Skip to main content
. 2022 Jun 23;13:915355. doi: 10.3389/fphar.2022.915355

TABLE 2.

Examples of microbial studies used omics technologies.

Omics strategies Approach Study objective Drug/ compound Pathogen Reference
Genomics Single-cell sequencing Evaluate human microbiota Microbiota of a healthy oral subject Campbell et al. (2013)
Genomics Single-cell sequencing Identify bacteria that affect disease susceptibility and severity Intestinal microbiome from 11 patients with inflammatory bowel disease Palm et al. (2014)
Genomics and metagenomics Single-cell sequencing + Shotgun sequencing Evaluate the genomes of SAR86 marine bacterial lineage SAR86 from seawater Dupont et al. (2012)
Metagenomics Shotgun sequencing Assess health risk of antimicrobial resistance genes (ARGs) 1,921 gut microbiome genomes from 59 healthy stool donors Zhang et al. (2021)
Metagenomics Shotgun sequencing Investigate the rates and targets of horizontal gene transfer (HGT) across thousands of bacterial strains Samples were collected from 15 human populations spanning a range of industrialization Groussin et al. (2021)
Transcriptomics RNA-Seq Analyze the regulation of adaptive resistance upon adaptation to disparate toxins Ampicillin, tetracycline, n-butanol E. coli Erickson et al. (2017)
Transcriptomics Microarray Identify molecular mechanism of Licochalcone A Licochalcone A from Glycyrrhiza inflata S. aureus Shen et al. (2015)
Transcriptomics, metabolomics, lipidomics and lipid A profiling data Genome-scale metabolic modelling Analyze bacterial metabolic changes at the systems levels Polymyxins P. aeruginosa Zhu et al. (2018)
Proteomics nanoLC-MS/MS Analyze bacterial phosphoproteomic changes of prokaryotes for drug resistance - A. baumannii, H. pylori, K. pneumoniae, V. vulnificus, A. platensis, M. taiwanensis, T. thermophilus, M. mazei, M. portucalensis Lai et al. (2017)
Proteomics MS and 2D-DIGE Identify changes in subproteome Piperacillin/ tazobactam E. coli dos Santos et al. (2010)
Proteomics 2DE and iTRAQ Investigate the mechanism of Plumbagin Plumbagin B. subtilis Reddy et al. (2015)
Metabolomics and proteomics Computational model Identify the biomarkers to predict patient outcomes and guide therapeutic development - S. aureus Wozniak et al. (2020)
Metabolomics HPLC with MS identify metabolic changes of bacteria Methicillin, ampicillin, kanamycin, norfloxacin Two isogenic S. aureus strains Schelli et al. (2017)

Nano LC-MS/MS, nanoscale liquid chromatography coupled to tandem mass spectrometry; MS, mass spectrometry; 2D-DIGE, two-dimensional difference gel electrophoresis; 2DE, two-dimensional electrophoresis; iTRAQ, isobaric tag for relative and absolute quantification; HPLC, high performance liquid chromatography.