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ABSTRACT
Background  The lung intratumor microbiome influences 
lung cancer tumorigenesis and treatment responses, 
but detailed data on the extent, location, and effects of 
microbes within lung tumors are missing, information 
needed for improved prognosis and treatment.
Methods  To address this gap, we developed a novel 
spatial meta-transcriptomic method simultaneously 
detecting the expression level of 1,811 host genes and 
3 microbe targets (bacteria, fungi, and cytomegalovirus). 
After rigorous validation, we analyzed the spatial 
meta-transcriptomic profiles of tumor cells, T cells, 
macrophages, other immune cells, and stroma in surgically 
resected tumor samples from 12 patients with early-stage 
lung cancer.
Results  Bacterial burden was significantly higher in tumor 
cells compared with T cells, macrophages, other immune 
cells, and stroma. This burden increased from tumor-
adjacent normal lung and tertiary lymphoid structures to 
tumor cells to the airways, suggesting that lung intratumor 
bacteria derive from the latter route of entry. Expression 
of oncogenic β-catenin was strongly correlated with 
bacterial burden, as were tumor histological subtypes and 
environmental factors.
Conclusions  Intratumor bacteria were enriched with 
tumor cells and associated with multiple oncogenic 
pathways, supporting a rationale for reducing the local 
intratumor microbiome in lung cancer for patient benefit.
Trial registration number  NCT00242723, NCT02146170.

BACKGROUND
Despite recent advances in treatment, lung 
cancer is still the leading cause of cancer-
related death,1 pointing to the importance 
of achieving a deeper understanding of the 
complex tumor microenvironment (TME) 
in this disease in seeking new therapeutic 
options. Previous studies have documented 
the mutational, transcriptional, and immu-
nological profiles of lung cancer while other 
investigations have examined the gut micro-
biome as a potential factor contributing to 

disease and response to treatment.2 3 However, 
very little is known about the lung intratumor 
microbiome, in large part due to limited 
investigation in the past when the prevailing 
belief was that lung parenchymal tissues are 
sterile.4 However, recent progress in 16S 
rRNA sequencing, a culture-independent 
bacterial analysis method, shed light on the 
local intratumor microbiome in lung cancer 
and showed that multiple bacteria species are 
associated with these malignancies.5 6

Our previous work using a genetically engi-
neered mouse model involving transformed 
cells with Kras activation and a Tp53 loss-
of-function mutation (KP mice) found an 
increased lung bacterial burden in tumor-
bearing mice and a reduced tumor burden 

WHAT IS ALREADY KNOWN ON THIS TOPIC?
	⇒ Previous studies showed dysbiosis in lung cancer 
and the existence of bacteria inside of tumor cells; 
however, the spatial distribution of the lung intra-
tumor microbiome and interactions of these organ-
isms with host cells in the tumor microenvironment 
are unknown.

WHAT THIS STUDY ADDS?
	⇒ Our study showed intratumor bacteria were en-
riched with tumor cells compared with immune cells 
and associated with multiple oncogenic pathways in 
tumor cells.

	⇒ Bacteria burden increased from tumor-adjacent nor-
mal lung and tertiary lymphoid structures to tumor 
cells to the airways.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY?

	⇒ The findings of our study emphasized the importance 
of direct interaction between tumor cells and bacte-
ria, supporting the therapeutic potential of reducing 
bacteria burden in the tumor microenvironment.
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when the lung bacterial microbiome was decreased by 
local antibiotic delivery.7 Other studies have highlighted 
the existence of bacteria within tumor cells8 and tumor 
cells have been shown to present bacterial antigens to T 
cells,9 together suggesting an important role of lung intra-
tumor microbes in the state of the tumor cells themselves 
and the nature of the local immune TME. However, the 
spatial distribution of the lung intratumor microbiome, 
the extent and nature of interactions of these organ-
isms with tumor cells, immune cells, and stromal cells, 
and the specific manner in which these organisms influ-
ence the TME are still uncharacterized. To address these 
unanswered questions, spatially resolved co-detection 
of bacteria and host molecular markers and transcripts 
is required. Traditional imaging methods, including 
multiplex immunohistochemistry and fluorescent in situ 
hybridization(FISH), are still limited in the extent to 
which they can analyze the tumor in a comprehensive 
and unbiased manner. Furthermore, current sequencing 
technologies are unable to obtain bacterial and host tran-
scriptional information simultaneously. Here, we describe 
a new approach to obtaining this needed information 
and provide evidence that local bacterial association with 
tumor cells is pro-oncogenic in lung cancer.

METHODS
Patient samples
Samples from 12 patients with early stage lung cancer 
who were enrolled in clinical trials NCT00242723 and 
NCT02146170 were used for this study. Lung samples, 
including adjacent normal regions, were surgically 
resected and formalin-fixed and paraffin embedded 
(FFPE).

Mouse samples
Germ-free KrasLSL-G12D/+; p53flox/flox (KP) mice have been 
described previously.1 Briefly, KP mice used in this study 
were derived by embryo transfer using sterile techniques 
and maintained in germ-free conditions by following 
stringent standard operating procedures to prevent 
contamination. The germ-free status was confirmed by 
microbiological monitoring by culture and fecal PCR, 
alternatively, every 2 weeks. Tumor-bearing lung lobes 
were fixed in 4% paraformaldehyde overnight and 
embedded in paraffin.

Sample processing for NanoString Digital Spatial Profiler 
(DSP) analysis
FFPE blocks were sectioned onto Superfrost Plus micro-
scope slides at 5 μm thickness. One section from an 
FFPE block from a tumor-bearing germ-free KP mouse 
was placed on each slide as an inter-slide control for the 
baseline of the 16S rRNA signal. Sections from one or two 
patient samples were placed on the same slides, according 
to their size. Slides were processed for DSP tissue treat-
ment within 1 hour of sectioning to ensure RNA quality.

For the NanoString GeoMx DSP RNA assays, slides were 
prepared following the Leica Biosystems BOND RX FFPE 
RNA Slide Preparation Protocol in the GeoMx NGS Slide 
Preparation User Manual (NanoString, MAN-10 115-04). 
Briefly, slides were baked at 60°C for 30 min and then 
loaded into the Leica BOND RX device. Slides were 
treated sequentially following Leica BOND RX default 
Bake & Dewax Protocol, HIER (ER2, 20 min, 95°C) 
Protocol and GeoMx DSP RNA Slide Prep Protocol (1 mg/
mL proteinase K (Ambion, cat. 2546) in 1X phosphate-
buffered saline (PBS) at 37°C for 15 min). After pretreat-
ment, slides were hybridized with the GeoMx Cancer 
Transcriptome Atlas Panel (1811 targets, cat. 121400101) 
supplemented with customized bacterial 16srRNA-
cytomegalovirus (CMV)-fungal spike-in probes provided 
by NanoString (detailed probe information in online 
supplemental table 1). One at a time, slides were dried of 
excess 1X PBS, set in a hybridization chamber lined with 
Kimwipes wetted with Diethyl pyrocarbonate(DEPC)-
treated water, and covered with 200 μL prepared Probe 
Hybridization solution. HybriSlips (Grace Biolabs, cat. 
714022) were gently applied to each slide and they were 
left to incubate at 37°C overnight.

After hybridization, the HybriSlips were removed 
by dipping the slides in 2X saline-sodium citrate 
(SSC) (Sigma-Aldrich, cat. S6639)/0.1% Tween-20. To 
remove unbound probes, the slides were washed twice 
in Stringent Wash (50% formamide (ThermoFisher, 
cat. AM9342)/2X SSC) at 37°C for 25 min, followed by 
two washes in 2X SSC for 2 min. Slides were blocked in 
200 μL Buffer W (NanoString), placed in a humidity 
chamber and incubated at room temperature for 30 min. 
Morphology marker solution was prepared for four slides 
at a time: primary antibody: 20 μL CD3 (Abcam, clone: 
F7.2.38, cat. ab17143, RRID:AB_302587) and 780 μL 
Buffer W; secondary antibody: 10 μL anti-mouse Ig Alexa 
532 (ThermoFisher, cat. A-11002) and 790 μL Buffer W; 
direct antibodies: 20 µL anti-pan-cytokeratin Alexa 488 
antibody (Invitrogen, clone: AE1+AE3, cat. 53-9003-82), 
20 μL CD45 morphology marker (NanoString, clone: 
2B11+PD7/26, cat. 121300310), 20 μL anti-CD68 Alexa 
647 (Novus Bio, clone: SPM130, cat. NBP2-34736AF647) 
and 740 μL Buffer W for a total volume of 200 μL/slide. 
Slides were dried of excess Buffer W, set in a humidity 
chamber, covered with morphology marker solution, and 
left to incubate at room temperature for 1 hour during 
primary and secondary antibody staining. Slides were 
washed with 2X SSC for 5 min twice after each staining 
and were immediately loaded into the GeoMx instrument.

GeoMx DSP region of interest selection and sequencing
Eight slides containing 12 patient samples and germ-
free KP mouse samples were analyzed using a NanoS-
tring GeoMx instrument as described.10 11 Briefly, 
RNA probe-hybridized and antibody-stained slides 
were scanned with a 20X objective, collecting data 
using FITC/525 nm (excitation 480/28 nm, emission 
516/23 nm), Cy3/568 nm (excitation 538/19 nm, 
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emission 564/15 nm), Texas Red/615 nm (excitation 
588/19 nm, emission 623/30 nm), and Cy5/666 nm 
(excitation 645/19 nm, emission 683/30 nm) chan-
nels. Regions of interest (ROI) were selected based 
on morphology and cell surface marker staining. 
Within each large ROI, areas of interest (AOI) were 
identified for RNA collection based on cell-specific 
surface marker staining: T cells (CD3+), macrophages 
(CD68+CD3−), other immune cells (CD45+CD3−CD68−), 
tumor cells (panCK+), and stroma (autofluores-
cence+panCK−CD45−). ImageJ was used to generate 
masks for AOI collection based on these stains. The 
masks were imported to the GeoMx and used to guide 
UV light cleavage of the barcode linkers of the prebound 
RNA probes in each AOI and deposition of the cleaved 
probes in DSP collection plates.

DSP collection plates were frozen and stored at −80°C. 
Plates were thawed at room temperature and libraries 
were prepared per manufacturer’s guidelines. Collec-
tion plates were sealed with a semi-permeable membrane 
and dried down at 65°C for 1 hour. Each well was resus-
pended in 10 µL DEPC-treated water, incubated at room 
temperature for 10 min, and then spun down. The library 
preparation was carried out in a 96-well PCR plates 
by mixing 2 μL PCR mix (NanoString), 4 μL of index 
primer mix (NanoString), and 4 μL of DSP sample. The 
following PCR program was used to amplify the Illumina 
sequencing compatible libraries; 37°C for 30 min, 50°C 
for 10 min, 95°C for 3 min, followed by 18 cycles of (95°C 
for 15 s, 65°C for 1 min, 68°C for 30 s), 68°C for 5 min and 
a final hold at 4°C. A total of 6 plates of 96 wells each were 
used.

The indexed libraries were pooled with an 8-channel 
pipette by combining 2 μL per well from the 12 columns 
(one 96-well plate) into 8-well strip tubes and then pooled 
into a 1.5 mL tube. The combined 50 µL pools were incu-
bated with 60 μL SPRIselect beads (Beckman Coulter, 
cat. B23318) (1.2X bead to sample ratio) for 5 min in a 
1.5 mL tube followed by standing on a magnetic stand 
for 5 min before removal of the supernatant. The beads 
were then washed twice with 200 µL of 80% ethanol 
and air dried for 3 min before being eluted with 50 µL 
elution buffer (10 mM Tris-HCl pH 8, 0.05% Tween-20, 
Teknova cat. T1485). Then a second round of SPRIselect 
beads (Beckman Coulter, cat. B2331860 ul; 1.2X bead to 
sample ratio) selection was carried out directly on the 
bead suspension as above. The washed beads were eluted 
in 20 µL elution buffer (10 mM Tris-HCl pH 8, 0.05% 
Tween-20, Teknova cat. T1485) and 18 µL of the super-
natant was extracted to a new tube. The 18 µL of clean-up 
supernatant from each 96-well plate was pooled, and the 
library fragment size was assessed with the D1000 Tape 
Station assay (Agilent Technologies) and the expected 
size of ~162 bp was observed.

Total target counts per DSP collection plate for 
sequencing were calculated based on the NanoString DSP 
Worksheet. The target sequencing depth was 30 counts/
μm2 for a total of 1.5B reads. Libraries were sequenced 

with a 100-cycle S1 kit on the NovaSeq 6000 at the CCR 
Sequencing Facility (Frederick, Maryland, USA).

Expression analysis of host transcriptome, microbial 16S 
rRNA, CMV UL83, and fungal 28S rRNA expression calculation
Sequence reads were demultiplexed and converted to 
digital count conversion (DCC) files using the NanoS-
tring DnD pipeline (Supplementary Data1). DCC files 
were further converted to an expression count matrix. 
For analysis of the host transcriptome, the 75th percen-
tile (Q3) of the target counts of each probe pool in each 
AOI type was calculated and normalized to the geometric 
mean of the 75th percentiles across all AOIs of each type 
to give normalization factors (Supplementary Data2). 
Target counts were divided by these normalization factors 
to give normalized expression counts. Regarding spike-in 
targets, all genes were normalized to negative probes in 
the customized probe set. To further control interslide 
variation, counts were further normalized by the consecu-
tively cut germ-free KP samples. The comparison of bacte-
rial 16S rRNA, CMV UL83, and fungal 28S rRNA expression 
was tested using the two-sided Wilcoxon test. Correlation 
analysis of 16S rRNA signal and host transcripts was done 
by calculating the Spearman’s rank correlation coef-
ficient for each host gene against the 16S rRNA count 
in that sample. All normalization analyses and spatial-
deconvolution were done using the NanoString DSP 
analysis platform. Immune cell abundance was calculated 
using a previously described spatial-deconvolution algo-
rithm12 and reference libraries were generated based on 
prior studies.13–15 Statistical analysis was done in R Studio, 
and pathway analysis was done with QIAGEN Ingenuity 
Pathway Analysis.16

RNAscope
For the RNAscope co-detection assay, staining was 
performed on FFPE slides according to the manufactur-
er’s protocol (RNAscope LS Multiplex Fluorescent Assay 
combined with Immunofluorescence—Integrated Co-De-
tection Workflow on Leica Bond RX, MK 51-152) using the 
RNAscope LS Multiplex Fluorescent Reagent Kit (ACD 
Bio, 322800) with the RNAscope 2.5 LS Probe-16S-C1 
probe (ACD Bio, 1056988-C1 and the DAPI, Opal 570, 
Opal 650 (Akoya Biosciences, FP1488001KT, dilution: 
1:1500). Freshly cut FFPE sections on slides were loaded 
into the Leica BOND RX. Slides were treated sequentially 
following the Leica BOND RX default Bake & Dewax 
Protocol and ACD HIER (ER2, 30 min, 95°C) protocol. 
Slides were stained with anti-pan-cytokeratin antibody 
(Leica Biosystems, clone: AE1/AE3, cat. 1 mL NCL-L-AE1/
AE3-601, dilution: 1:100) for 15 min, followed by postfixa-
tion with 10% neutral buffered formalin for 30 min. Fixed 
slides were treated with RNAscope 2.5 LS Protease III for 
30 min, and then ACD 16s rRNA pre-treatment reagent 
(ADC Bio, cat. 300040) for 30 min. Treated slides were 
hybridized with RNAscope 2.5 LS Probe-16S-C1 probe 
(ACD Bio, cat. 1056988-C1) for 2 hours. 16S rRNA and 
pan-cytokeratin signals were amplified according to the 
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manufacturer’s guidance. Slides were mounted with Fluo-
romount-G (Southern Biotech, cat. 0100-01) and exam-
ined on a Leica THUNDER Imager. Images were analyzed 
with Imaris software (Bitplane, RRID:SCR_007370), 
ImageJ (RRID:SCR_003070), and Adobe Illustrator 
(RRID:SCR_010279).

β-Catenin immunohistochemistry (IHC)
FFPE slides were treated sequentially following the Leica 
BOND RX default Bake & Dewax Protocol, HIER (ER2, 
20 min, 95°C) protocol and the immunohistochemistry 
(IHC) Leica BOND protocol (anti-β-catenin antibody, 
Cell Signaling Technology, clone: 15B8, cat. 37 447S; 
SignalStain Antibody Diluent, Cell Signaling Technology, 
cat. 8112; BOND Polymer Refine Detection, Leica Biosys-
tems, cat. DS9800). Stained slides were treated with 95% 
ethanol for 10 s twice and 100% ethanol for 10 s twice, 
followed by xylene for 10 s twice. Slides were mounted 
with Fisher Chemical Permount Mounting Medium 
(Fisher Scientific, cat. SP15-100) and scanned on HAMA-
MATSU NanoZoomer 2.0RS. Images were analyzed using 
the HALO platform (Indica Labs).

RESULTS
Spatial meta-transcriptomic analysis method
In contrast to the many studies using gut (fecal) micro-
biome samples to examine how these intestinal bacte-
rial species affect the growth and treatment response of 
various cancers, we designed our study to investigate the 
local microbial population within the TME itself. To simul-
taneously obtain local microbe and host transcriptomic 
data along with spatial information, we developed a novel 
spatial meta-transcriptomic analysis method based on the 
recently introduced NanoString Digital Spatial Profiler11 
(figure 1A) that was applicable to FFPE archived tissues. 
As this method is a probe-based mRNA detection system, 
it does not require poly-A capture, allowing us to detect 
the abundance of bacteria (16S rRNA), fungi (28S rRNA), 
and CMV (UL83) transcripts in addition to RNA products 
from 1,800 human genes involved in immune and cancer 
pathways (online supplemental figure S1). Both host 
and microbe transcriptomic information was collected 
within microscopically defined regions of interest based 
on immunofluorescent imaging of specific cell types 
stained for cell surface markers: tumor cells (panCK+), 
T cells (CD3+CD45+), macrophages (CD68+CD45+), other 
immune cells (CD3−CD68−CD45+), and tumor stroma 
(autofluorescence+, panCK−CD45−) (figure  1B). Infor-
mation from a minimum of 30 cells per cell type was 
collected within each ROI from each patient tumor or 
control tissue sample. The purity of transcriptomic infor-
mation from each cell type was further confirmed by the 
gene expression profile (online supplemental figure S2).

Contamination from environmental bacteria is a major 
challenge in microbiome research, especially in studying 
the human microbiome in tissue samples. In addition to 
negative spike-in probes, we used germ-free tissue from KP 

mice, an ideal negative control that lacks bacteria, fungi, 
and CMV but has similar tumor tissue properties as our 
samples. Furthermore, to control for inter-measurement 
variation, serial sections of the same germ-free sample 
were used for all measurements.

Spatial distribution of lung intratumor bacteria
Surgically resected samples from 12 patients with early 
stage lung cancer who were naïve to systemic therapy 
were analyzed (table  1). These patients did not have 
clinically detectable pulmonary infection and did not 
receive antibiotic treatment prior to surgery. Lung 
cancer samples showed significantly higher bacterial 
burden compared with control mouse germ-free samples 
(figure 1C); no fungal or CMV signals over background 
were detected in the patient samples. Therefore, we 
focused on intratumor bacteria in our study. Next, we 
studied the spatial distribution of the lung intratumor 
bacteria. Since post-obstructive pneumonia, an infec-
tion of the lung parenchyma secondary to obstruction 
caused by tumors, is a common clinical complication in 
patients with lung cancer,17 we wondered if lung intra-
tumor bacteria were highly enriched in tumor-adjacent 
normal lung parenchyma. Our measurements instead 
revealed that the bacterial burden associated with tumor 
cells was much higher than present in adjacent normal 
lung tissue (figure  2A, online supplemental figure 
S3). We next compared bacterial burden among cells 
within the TME, specifically T cells, macrophages, other 
immune cells, and stroma. We examined each cell type 
within every individual ROI and found that although 
immune cells, including macrophages, neutrophils, T 
cells, and B cells are well known to interact with various 
bacteria, tumor cells harbored the highest bacterial 
burden in the TME (figure 2B,C). To our knowledge, 
this is the first quantitative data revealing that tumor 
cells harbor more bacteria than other cell types in the 
nearby TME.

Tertiary lymphoid structures (TLS) play an important 
role in regulating local immune responses in cancer, 
infection, and autoimmune disease, and their pres-
ence correlates with prognosis and responses to immu-
notherapy in lung cancer.18–20 The bacterial burden in 
TLS and the relationship of these structures to lung 
intratumor bacteria were previously uncharted in lung 
cancer. Our data showed that tumor cells have a much 
higher bacterial burden compared with TLS and adja-
cent normal tissue (figure 2D). In one patient sample, 
small airway tissue was included, and we further investi-
gated the bacterial burden among small airways, tumor 
cells, TLS, and adjacent normal lung tissue. Bacterial 
burden peaked in the airways (figure 2E), was lower in 
tumor cells, and further decreased in adjacent normal 
lung tissue and TLS. This gradient suggests that airways, 
rather than blood-borne bacteria that might originate in 
the gut, may be a source of intratumor bacteria in lung 
cancer.

https://dx.doi.org/10.1136/jitc-2022-004698
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Effects of the lung intratumor microbiome
After identifying the spatial distribution of the lung intra-
tumor microbiome, we turned to an analysis of the effects 
of tumor cell-associated bacteria on the state of the malig-
nant cells, analyzing the correlation between gene expres-
sion and bacterial burden in tumor cells (figure  3A). 
Genes involved in the Wnt/β-catenin (CTNNB1), hypoxia 
(HIF1A),21 and angiogenesis (VEGFA) pathways showed a 
strong positive correlation with bacterial burden, while 
genes affecting cell cycle (TP73) and pattern recognition 
(TLR5)22 had negative correlations. β-Catenin had the 
strongest correlation with bacterial burden (figure 3B), 
and IHC confirmed this quantitative association 
(figure 3C). These findings suggest that intratumor cell 
bacteria in lung cancer is correlated with tumor growth23 
and an immune-resistant TME24 via the β-catenin pathway. 

Pathway analysis of tumor genes whose expression 
correlated with bacterial burden also identified pathways 
involving cell growth and epithelial-mesenchymal transi-
tions (figure 3D), again pointing to a protumor effect of 
these bacteria. However, genes encoding components of 
the antigen presentation pathway including HLA mole-
cules, key components typically downregulated during 
tumor immuno-evasion, did not show a strong correlation 
with bacterial burden. These data suggest that intratumor 
cell bacteria may not generally increase the immuno-
genicity of tumor cells, in contrast to a recent report9 
(online supplemental figure S4); if this were the domi-
nant effect in the TME, an increase in T cell recognition 
due to presentation of foreign microbial antigens might 
be expected to produce an immuno-selection signature 

Figure 1  Spatial meta-transcriptomic analysis of lung cancers. (A) Study scheme: formalin-fixed, paraffin-embedded (FFPE) 
samples from 12 patients with lung cancers were sectioned onto 8 slides along with a consecutively sectioned germ-free mouse 
lung tumor sample on each slide as interslide negative control. Regions of interest (ROIs) (adjacent normal tissue n=56, tumor 
regions n=384, tertiary lymphoid structures (TLS) n=20, airway n=4) were selected based on morphology. Further area of interest 
(AOI) selection was done within these defined ROIs to investigate different cell types in the tumor microenvironment (TME), 
based on cell surface markers. RNAs from AOIs within each ROI were collected, separated, and sequenced as previously 
described. (B) Representative ROI and AOIs (tumor cells, macrophages, T cells, other immune cells, and stroma) collected 
from the ROI. Colored segments (AOIs) show areas collected for sequencing. (C) Cytomegalovirus (CMV), fungal, and microbial 
signals in germ-free KP mice tumors (GF) and patients with lung cancers (Patient) (***p<0.001, ns, not significant, t-test, error 
bars, SD).

https://dx.doi.org/10.1136/jitc-2022-004698
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in growing tumors, but this was not observed. Within the 
TME, bacterial burden showed weak correlations with 
the phosphoinositide 3-kinase (PI3K)/AKT and mamma-
lian target of rapamycin pathways in T cells, the hypoxia-
inducible factor 1-alpha pathway in macrophages, the 
complement system in other immune cells, and the 
PI3K/AKT pathway in stromal cells (online supplemental 
figure S5).

Despite the lower bacteria burden in non-tumor cells in 
the TME, we also conducted an analysis of the correlation 
of immune or stromal subgroups with bacterial burden 
via deconvolution of transcriptomic information from 
each non-tumor cell group based on previous single-cell 
RNA sequencing results.12–15 We discovered a correlation 
between the abundance of CD4 T cells with the bacte-
rial burden, more specifically a subgroup of conven-
tional (non-regulatory αβ) CD4 T cells with ANXA1 gene 
expression14 (figure 4A, online supplemental figure S6).

To explore other factors that may affect lung intratumor 
bacteria, we studied the relationship between bacterial 
burden and tumor intrinsic factors, such as histology 
subtypes and mutation profiles, as well as extrinsic factors 

such as smoking. Adenocarcinomas had a higher bacterial 
burden compared with squamous cell tumors (figure 4B) 
and the bacterial burden in tumor cells of non-smokers 
was higher than in smokers (figure 4C), possibly due to 
a hostile antimicrobial environment created by smoking. 
Patients with an EGFR mutation, a mutation observed in 
12%–47% of adenocarcinomas,25 did not show a signif-
icant difference in bacterial burden compared with 
patients without a driver mutation (figure 4D).

DISCUSSION
Here, we present results from a new spatial meta-
transcriptomic approach that provide quantitative insight 
into the landscape of the intratumor microbiome in lung 
cancer. Our analysis is distinct from prior work focused 
on the gut microbiome and the effects of this large 
microbial population on immune tone or response to 
therapy.6 26 This detailed interrogation of the local tumor 
environment reveals a clear enrichment of bacteria in 
tumor cells compared with other cell types in the TME. 
In addition to spatial information, we report a strong 

Table 1  Patient characteristics

Patient Gender
Age 
(years) Staging Histology

Smoking 
history

Driver 
mutation

Tumor 
size 
(cm)

Tumor 
location

Underlying 
pulmonary diseases

1 Male 74 IIA Lung 
adenocarcinoma

Non-
smoker

 �  4.5 Peripheral

2 Male 72 IA Lung 
adenocarcinoma

Non-
smoker

EGFR (p.
Glu746_
Ala750del)

1.6 Peripheral History of community-
acquired pneumonia 
18 months prior to 
NSCLC diagnosis

3 Female 71 IA Lung 
adenocarcinoma

Non-
smoker

EGFR (p.
Glu746_
Ala750del)

2 Peripheral

4 Female 60 IA Lung 
adenocarcinoma

Smoker BRAF (p.
Val600Glu)

2 Peripheral

5 Male 69 IA Lung 
adenocarcinoma

Non-
smoker

EGFR (p.
Glu746_
Ala750del)

3 Peripheral

6 Male 62 IA Lung squamous 
cell carcinoma

Smoker 3 Peripheral

7 Male 50 IA Lung squamous 
cell carcinoma

Smoker  �  1.2 Peripheral

8 Female 66 Limited 
stage

Small cell lung 
cancer

Non-
smoker

1.5 Peripheral

9 Male 56 IA Lung 
adenocarcinoma

Non-
smoker

EGFR (p.
Glu746_
Ala750del)

1.8 Peripheral Pulmonary embolism

10 Female 68 IA Lung 
adenocarcinoma

Smoker KRAS 
(p.Gly12Cys)

2.8 Peripheral COPD

11 Female 78 IA Lung 
adenocarcinoma

Non-
smoker

EGFR 
(p.Leu858Arg)

1.6 Peripheral

12 Male 58 IIB Lung squamous 
cell carcinoma

Smoker  �  3.5 Central COPD

COPD, chronic obstructive pulmonary disease; NSCLC, non-small cell lung cancer.
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link between tumor cell-associated bacteria and positive 
modulation of oncogenic signaling, which traditional 
sequencing methods are unable to capture. Our findings 
highlight the potential role of lung intratumor bacteria 
in tumor growth. A recent study showed that epitopes 
from intratumor cell bacteria can be presented by tumor 
cells and elicit local immune responses,9 which can lead 
to immune selection of tumor cells.27 However, we did 
not observe a robust correlation between high bacterial 
burden and low major histocompatibility complex class I 
expression, commonly associated with immune escape in 
TME. The impact of intratumor cell bacteria on the anti-
genicity of tumor cells, however, is complex and depends 
on the properties of specific bacterial epitopes, which 
can be associated with different immune responses. Due 
to both the size of our study and the inability of present 
methods to type the bacteria in tissues at a species 
level, our findings provide strong correlative informa-
tion but underlying causal relationships remain to be 
defined. Further studies are needed to discover detailed 

mechanisms and dissect the effects of each intratumor 
cell bacterial species on the function and antigenicity of 
tumor cells.

Peak bacterial burden was found in the airway, lower in 
the tumor and further reduced in adjacent normal lung. 
This gradient of bacterial burden suggests that intratumor 
bacteria in lung cancer may come from the lower airway 
and hence, traditional analysis of the gut microbiome, 
while potentially informing about overall host immune 
tone or competence, may miss key microbial effects 
occurring within lung malignancies. Additionally, the 
lower bacterial burden in smokers suggests that smoking 
may create an inhospitable environment for bacteria in 
general. Smoking promotes local inflammation and has 
highly complex effects on immune responses depending 
on multiple factors including smoking history, types of 
cells, and genetic susceptibilities. The lower bacterial 
burden in lung cancer patients with smoking histories 
could be related to increased levels of immunoglobulins 
in bronchoalveolar fluid.28

Figure 2  Spatial distribution of lung intratumor bacteria. (A) 16S rRNA expression in tumor cells and adjacent normal tissue 
(paired two-sided Wilcoxon test). (B) 16S rRNA expression level across different cell types in the tumor microenvironment (TME) 
(**p<0.01, ns, not significant, two-sided Wilcoxon test against base mean; error bars, SD). (C) Representative RNAscope image 
showing the spatial distribution of bacterial 16S rRNA signal (rendered magenta squares) within tumor cells and in TME. (D) 
16S rRNA expression level in adjacent normal tissues, tertiary lymphoid structures (TLS), and tumor cells (***p<0.001, ns, not 
significant, one-way analysis of variance (ANOVA) test; error bars, SD). (E) 16S rRNA expression level in adjacent normal tissues, 
TLS, tumor cells, and airway from one patient (*p<0.05, ***p<0.001, ns, not significant, one-way ANOVA test; error bars, SD).
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Our study has several limitations. First, it was limited 
to measuring universal 16S rRNA signals (total bacte-
rial burden) and lacked bacterial species information 
due to the design of available probes. Prior sequencing-
based studies have shown decreased bacterial α-diversity 
in smokers,6 which raises the question of whether some 
specific bacterial strains are enriched in smokers. Such 
considerations indicate a need for investigation of quan-
titative changes in individual bacterial species in the 
context of lung cancer, which will require future spatial-
meta-transcriptomic technology that enables acquisition 
of both 16S rRNA sequence and spatial information in 
situ. Second, patients enrolled in our study were mainly 
with early-stage lung cancer with few underlying lung 
comorbidities. Further study with larger patient cohorts 
will be needed to investigate the correlation between 
intratumor bacteria and patients’ disease status, patho-
logical features, underlying pulmonary diseases, treat-
ment responses, and prognosis.

In conclusion, these data reveal the spatial distribu-
tion of local intratumor microbiota in lung cancer and 
its correlation with signals contributing to tumor growth, 
consistent with past implications from model systems that 
there may be potential therapeutic value in reducing local 
bacterial burden in patients with lung cancer. It also lays 
the groundwork for future clinical studies to investigate 
the effects of the intratumor microbiome in lung cancer 
and other cancer types by providing a novel spatial meta-
transcriptomic method that captures both microbial and 
host transcriptome information.

Author affiliations
1Thoracic and GI Malignancies Branch, National Cancer Institute, Bethesda, 
Maryland, USA
2Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, 
Bethesda, Maryland, USA
3Perelman School of Medicine, University of Pennsylvania, Philadelphia, 
Pennsylvania, USA

Figure 3  Correlations of lung intratumor bacterial burden with tumor cells’ function. (A) Correlation of host genes with 
bacterial burden in tumor cells (Spearman’s rank correlation, R=0.7 cut-off shown in dotted red line). (B) Correlation between 
host CTNNB1 expression and bacterial burden in tumor cells (Spearman’s rank correlation, 95% CI shown in gray). (C) 
Representative images of immunohistochemistry staining of β-catenin in tumor regions with known low or high bacterial burden. 
(D) Ingenuity pathway analysis of genes correlated with bacterial burden in tumor cells.



9Wong-Rolle A, et al. J Immunother Cancer 2022;10:e004698. doi:10.1136/jitc-2022-004698

Open access

4Bioinformatics and Computational Biosciences Branch, Office of Cyber 
Infrastructure and Computational Biology, NIAID, Bethesda, Maryland, USA
5NanoString Technologies Inc, Seattle, Washington State, USA
6Collaborative Protein Technology Resource, NCI, Bethesda, Maryland, USA
7CCR Genomics Core, National Cancer Institute, Bethesda, Maryland, USA
8Advanced Biomedical Computational Science, Frederick National Laboratory for 
Cancer Research, Frederick, Maryland, USA
9Thoracic Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA

Acknowledgements  We thank Dr Bingqing Zhang from Advanced Cell Diagnostics 
for providing 16S rRNA RNAscope pretreatment assay. We thank Ms. Tricia F Kunst, 
Ms. Colleen D Bond, Ms. Cheryl L Warga, Ms. Shannon Swift, Ms. Susan Sansone, 
and Ms. Madison Ballman for clinical support and provision of samples, and thank 
Mr. Steven Shema for experimental support. We thank CCR Collaborative Protein 
Technology Resource and CCR Genomics Core for providing spatial-transcriptomic 
analysis support. We thank NanoString customer experience and bioinformatics 
teams for technical support.

Contributors  AW-R: data curation, formal analysis, validation, visualization, 
writing—original draft; QD: resources; YZ: formal analysis; PD: methodology, 
formal analysis; JLH: formal analysis; NK: methodology; MW: methodology, 
data curation; DT: formal analysis; EAC: methodology, funding acquisition; AR: 

resources; DSS: resources; CJ: conceptualization, funding acquisition, investigation, 
project administration, resources, supervision, writing—original draft; RNG: 
conceptualization, funding acquisition, investigation, supervision, writing—original 
draft; CZ: conceptualization, methodology, data curation, formal analysis, funding 
acquisition, investigation, project administration, resources, supervision, validation, 
visualization, writing—original draft. CZ is the guarantor for this study.

Funding  AW-R, YZ, NK, MW, EAC, DT, CZ, AR, DSS, JLH, and RNG are supported 
by the Intramural Research Programs of NCI and NIAID, respectively. CZ and AW-R 
are supported in part by SITC-AstraZeneca Immunotherapy in Lung Cancer (Early 
Stage NSCLC) Clinical Fellowship Award and ASCO Young Investigator Award. CJ 
and CZ are supported by the NIH Bench-to-Bedside and Back Program (BtB). CJ is 
supported in part by a R00 award from NIH/NCI (CA226400), an Emerson Collective 
Cancer Research fund, a Lung Cancer Research Foundation (LCRF) pilot grant and 
a WW Smith Trust Foundation award. Illustrations were created with ​BioRender.​
com. Parts of the illustration figures are used with the permission by NanoString 
Technologies. This work used the computational resources of the NIH HPC Biowulf 
cluster. This project has been funded in part with Federal funds from NIAID under 
BCBB Support Services Contract HHSN316201300006W/HHSN27200002 to MSC. 
Quantitative image analysis was supported in part by the cloud NCI HALO Image 
Analysis Resource (CBIIT). PD is an employee and stockholder at NanoString 
Technologies.

Figure 4  Association of bacterial burden with immune cell abundance, histology type, patient history, and mutation profile. 
(A) Correlation between bacterial burden and the scaled abundance of ANXA1 CD4 T cell subset (Spearman’s rank correlation, 
95% CI shown in gray). (B) Bacterial burden in tumor cells with different lung cancer histology subtypes (two-sided t-test). (C) 
Bacterial burden in tumor cells from patients with different smoking histories (two-sided t-test). (D) Bacterial burden in tumor 
cells with different driver mutation status (Spearman’s rank correlation, 95% CI shown in gray).



10 Wong-Rolle A, et al. J Immunother Cancer 2022;10:e004698. doi:10.1136/jitc-2022-004698

Open access�

Competing interests  PD is an employee and stockholder at NanoString 
Technologies. All other authors declare no competing interests. YZ is currently an 
employee at GlaxoSmithKline. All other authors declare no competing interests.

Patient consent for publication  Not applicable.

Ethics approval  This study was approved by the NCI institutional review board. 
Each patient signed an informed consent form and received a patient information 
form before participation. The study was conducted in accordance with the 
US Common Rule. Mouse experiments in the germ-free facility were approved 
(#806875) by the Animal Use and Care Committee at the University of Pennsylvania.

Provenance and peer review  Not commissioned; externally peer reviewed.

Data availability statement  Data are available on reasonable request. The data 
that support the findings of this study are available from the corresponding author 
on request.

Supplemental material  This content has been supplied by the author(s). It has 
not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been 
peer-reviewed. Any opinions or recommendations discussed are solely those 
of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and 
responsibility arising from any reliance placed on the content. Where the content 
includes any translated material, BMJ does not warrant the accuracy and reliability 
of the translations (including but not limited to local regulations, clinical guidelines, 
terminology, drug names and drug dosages), and is not responsible for any error 
and/or omissions arising from translation and adaptation or otherwise.

Open access  This is an open access article distributed in accordance with the 
Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits 
others to copy, redistribute, remix, transform and build upon this work for any 
purpose, provided the original work is properly cited, a link to the licence is given, 
and indication of whether changes were made. See https://creativecommons.org/​
licenses/by/4.0/.

ORCID iDs
Arun Rajan http://orcid.org/0000-0003-2776-3385
Chen Zhao http://orcid.org/0000-0002-1494-5983

REFERENCES
	 1	 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J 

Clin 2020;70:7–30.
	 2	 Thai AA, Solomon BJ, Sequist LV, et al. Lung cancer. Lancet 

2021;398:535–54.
	 3	 Liu N-N, Ma Q, Ge Y, et al. Microbiome dysbiosis in lung cancer: 

from composition to therapy. NPJ Precis Oncol 2020;4:33.
	 4	 Man WH, de Steenhuijsen Piters WAA, Bogaert D. The microbiota 

of the respiratory tract: gatekeeper to respiratory health. Nat Rev 
Microbiol 2017;15:259–70.

	 5	 Wong-Rolle A, Wei HK, Zhao C, et al. Unexpected guests in the 
tumor microenvironment: microbiome in cancer. Protein Cell 
2021;12:426–35.

	 6	 Dong Q, Chen ES, Zhao C, et al. Host-Microbiome interaction in lung 
cancer. Front Immunol 2021;12:679829.

	 7	 Jin C, Lagoudas GK, Zhao C, et al. Commensal microbiota promote 
lung cancer development via γδ T cells. Cell 2019;176:e1016

	 8	 Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome 
is composed of tumor type-specific intracellular bacteria. Science 
2020;368:973–80.

	 9	 Kalaora S, Nagler A, Nejman D, et al. Identification of bacteria-
derived HLA-bound peptides in melanoma. Nature 2021;592:138–43.

	10	 Delorey TM, Ziegler CGK, Heimberg G, et al. COVID-19 tissue 
atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 
2021;595:107–13.

	11	 Merritt CR, Ong GT, Church SE, et al. Multiplex digital spatial profiling 
of proteins and RNA in fixed tissue. Nat Biotechnol 2020;38:586–99.

	12	 Danaher Pet al. Advances in mixed cell deconvolution enable 
quantification of cell types in spatially-resolved gene expression 
data. bioRxiv 2020.

	13	 Lambrechts D, Wauters E, Boeckx B, et al. Phenotype molding 
of stromal cells in the lung tumor microenvironment. Nat Med 
2018;24:1277–89.

	14	 Guo X, Zhang Y, Zheng L, et al. Global characterization of T cells 
in non-small-cell lung cancer by single-cell sequencing. Nat Med 
2018;24:978–85.

	15	 Zilionis R, Engblom C, Pfirschke C, et al. Single-Cell transcriptomics 
of human and mouse lung cancers reveals conserved 
myeloid populations across individuals and species. Immunity 
2019;50:1317–34.

	16	 Krämer A, Green J, Pollard J, et al. Causal analysis approaches in 
ingenuity pathway analysis. Bioinformatics 2014;30:523–30.

	17	 Valvani A, Martin A, Devarajan A, et al. Postobstructive pneumonia in 
lung cancer. Ann Transl Med 2019;7:357.

	18	 Dieu-Nosjean M-C, Antoine M, Danel C, et al. Long-term survival for 
patients with non-small-cell lung cancer with intratumoral lymphoid 
structures. J Clin Oncol 2008;26:4410–7.

	19	 Lavin Y, Kobayashi S, Leader A, et al. Innate immune landscape 
in early lung adenocarcinoma by paired single-cell analyses. Cell 
2017;169:750–65.

	20	 Lin Z, Huang L, Li S, et al. Pan-cancer analysis of genomic properties 
and clinical outcome associated with tumor tertiary lymphoid 
structure. Sci Rep 2020;10:21530.

	21	 Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 
2003;3:721–32.

	22	 Rutkowski MR, Conejo-Garcia JR. TLR5 signaling, commensal 
microbiota and systemic tumor promoting inflammation: the 
three parcae of malignant progression. Oncoimmunology 
2015;4:e1021542.

	23	 Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum 
promotes colorectal carcinogenesis by modulating E-cadherin/β-
catenin signaling via its FadA adhesin. Cell Host Microbe 
2013;14:195–206.

	24	 Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic β-catenin 
signalling prevents anti-tumour immunity. Nature 2015;523:231–5.

	25	 Midha A, Dearden S, McCormack R. EGFR mutation incidence 
in non-small-cell lung cancer of adenocarcinoma histology: a 
systematic review and global map by ethnicity (mutMapII). Am J 
Cancer Res 2015;5:2892–911.

	26	 Cullin N, Azevedo Antunes C, Straussman R, et al. Microbiome and 
cancer. Cancer Cell 2021;39:1317–41.

	27	 McGranahan N, Rosenthal R, Hiley CT, et al. Allele-Specific 
HLA loss and immune escape in lung cancer evolution. Cell 
2017;171:1259–71.

	28	 Stämpfli MR, Anderson GP. How cigarette smoke skews immune 
responses to promote infection, lung disease and cancer. Nat Rev 
Immunol 2009;9:377–84.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-2776-3385
http://orcid.org/0000-0002-1494-5983
http://dx.doi.org/10.3322/caac.21590
http://dx.doi.org/10.3322/caac.21590
http://dx.doi.org/10.1016/S0140-6736(21)00312-3
http://dx.doi.org/10.1038/s41698-020-00138-z
http://dx.doi.org/10.1038/nrmicro.2017.14
http://dx.doi.org/10.1038/nrmicro.2017.14
http://dx.doi.org/10.1007/s13238-020-00813-8
http://dx.doi.org/10.3389/fimmu.2021.679829
http://dx.doi.org/10.1016/j.cell.2018.12.040
http://dx.doi.org/10.1126/science.aay9189
http://dx.doi.org/10.1038/s41586-021-03368-8
http://dx.doi.org/10.1038/s41586-021-03570-8
http://dx.doi.org/10.1038/s41587-020-0472-9
http://dx.doi.org/10.1038/s41591-018-0096-5
http://dx.doi.org/10.1038/s41591-018-0045-3
http://dx.doi.org/10.1016/j.immuni.2019.03.009
http://dx.doi.org/10.1093/bioinformatics/btt703
http://dx.doi.org/10.21037/atm.2019.05.26
http://dx.doi.org/10.1200/JCO.2007.15.0284
http://dx.doi.org/10.1016/j.cell.2017.04.014
http://dx.doi.org/10.1038/s41598-020-78560-3
http://dx.doi.org/10.1038/nrc1187
http://dx.doi.org/10.1080/2162402X.2015.1021542
http://dx.doi.org/10.1016/j.chom.2013.07.012
http://dx.doi.org/10.1038/nature14404
http://www.ncbi.nlm.nih.gov/pubmed/26609494
http://www.ncbi.nlm.nih.gov/pubmed/26609494
http://dx.doi.org/10.1016/j.ccell.2021.08.006
http://dx.doi.org/10.1016/j.cell.2017.10.001
http://dx.doi.org/10.1038/nri2530
http://dx.doi.org/10.1038/nri2530

	Spatial meta-­transcriptomics reveal associations of intratumor bacteria burden with lung cancer cells showing a distinct oncogenic signature
	Abstract
	Background﻿﻿
	Methods
	Patient samples
	Mouse samples
	Sample processing for NanoString ﻿Digital Spatial Profiler (﻿﻿DSP﻿﻿)﻿ analysis
	GeoMx DSP region of interest selection and sequencing
	Expression analysis of host transcriptome, microbial ﻿16S rRNA﻿, CMV ﻿UL83﻿, and fungal ﻿28S rRNA﻿ expression calculation
	RNAscope
	β-Catenin immunohistochemistry (IHC)

	Results
	Spatial meta-transcriptomic analysis method
	Spatial distribution of lung intratumor bacteria
	Effects of the lung intratumor microbiome

	Discussion
	References


