1.9: MAF > 0 in 
both cases and controls, MAF > 0.5% and MAC > 20, missingness < 2%, 
differential missingness between cases and controls, mid-P value < 10−5, 
HWE deviations on unrelated controls, mid-P value < 10−6. Multi-allelic 
variants were in addition required to have MAF > 0.1% in both aggV2 
and aggCOVID_v4.2.

Control–control quality control filter. 100,000 Genomes Project 
aggV2 samples that were aligned and genotype called with the Illumina 
North Star version 4 pipeline represented the majority of control sam-
ples in our GWAS analyses, whereas all of the cases were aligned and 
called with Genomics England pipeline 2.0 (Supplementary Table 1). 
Therefore, the alignment and genotyping pipelines partially match 
the case–control status, which necessitates additional filtering for 
adjusting for between-pipeline differences in alignment and variant 
calling. To control for potential batch effects, we used the overlap of 
3,954 samples from the Genomics England 100,000 Genomes Project 
participants that were aligned and called with both pipelines. For each 
variant, we computed and compared between platforms the inferred 
allele frequency for the population samples. We then filtered out all 
variants that had >1% relative difference in allele frequency between 
platforms. The relative difference was computed on a per-population 
basis for EUR (n = 3,157), SAS (n = 373), AFR (n = 354) and EAS (n = 81).

Model. We used a two-step logistic mixed model regression approach 
as implemented in SAIGE v.0.44.5 for single-variant association analy-
ses. In step 1, SAIGE fits the null mixed model and covariates. In step 2, 
single-variant association tests are performed with the saddlepoint 
approximation (SPA) correction to calibrate unbalanced case–control 
ratios. We used the high-quality common variant sites for fitting the null 
model and sex, age, age2, age-by-sex and 20 PCs as covariates in step 1. 
The PCs were computed separately by predicted genetic ancestry (that is, 
EUR-specific, AFR-specific and so on), to capture subtle structure effects.

Analyses. All analyses were done on unrelated individuals with a pair-
wise kinship coefficient < 0.0442. We conducted GWAS analyses per 
predicted genetic ancestry, for all populations for which we had more 
than 100 cases and more than 100 controls (AFR, EAS, EUR and SAS).

Multiple testing correction. As our study is testing variants that were 
directly sequenced by WGS and not imputed, we calculated the P value 
significance threshold by estimating the effective number of tests. 
After selecting the final filtered set of tested variants for each popula-
tion, we LD-pruned in a window of 250 kb and r2 = 0.8 with PLINK 1.9. 
We then computed the Bonferroni-corrected P value threshold as 0.05 
divided by the number of LD-pruned variants tested in the GWAS. The 
P value thresholds that were used for declaring statistical significance 
are provided in Supplementary Table 5.

LD-clumping. We used PLINK v.1.9 to do clumping of variants that were 
genome-wide significant for each analysis with P1 set to per-population 
P value from Supplementary Table 5, P2 = 0.01, clump distance 1,500 kb 
and r2 = 0.1.

Conditional analysis and signal independence. To find the set of 
independent variants in the per-population analyses, we performed a 
step-wise conditional analysis with the GWAS summary statistics for 
each population using GCTA 1.9.3 –cojo-slct function43. The parameters 
for the function were pval = 2.2 × 10−8, a distance of 10,000 kb and a 
colinear threshold of 0.9 (ref. 45). For establishing independence of 
multi-ancestry meta-analysis signals from per-population discovered 
signals, we performed LD-clumping using the meta-analysis summaries 

and identified signals with no overlap with the LD-clumped results from 
the per-population analyses. In addition to the GCTA-cojo analysis, we 
also performed confirmatory individual-level conditional analysis as 
implemented in SAIGE. For every lead variant signal (including the 
multi-ancestry meta-analysis signals), we conditioned on the lead vari-
ants of all other signals identified as independent by GCTA-cojo and 
located on the same chromosome with option –condition of SAIGE 
(Supplementary Table 6).

Fine-mapping. We performed fine-mapping for genome-wide- 
significant signals using theR package SusieR v.0.11.4213. For each genome- 
wide-significant variant locus, we selected the variants 1.5 Mbp on each 
side and computed the correlation matrix among them with PLINK v.1.9. 
We then ran the susieR summary-statistics-based function susie_rss 
and provided the summary z scores from SAIGE (that is, effect size 
divided by its standard error) and the correlation matrix computed 
with the same samples that were used for the corresponding GWAS. 
We required coverage ≥``{=html}0.95 for each identified credible set 
and minimum and median absolute correlation coefficients (purity) 
of r = 0.1 and 0.5, respectively.

Functional annotation of credible sets. We annotated all variants 
included in each credible set identified by SusieR using the online Vari-
ant Effect Predictor (VEP) v.104 and selected the worst consequence 
across GENCODE basic transcripts (Supplementary Information). We 
also ranked each variant within each credible set according to the pre-
dicted consequence and the ranking was based on the table provided 
by Ensembl: https://www.ensembl.org/info/genome/variation/predic-
tion/predicted_data.html.

Multi-ancestry meta-analysis. We performed a meta-analysis across 
all ancestries using an inverse-variance weighting method and control 
for population stratification for each separate analysis in the METAL 
software46. The meta-analysed variants were filtered for variants with 
heterogeneity P value P < 2.22 × 10−8 and variants that are not present 
in at least half of the individuals. We used the meta R package to plot 
forest plots of the clumped multi-ancestry meta-analysis variants47.

LD-based validation of lead GWAS signals. To quantify the support 
for genome-wide-significant signals from nearby variants in LD, we 
assessed the internal consistency of GWAS results of the lead variants 
and their surroundings. To this end, we compared observed z-scores 
at lead variants with the expected z-scores based on those observed at 
neighbouring variants. Specifically, we computed the observed z-score 
for a variant i as s β σ= ˆ/ ˆi β̂  and, following a previous approach48, the 
imputed z-score at a target variant t as

s λˆ = ( + )t t P P P P, ,
−1Σ Σ I s

where Ps  are the observed z-scores at a set P of predictor variants, Σx y,  
is the empirical correlation matrix of dosage coded genotypes com-
puted on the GWAS sample between the variants in x and y, and λ is a 
regularization parameter set to 10−5. The set P of predictor variants 
consisted of all variants within 100 kb of the target variant with a gen-
otype correlation with the target variant greater than 0.25. This 
approach is similar to one proposed recently49.

Stratified analysis. We performed sex-specific analysis (male and 
female individuals separately) as well as analysis stratified by age (that 
is, participants of younger than 60 years old and 60 years old or above) 
for the EUR ancestry group. To compare the effect of variants within 
groups for the age- and sex-stratified analysis we first adjusted the 
effect and error of each variant for the standard deviation of the trait 
in each stratified group and then used the following t-statistic, as in 
previous studies50,51

https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html
https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html
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where b1 is the adjusted effect for group 1, b2 is the adjusted effect for 
group 2, se1 and se2 are the adjusted standard errors for groups 1 and 
2, respectively, and r is the Spearman rank correlation between groups 
across all genetic variants.

Replication. To generate a replication set, we conducted a meta-analysis 
of data from 23andMe, together with a meta-analysis of the COVID-19 
HGI data freeze 6 (hospitalized COVID versus population) GWAS  
(B2 analysis), including all genetic ancestries. Although the HGI pro-
gramme included an analysis designed to mirror the GenOMICC study 
(analysis ‘A2’), most of these cases come from GenOMICC and are  
already included in the discovery cohort. We therefore used the broader 
hospitalized phenotype (‘B2’) for replication.

To account for signal due to sample overlap we performed a math-
ematical subtraction from HGI v.6 B2, of the GenOMICC GWAS of Euro-
pean genetic ancestry. Publicly available HGI data were downloaded 
from https://www.covid19hg.org/results/r6/. The subtraction was 
performed using the MetaSubtract package (v.1.60) for R (v.4.0.2) 
after removing variants with the same genomic position and using the 
lambda.cohorts with genomic inflation calculated on the GenOMICC 
summary statistics.

We calculated a multi-ancestry meta-analysis for the three ancestries 
with summary statistics in 23andMe—African, Latino and European—
using variants that passed the 23andMe ancestry quality control, with 
imputation score > 0.6 and with MAF > 0.005, before performing a final 
meta-analysis of 23andMe and HGI B2 without GenOMICC to create the 
final replication set. Meta-analysis was performed using METAL46, with 
the inverse-variance weighting method (STDERR mode) and genomic 
control ON. We considered that a hit was replicated if the direction of 
effect in the GenOMICC-subtracted HGI summary statistics was the 
same as in our GWAS, and the P value was significant after Bonferroni 
correction for the number of attempted replications (pval < 0.05/25). 
If the main hit was not present in the HGI–23andMe meta-analysis or if 
the hit was not replicating, we looked for replication in variants in high 
LD with the top variant (r2 > 0.9), which helped replicate two regions.

To attempt additional replication of two associations, we performed 
a multi-ancestry meta-analysis across five continental ancestry groups 
in the UK Biobank, AncestryDNA, Penn Medicine Biobank and GHS, 
totalling 9,937 hospitalized cases of COVID-19 and 1,059,390 controls 
(COVID-19 negative or unknown). Hospitalization status (positive, 
negative or unknown) was determined on the basis of COVID-19-related 
ICD10 codes U071, U072, U073 in variable ‘diag_icd10’ (table ‘hesin_
diag’) in the UK Biobank study; self-reported hospitalization due to 
COVID-19 in the AncestryDNA study; and medical records in the GHS 
and Penn Medicine Biobank studies. Association analyses in each 
study were performed using the genome-wide Firth logistic regres-
sion test implemented in REGENIE. In this implementation, Firth’s 
approach is applied when the P value from a standard logistic regres-
sion score test is less than 0.05. We included in step 1 of REGENIE (that 
is, prediction of individual trait values based on the genetic data) 
directly genotyped variants with MAF > 1%, missingness < 10%, HWE 
test P > 1 × 10−15 and LD-pruning (1,000 variant windows, 100 variant 
sliding windows and r2 < 0.9). The association model used in step 2 
of REGENIE included as covariates age, age2, sex, age-by-sex, and the 
first 10 ancestry-informative PCs derived from the analysis of a stricter 
set of LD-pruned (50 variant windows, 5 variant sliding windows and 
r2 < 0.5) common variants from the array (imputed for the GHS study) 
data. Within each study, association analyses were performed sepa-
rately for five different continental ancestries defined on the basis 
of the array data: African (AFR), Hispanic or Latin American (HLA), 

East Asian (EAS), European (EUR) and South Asian (SAS). Results were 
subsequently meta-analysed across studies and ancestries using an 
inverse-variance-weighted fixed-effects meta-analysis.

HLA imputation and association analysis
HLA types were imputed at two-field (four-digit) resolution for all sam-
ples within aggV2 and aggCOVID_v4.2 for the following seven loci: 
HLA-A, HLA-C, HLA-B, HLA-DRB1, HLA-DQA1, HLA-DQB1 and HLA-DPB1, 
using the HIBAG package in R15. At the time of writing, HLA types were 
also imputed for 

∼
8 2% of samples using HLA*LA52. Inferred HLA alleles 

between HIBAG and HLA*LA were more than 96% identical at four-digit 
resolution. HLA association analysis was run under an additive model 
using SAIGE, in an identical manner to the SNV GWAS. The multi-sample 
VCF of aggregated HLA type calls from HIBAG was used as input in cases 
in which any allele call with posterior probability (T) < 0.5 were set to 
missing.

AVT
AVT on aggCOVID_v4.2 was performed using SKAT-O as implemented in 
SAIGE-GENE v.0.44.517 on all protein-coding genes. Variant and sample 
quality control for the preparation and masking of the aggregate files 
have been described elsewhere. We further excluded SNPs with differ-
ential missingness between cases and controls (mid-P value < 10−5) or 
a site-wide missingness above 5%. Only bi-allelic SNPs with MAF < 0.5% 
were included.

We filtered the variants to include in the AVT by applying two func-
tional annotation filters: a putative loss of function (pLoF) filter, in 
which only variants that are annotated by LOFTEE18 as high-confidence 
loss of function were included; and a more lenient (missense) filter, 
in which variants that have a consequence of missense or worse as 
annotated by VEP, with a CADD_PHRED score of ≥10, were also included. 
All variants were annotated using VEP v99. SAIGE-GENE was run with 
the same covariates used in the single variant analysis: sex, age, age2, 
age-by-sex and 20 (population-specific) PCs generated from common 
variants (MAF ≥ 5%).

We ran the tests separately by genetically predicted ancestry, as 
well as across all four ancestries as a mega-analysis. We considered a 
gene-wide-significant threshold on the basis of the genes tested per 
ancestry, correcting for the two masks (pLoF and missense; Supple-
mentary Table 14).

Post-GWAS analysis
TWASs. We performed TWASs in the MetaXcan framework and the 
GTEx v.8 eQTL and splicing quantitative trait loci (sQTL) MASHR-M 
models available for download in http://predictdb.org/. We first cal-
culated, using the European summary statistics, individual TWASs 
for whole blood and lung with the S-PrediXcan function53,54. Then we 
performed a metaTWAS including data from all tissues to increase sta-
tistical power using s-MultiXcan55. We applied the Bonferroni correction 
to the results to choose significant genes and introns for each analysis.

Colocalization analysis. Significant genes from the TWAS, splicing 
TWAS, metaTWAS and splicing metaTWAS, as well as genes for which 
one of the top variants was a significant eQTL or sQTL, were selected 
for a colocalization analysis using the coloc R package56. We chose the 
lead SNPs from the European ancestry GWAS summary statistics and 
a region of ±200 kb around each SNP to do the colocalization with the 
identified genes in the region. GTEx v.8 whole-blood and lung tissue 
summary statistics and eqtlGen (which has blood eQTL summary sta-
tistics for more than 30,000 individuals) were used for the analysis22,57. 
We first performed a sensitivity analysis of the posterior probability of 
colocalization (PPH4) on the prior probability of colocalization (P12), go-
ing from P12 = 10−8 to P12 = 10−4, with the default threshold being P12 = 10−5. 
eQTL signal and GWAS signals were deemed to colocalize if these two 
criteria were met: (1) at P12 = 5 × 10−5 the probability of colocalization 

https://www.covid19hg.org/results/r6/
http://predictdb.org/


PPH4 > 0.5; and (2) at P12 = 10−5 the probability of independent signal 
(PPH3) was not the main hypothesis (PPH3 < 0.5). These criteria were 
chosen to allow eQTLs with weaker P values, owing to lack of power in 
GTEx v.8, to be colocalized with the signal when the main hypothesis 
using small priors was that there was not any signal in the eQTL data.

As the chromosome 3-associated interval is larger than 200 kb, we 
performed additional colocalization including a region up to 500 kb, 
but no further colocalizations were found.

Mendelian randomization. We performed GSMR23 in a replicated 
outcome study design. As exposures, we used the pQTLs from the IN-
TERVAL study24. We used the 1000 Genomes Project imputed data of 
the Health and Retirement Study (HRS) (n = 8,557) as the LD reference 
data required for GSMR analysis. The HRS data are available from dbGap 
(accession number: phs000428).

GSMR was undertaken using all exposures for which we were able to 
identify two or more independent SNPs associated with the exposure (P 
value(exposure) < 5 × 10−8; LD clumping ±1 Mb, r2 < 0.05; HEIDI-outlier 
filtering test, for the removal of SNPs with evidence of horizontal plei-
otropy, was performed at the default threshold value of 0.01). Using 
GSMR, we identified those proteins implicated in determining COVID-
19 severity in the new GenOMICC results (following genomic-control 
correction for inflation) at a false discovery rate (FDR) of less than 
0.05, and attempted replication in the GWAS of ‘Hospitalized COVID 
versus population’ (phenotype B2) of the COVID-19 HGI (ref. 58) hav-
ing excluded the previous GenOMICC results. We achieved this by 
mathematically removing the contribution of GenOMICC1 from the 
meta-analysis. We considered as replicated those results that passed a 
Bonferroni-corrected P value threshold, correcting for the total number 
of replication tests attempted (that is, the number of observations from 
the discovery set with FDR < 0.05).

Heritability. For the SNP-based narrow-sense heritabilities of severe 
COVID-19 and HGI COVID phenotypes, both high-definition likelihood 
(HDL) and LD score regression (LDSC)59 methods were applied. The HGI 
summary statistics were based on the GWAS analysis of all available 
samples, in which the majority were European populations (see https://
www.covid19hg.org/results/r6/). The munge_sumstats.py procedure 
in the LDSC software was used to harmonize the summary statistics, 
and in LDSC, the reference panel was built using the 1000 Genome 
European samples with SNPs that have MAF > 0.05. As both HDL and 
LDSC are based on GWAS summary z-score statistics, the estimated 
heritabilities are thus on the observed scale.

Enrichment analysis. Enrichment analysis was performed to identify 
ontologies in which discovery genes were overrepresented. Using the 
XGR algorithm (http://galahad.well.ox.ac.uk/XGR)60, 19 genes identi-
fied through lead variant proximity, credible variant sets, mutation 
consequence and TWAS analyses were tested for enrichment in disease 
ontology61, gene ontologies (biological process, molecular function 
and cellular component)62 and KEGG63 and Reactome64 pathways using 
default settings. This generated a P value and FDR for overrepresenta-
tion of genes within each of the ontologies (Supplementary Table 15).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All data are available through https://genomicc.org/data. This includes 
downloadable summary data tables and instructions for applying to 
access individual-level data. Individual-level genome sequence data 
for the COVID-19 severe and mild cohorts can be analysed by qualified 
researchers in the UK Outbreak Data Analysis Platform at the University 

of Edinburgh by application at https://genomicc.org/data. Genomic 
data for the 100,000 Genomes Project participants and a subset of 
COVID-19 cases are also available through the Genomics England 
research environment, which can be accessed by application at https://
www.genomicsengland.co.uk/join-a-gecip-domain. The full GWAS sum-
mary statistics for the 23andMe discovery dataset are available through 
23andMe to qualified researchers under an agreement with 23andMe 
that protects the privacy of the 23andMe participants. More informa-
tion and access to the data are provided at https://research.23andMe.
com/dataset-access/.

Code availability
Code to calculate the imputation of P values based on LD SNPs is avail-
able at https://github.com/baillielab/GenOMICC_GWAS.
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Extended Data Fig. 1 | Analysis workflow for GWAS and AVT analyses of this 
study. The cohorts displayed in yellow and green in the top box were processed 
with Genomics England Pipeline 2.0 and Illumina NSV4, respectively 
(see Methods on WGS Alignment and variant calling for details on differences 
between pipelines). We used individuals that were processed with either 
pipeline for the GWAS analyses and individuals processed only with Genomics 

England Pipeline 2.0 for the AVT analyses. The definition of the cases and 
controls was the same for GWAS and AVT, cases were the COVID-19 severe 
individuals for both, and controls included individuals from the 100,000 
Genomes Project (100,000 Genomes Project) and also COVID-19 positive 
individuals that were recruited for this study and experienced only mild 
symptoms (COVID-mild).
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Extended Data Fig. 2 | Regional detail showing fine-mapping to identify 
three adjacent independent signals on chromosome 1. Top two panels: 
variants in LD with the lead variants shown. The variants that are included in 
two independent credible sets are displayed with black outline circles. r 2 values 

in the legend denote upper limits, 0.2=[0,0.2], 0.4=[0.2,0.4], 0.6=[0.4,0.6], 
0.8=[0.6,0.8],1=[0.8,1]. Bottom panel: locations of protein-coding genes, 
coloured by TWAS P -value. The red dashed line shows the Bonferroni-corrected 
P -value=2.2 × 10−8 for Europeans.



Extended Data Fig. 3 | Regional detail showing fine-mapping to identify 
two adjacent independent signals on chromosome 19. Top two panels: 
variants in LD with the lead variants shown. The variants that are included in 
two independent credible sets are displayed with black outline circles. r 2 values 

in the legend denote upper limits, 0.2=[0,0.2], 0.4=[0.2,0.4], 0.6=[0.4,0.6], 
0.8=[0.6,0.8],1=[0.8,1]. Bottom panel: locations of protein-coding genes, 
coloured by TWAS P -value. The red dashed line shows the Bonferroni-corrected 
P -value=2.2 × 10−8 for Europeans.
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Extended Data Fig. 4 | Regional detail showing fine-mapping to identify 
three adjacent independent signals on chromosome 21. Top three panels: 
variants in LD with the lead variants shown. The variants that are included in 
three independent credible sets are displayed with black outline circles.  

r 2 values in the legend denote upper limits, 0.2=[0,0.2], 0.4=[0.2,0.4], 
0.6=[0.4,0.6], 0.8=[0.6,0.8],1=[0.8,1]. Bottom panel: locations of protein- 
coding genes, coloured by TWAS P -value. The red dashed line shows the 
Bonferroni-corrected P -value=2.2 × 10−8 for Europeans.



Extended Data Fig. 5 | Predicted structural consequences of lead variants 
at PLSCR1 and IFNA10. (a) Crystal structure of PLSCR1 nuclear localization 
signal (orange, Gly257–Ile266, numbering correspond to UniProt entry O15162) 
in complex with Importin α  (blue), Protein Data Bank (PDB) ID 1Y2A (ref. 65).  
Side chains of PLSCR1 are shown as connected spheres with carbon atoms 
coloured in orange, nitrogens in blue and oxygens in red. Hydrogen atoms were 
not determined at this resolution (2.20) and are not shown. (b) Close-up view 
showing side chains of PLSCR1 Ser260, His262 and Importin Glu107 as sticks. 
Distance (in) between selected atoms (PLSCR1 His262 N�2 and Importin Glu107 
carboxyl O) is indicated. A hydrogen bond between PLSCR1 His262 and 
Importin Glu107 is indicated with a dashed line. The risk variant is predicted to 
eliminate this bond, disrupting nuclear import, an essential step for effect on 
antiviral signalling27 and neutrophil maturation66. (c) Because there is very 

strong sequence conservation between IFNA10 and the gene encoding IFNω, 
we used existing crystal structure data (Protein Data Bank ID 3SE4 (ref. 67)) for 
IFNω (cyan) to display a ternary complex with interferon α/β receptor IFNAR1 
(blue), IFNAR2 (red). The side chain of Trp164 is shown as spheres and indicated 
with a black line. (d) The hydrophobic core of IFNω with Trp164 shielded from 
the solvent in the center. Trp164-surrounding residues of IFNω are numbered 
and correspond to UniProt entry P05000. Trp164 and surrounding residues are 
conserved in IFNA10 (UniProt ID P01566) and share the same numbering as in 
IFNω (P05000). Side chains of four residues are shown as sticks. Carbon and 
nitrogen atoms coloured in cyan and blue, respectively. The critical COVID-19- 
associated mutation, Trp164Cys, would replace an evolutionarily conserved, 
bulky side chain in the hydrophobic core of IFNA10 with a smaller one, which 
may destabilize IFNA10.
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Extended Data Fig. 6 | Manhattan plot of HLA and GWAS signal across the 
extended MHC region for the EUR cohort. Grey circles mark the GWAS (small 
variant) associations and diamonds represent the HLA each allele association, 
coloured by locus. The lead variant from the GWAS and lead allele from HLA are 

labelled. The left-panel shows the raw association −log10(P values) per variant - 
prior to conditional analysis. The right-panel shows the −log10(P values) per 
variant following conditioning on DRB1*04:01. The dashed red line shows the 
Bonferroni-corrected genome-wide significance threshold for Europeans.



Extended Data Fig. 7 | Effect–effect plots for Mendelian randomization 
analyses to assess causal evidence for circulating proteins in critical 
COVID-19. Each plot shows effect size (β) of variants associated with protein 

concentration (x axis) and critical COVID-19 ( y axis). A full list of instruments is 
found in Supplementary Table 13.
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Extended Data Table 1 | Fine-mapping results for lead variants and worst consequence variant in each credible set

Fine-mapping was performed in EUR for all variants except chr6:41515007:A:C, which was fine-mapped in the SAS population for which the signal was strongest among the per-population 
analyses. The lead variant chr2:60480453:A:G (rs1123573) that was discovered in multi-ancestry meta-analysis is not included in the table as fine-mapping did not generate any credible sets 
with the required posterior inclusion probability of >0.95 for any of the populations. Focal CS is the index SNP that was used for fine-mapping with SusieR, 1.5 Mb on each side. nCS indicates 
the number of variants included in each credible set. Consequence annotation for all variants across credible sets was generated using VEP v.104 and the worst consequence across GENCODE 
basic transcripts was chosen. All variants were ranked according to their consequence type and chr:poshg38:refhg38:alt, P value and CADD score are provided for the variant with the worst  
consequence across all variants in each credible set.



Extended Data Table 2 | Identification of 16 proteins by the GSMR analysis for COVID-19 severity at FDR < 0.05

We report the effect size BETA, the standard error SE and the P value P for the GenOMICC analysis and the replication with HGI B2 and 23andme meta-analysis. An asterisk (*) next to the  
replication P value (Phgib2.23m) indicates that the protein result is replicated with concordant direction of effect. We considered as replicated those results that passed a Bonferroni correction of 
the P values of the replicated outcome Mendelian randomization.
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