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Abstract 

Lignin is an aromatic biopolymer found in ubiquitous sources of woody biomass. Designing and optimizing lignin 
valorization processes requires a fundamental understanding of lignin structures. Experimental characterization 
techniques, such as 2D-heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectra, 
could elucidate the global properties of the polymer molecules. Computer models could extend the resolution of 
experiments by representing structures at the molecular and atomistic scales. We introduce a graph-based multiscale 
modeling framework for lignin structure generation and visualization. The framework employs accelerated rejection-
free polymerization and hierarchical Metropolis Monte Carlo optimization algorithms. We obtain structure libraries 
for various lignin feedstocks based on literature and new experimental NMR data for poplar wood, pinewood, and 
herbaceous lignin. The framework could guide researchers towards feasible lignin structures, efficient space explora-
tion, and future kinetics modeling. Its software implementation in Python, LigninGraphs, is open-source and available 
on GitHub.
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Introduction
Lignocellulosic biomass is a promising and broadly 
available feedstock for the production of biofuels and 
renewable chemicals and materials. Lignin, an aromatic 
polymer, constitutes a significant fraction of lignocel-
lulosic biomass (up to 30 wt%) and is crucial to plant 
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life functioning and structural stability [1, 2]. Despite 
its abundance in nature and the vast amount generated 
in the pulp and paper industry, lignin is  either unused 
or burned for heat. Depolymerization techniques, such 
as reductive catalytic fractionation (RCF), cleave C-O 
bonds to produce monomers as building blocks for biofu-
els, functional polymers [2–4], lubricants [5], etc. High-
temperature pyrolysis [6, 7] could further break the C–C 
bonds and increase the monomer yield. However, strong 
C–C bonds and reactive functional groups in lignin make 
deconstruction challenging and result in low yields of 
monomers [8]. To enhance its valorization and pro-
duce “designer” lignin with specific properties, we need 
to understand the lignin structure of various feedstocks 
better and establish quantitative structure–property rela-
tions [7, 9, 10].

Lignin’s structural complexity stems from its compo-
sitional diversity [11]. As shown in Fig.  1a, phenolics, 
including p-hydroxyphenyl (H), syringyl (S), guaiacyl 
(G), and the newly discovered caffeyl alcohol (C-unit) 
[12–14] in catechyl lignin are the basic lignin monomers 
(monolignols) [15]. They are coupled and cross-linked 

combinatorically via various C–O and C–C intramo-
lecular bonds (i.e., linkages, Fig.  1b). These entail α-O-
4, β-O-4, 5-5, 4-O-5, β-β, and β-5 [16]. This diversity 
in monomers and linkages gives rise to compositional 
variation in each polymer chain. Lignin is polydisperse 
containing polymers of unequal lengths and branches, 
leading to a distribution of a complex structural net-
work (i.e., a hyperbranched topology) [17, 18]. Spectro-
scopic methods, such as nuclear magnetic resonance 
(NMR) and infrared spectroscopy (IR), can provide 
compositional distributions on monomers, linkages, and 
functional groups [3, 19–21]. However, interpretation 
of spectroscopic data and peak assignment often cause 
errors. Lignin structures follow mechanistic and chemi-
cal principles rather than being a random collection of 
monomers and linkers, rending the generation of the 
molecular and atomistic scale structures a non-trivial 
task.

Significant progress has been made toward compu-
tational reconstruction of  the lignin structure. One 
approach builds structural models using the reverse 
Monte Carlo [22, 23] method to match experimental 

Fig. 1  Common monomer units and linkages in lignin. a Monomer (monolignol) structures. The numbers are the atomic indices in a monomer 
(α = 7th C and β = 8th C). b Examples of dimmer structures connected by linkages. The numbers are the atomic indices of the bonding atoms. 
A linkage between two units is written as the M1-(C1,C2)-M2 (M1 = the type of the first monomer, M2 = the type of the second monomer, 
C1 = atomic index of the bonding C in the first monomer, C2 = atomic index of the bonding C in the second monomer). For instance, H-(4,7)-S 
represents an α-O-4 linkage between an H and an S monomer
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properties. Examples include an earlier model, SIMREL 
[24], which adds monomers to growing lignin chains, 
and the Metropolis Monte Carlo-based methods [17, 25] 
developed by Broadbelt and co-workers. They generated 
structure libraries for herbaceous, softwood, and hard-
wood lignin that satisfy the experimentally measured 
monomer, linkage, and molecular weight distributions. 
These models denote structures with tables of mono-
mer indices and sample high-dimensional decision trees 
to enforce the bonding rules. As a result, the optimiza-
tion requires many iterations (~ 107) to converge and is 
slow. Another approach focuses on the structure forma-
tion (or dissociation) energies using first-principles den-
sity functional theory (DFT) calculations [16, 26, 27]. Yet, 
DFT calculations can be performed on a limited num-
ber of small model compounds that constitute a narrow 
subset of possible radical species. The computational 
cost to enumerate all bonds among the species is pro-
hibitively high. A third approach applies hybrid models 
that estimate energetics from correlations obtained from 
first-principles data. For instance, Li et  al. constructed 
a database of 4100 possible species that could occur in 
lignin pyrolysis and estimated the thermochemistry using 
DFT, group additivity, and machine learning [28]. Orella 
et  al. developed the Lignin-KMC software to model 
the reactions of S and G monomers on a growing chain 
using the estimated linkage energies [29, 30]. Lignin-
KMC employs graph theory and represents structures 
as adjacency matrices consisting of indices for bonding 
atoms in each monomer, which may not be intuitive for 
non-computational researchers. Atomistic representa-
tion becomes computationally intensive as the degree of 
polymerization increases.

Determining the lignin structure needs a rapid recon-
struction method to satisfy experimental observables 
and encode first-principles information for follow-up 
kinetic studies. In this work, we design a reconstruction 
model and LigninGraphs, a lightweight software tool in 
Python, for speed and accuracy. LigninGraphs has two 
important methodological innovations. First, it encodes 
the lignin structures in multiscale graphs over multiple 
length scales and supports graph and molecular struc-
ture visualization. Second, unlike the traditional algo-
rithm, it introduces a rejection-free Metropolis Monte 
Carlo method that keeps track of bonding atoms, accel-
erating convergence significantly. As a result,  the candi-
date structures can be generated quickly, saved in smiles 
strings or graphs, and their experimental observables can 
be computed. Furthermore, LigningGraphs can be inter-
faced easily with other tools to calculate the energetics 
using group additivity [28] or render 3D structures using 
the LigninBuilder [31]. LigninGraphs is an open-source 
software with comprehensive online documentation. We 

apply it to generate structure libraries for poplar, pine-
wood, and herbaceous lignin (miscanthus) NMR data.

Computational methods
Overview
Our framework (Fig.  2) models lignin structures across 
scales, from the atomistic to the monomer to the poly-
mer to a population of chains (i.e., a library of structures). 
We map structures to undirected graphs consisting of a 
list of nodes and connections (edges) between nodes, as 
in traditional graph theory. Graphs offer efficient data 
storage, fast lookup operations, and intuitive visualiza-
tion for each node and its neighbors as an abstract data 
structure. At the atomic scale, each C or O atom is a 
node, and each bond is an edge (Fig. 2a, b). Atom prop-
erties are conveniently stored in a node. These include 
the element (“element”: C or O), the presence of an aro-
matic ring (“aromatic”: True or False), the monomer 
type (“mtype”: H, G, or S), the atomic index (“index”: the 
numeric labels for each C/O atom in a monomer, shown 
in Fig. 1a), bonding (“bonding”: True or False), etc. Simi-
larly, bond properties are stored in an edge. These include 
the linkage type (“btype”: the common ones, α-O-4, β-O-
4, 5-5, 4-O-5, β-β, and β-5, are shown in Fig. 1b) or None 
for intra-monomer bonds), the bond order (“order”: 1 for 
a single or 2 for a double bond), atomic indices (“index”: 
atomic indices of the pair), and the monomer types of 
the bonding atoms (“mtype” of the pair). The resulting 
“atomic graphs” represent structures at the monomer 
(Fig. 1e) and the polymer (Fig. 1f ) scale.

Unlike the typical graph theory that resolves each 
atom and bond individually, we introduce a multiscale 
representation of the structure by coarse-graining upon 
molecular structures. Specifically, we coarse-grain the 
atomic graphs into “big graphs” by aggregating all nodes 
in a monomer into a single node (Fig. 2h), so that each 
monomer is a node and each linkage is an edge (exam-
ples of building blocks are shown in Additional file  1: 
Fig. S1). Big graphs are connected at the polymer scale to 
make up a chain. They allow a significantly lower com-
putational cost and storage by counting only the number 
of monomers or linkages. Finally, at the population scale 
of the polymer, we compute the observables or struc-
ture metrics of the entire structure library, including the 
monomer and linkage distributions, the number average 
molecular weight (MW), and the branching coefficient. 
These observables can be compared to experimental 
values.

LigninGraphs offers multiple ways for visualization. 
The atomic graphs and big graphs can be plotted directly. 
The atomic graphs can also be easily converted to molec-
ular structures, shown in Fig. 1b/c leveraging RDKit, or 
3D structures, leveraging LigninBuilder [31]. We convert 
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the framework to an open-source package, named Lign-
inGraphs, written in Python. We provide the imple-
mentation details in Additional file 1: Note 1 and on the 
online documentation.

Monomers and linkages
Figure 1a shows the three most common monomer units 
in lignin, p-hydroxyphenyl (H), syringyl (S), and guaiacyl 
(G). We assign an atomic index to each C and O atom in a 
monomer following the standard convention. Such index 
information is useful to correctly bond atoms as link-
ages in graph representations. Figure 1b shows example 
dimmers consisting of the six common linkages, namely 
α-O-4, β-O-4, 5-5, 4-O-5, β-β, and β-5. Depending on the 
bonding atoms, linkages are written as a pair of atomic 
indices. For instance, an α-O-4 linkage corresponds to 
(4,7) or (7,4) pair of atoms. Figure 3a shows the mappings 
for all types. Except for 5-5, all other linkages involve 
neighboring C or O atoms in bond formation. We imple-
ment rules to break and make the correct bonds based on 
the atomic indices.

Polymerization
We model the growth of a single lignin polymer chain 
via a reconstruction process. Starting from a monomer, 
we add monomers one at a time with different linkages. 
Connecting a monomer M1 of a growing polymer to a 
monomer M2 with the correct linkages requires iden-
tifying the bonding atoms’ possible atomic index pairs, 
i.e., the (C1,C2) pairs. C1 refers to the bonding C atom 
index in M1 (in a polymer) and C2 to M2 (a new mon-
omer for each addition). Therefore, we list the mapping 
rules for each monomer or linkage-type to atomic index 
pairs (Fig. 3), and store them in Python dictionaries (hash 
maps) to achieve fast lookup operations at a constant 
time, of order 1, O(1).

To add a specific linkage or monomer, we obtain the 
possible atomic index pairs and C1s via the mapping 
rules. We also keep a list of available bonding atoms and 
their atomic indices (i.e., the C1s) in the growing poly-
mer. We quickly narrow down the suitable C1 atoms by 
taking the intersections of the two C1 lists. Next, one 
of the C1s is selected randomly and connected with the 
corresponding C2. From a C2 index, one could use the 

Fig. 2  Multiscale modeling framework in LigninGraphs. Lignin structures are modeled at multiple scales (atom, monomer, polymer, and 
population). The left column shows the atomic or molecular representations for a a C–O bond, b an H monomer with C and O atom indices, and 
c a lignin polymer of 12 monomers. The right column shows the corresponding structures as atomic graphs (d–f) and big (coarse-grained) graphs 
(g, h). d Building blocks in atomic graphs: each C or O atom is a node, and each bond is an edge in the graph with properties saved in a dictionary 
format. e Atomic graph for an H monomer with node index for each C or O atom (note that the node index starts from 0 and the atom index starts 
from 1, i.e., the node index is equal to the corresponding atom index minus 1). In this example, node 3 is the 4th C atom and node 9 is the 10th O 
atom in an H monomer. They are connected by a single bond (order = 1) edge (3, 9). f Atomic graph for the lignin polymer in (c). g Big graph for an 
H monomer. h Big graph for the lignin polymer in (c): each monomer is a node, and each linkage is an edge. H, G, and S monomers and the atoms 
belonging to each type are marked in red, green, and blue, respectively
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reverse mapping in Fig.  3b and determine the correct 
monomer type for the addition (C2 → M2). A new edge 
in the graph is connected, and its “bonding” properties 
are marked as False. Each addition is essentially a rejec-
tion-free Monte Carlo event, i.e., the proposed monomer 
and linkage are always added to a valid structure. We 
achieve a linear time ( O(n) , where n is the polymer size, 
for each addition and eliminate unsuccessful attempts. 
Users may add a specific monomer, linkage (e.g., a ring 
formation with no monomer), or ring, and a random 
monomer or ring. The rules ensure that the structures 
are always chemically valid. The addition is still subject to 
the Metropolis acceptance criterion if we want to create a 
structure library like the experimental data.

Characterization
Given a wealth of chemical information stored in graphs, 
we quickly compute the structure metrics of a polymer 
molecule. Such metrics include the number of meth-
oxy groups (–OCH3), phenolic hydroxy groups (–OH), 

monomers and linkages of each type, MW, the size (total 
number of monomers), and the branching coefficient. We 
follow the definition of branching coefficient in Dellon 
et al., i.e., the ratio of branched monomers to the size of a 
branched monomer connecting to three or more mono-
mers [25]. For a population of structures, the probability 
distribution function and global metrics, such as the per-
cent of a monomer, linkage, and the branching coefficient, 
are computed.

Optimization
Finally, we utilize a Metropolis Monte Carlo algorithm to 
obtain a library of structures and global metrics to com-
pare to target experimental data. The hierarchical scheme 
(Fig. 4) optimizes the molecular and population structures 
and refines them with intramolecular linkages. We define 
a single distance metric di for a polymer molecule Pi as the 
sum of squared errors:
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Fig. 3  Rules for mapping monomer and linkage types to atomic index pairs in LigninGraphs. a Linkage types to atomic index pairs (C1,C2). b Types 
of monomer (M1) and feasible C atom indices (C1) and atomic index pairs (C1,C2) for bond formation between monomers M1 and M2
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Here, M , L , X are the monomer percentages, link-
age percentages, and additional metrics, such as the 
branching coefficient, respectively, exp denotes the 
experimental values and sim simulated values. For a 
population, the distance d applies to the global M s, L 
s, andX  s:

(1)

di =
∑

M∈{H ,G,S}
(Mexp −Misim)

2

+
∑

L∈{6typesoflinkages}
(Lexp − Lisim)

2

+�(Xexp − Xisim)
2

Here, we included the number average MW of the pop-
ulation ( MWsim ) if the experimental value ( MWexp ) is 
available. To ensure a similar scale ([0-1]), we divide the 
MW by the upper bound ( MWmax , set as 10,000 Da). The 
optimization minimizes d , i.e., makes the simulated pop-
ulation as similar to the experiments as possible.

We first optimize a single polymer molecule by repeat-
edly adding monomers (linkages), as shown in the inner 
optimization loop in Additional file 1: Fig. S4. The mon-
omer type, the linkage type, or the branching state for 
addition are sampled from the experimental distribu-
tions, following the rules described in the Polymeriza-
tion section (Additional file 1: Fig. S5). For instance, for 
an experimental G:S ratio of 6:4 with no H present, the 
probability of adding a G and S monomer is 60% and 40%, 
respectively. Each event is accepted depending on the 
Metropolis criterion using �di (Additional file  1: Note 
2). The polymer growth stops when the number of itera-
tions or the polymer size is reached. The latter is sampled 
from a normal distribution and is expressed by the MW 
( MWistop , if the experimental value is available) or the 
number of monomers ( nistop ) (Additional file 1: Table S1). 
Next, we optimize the entire population (Fig.  4), shown 
as the outer optimization loop in Additional file 1: Fig. S4. 
Optimized polymers from the inner loop are added one 
at a time, based on the Metropolis criterion using �d . 
Once 100 molecules have been added, or the maximum 
number of iterations is reached, we fine-tune linkages 
distributions by adding possible rings as intramolecu-
lar linkages (optimization loop in Additional file  1: Fig. 
S4). Several hyperparameters in the framework, such as 
the Metropolis temperature, the branching propensity, 
and the expected polymer size, can be tuned to speed up 
convergence. A complete list can be found in Additional 
file 1: Table S2.

Experimental section
Materials
The poplar and pine samples were obtained from the 
Idaho National Laboratory [32] and characterized using 
the NREL LAP protocols [33]. The samples were milled 
to particles ranging from 0.42 mm (40 mesh) to 2 mm (10 

(2)

d =
∑

M∈{H ,G,S}
(Mexp −Msim)

2

+
∑

L∈{6typesoflinkages}
(Lexp − Lsim)

2

+�(Xexp − Xsim)
2

+�
(MWexp −MWsim)

2

MW 2
max

Start, = Inf 

Yes

Set monomer distribu�on ; 
linkage distribu�on ;
branching coefficient (op�onal)

Set op�miza�on 
hyperparameters

Op�mize a single 
polymer 

Metropolis criterion 
on met?

Add into the popula�on;

Add intramolecular linkages

Terminate

No

Yes

No

Fig. 4  Hierarchical optimization scheme in LigninGraphs
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mesh) by Forest Concepts and used as received. The 
monomer content was determined using the thioacidoly-
sis method [34] described in Ebikade et al. [35].

Nuclear magnetic resonance (NMR)
Heteronuclear single quantum coherence (HSQC) 
nuclear magnetic resonance (NMR) spectra of extracted 
lignin oils were recorded at 25  °C on an Avance III 
400  MHz NMR spectrometer (Bruker). Approximately 
30 mg of filtered lignin oil was dissolved in 500 µl of pre-
mixed DMSO-d6/pyridine-d5 (4: 1) prepared in quartz 
NMR tubes (NewEra). Data was processed using the 
Mestrelab Research software (mNOVA). The NMR 2D 
spectra show contours of specific bonds between protons 
(1H) and carbon (13C) atoms. The relative abundance of 
chemical functionalities was performed by integrating 
the volume of 1H–13C cross-peaks and normalizing such 
volumes by the total integrated volumes of the monol-
ignols. The calculation details from the HSQC experi-
ments can be found in the previous work [35].

Results and discussion
Structure library generation
To demonstrate the effectiveness of LigninGraphs, we 
generate structure libraries for three lignin feedstocks: 
pine, poplar, and miscanthus. The linkage and mono-
mer distributions for pine and poplar are determined by 
the procedure laid in the Experimental section. For mis-
canthus, a linear herbaceous lignin, we obtain the distri-
butions from 2D HSQC NMR data, and the molecular 
weights from size exclusion chromatography reported in 

the literature [25, 34]. The experimental and simulated 
values are listed in Table 1. Pine and poplar are hardwood 
and softwood, respectively. In general, the composition 
of β-O-4 linkage in hardwood is 10–15% less than it in 
softwood [36] and our experiment and simulated results 
are within this range with differences of 12 and 10.7%, 
respectively. LigninGraphs also generates histograms of 
the population and a Gaussian distribution fit. Figure 5, 
Additional file 1: Figs. S6, and S7 show the distributions 
for poplar, pine, and miscanthus, respectively. The struc-
ture library, including the metrics and smiles strings of 
100 polymer molecules, is given in Table S3-5. We chose 
the population size as 100 because it is statistically sig-
nificant, and the simulations would finish in a reasonable 
time. Hydroxyl groups, measured by 31P NMR [20], can 
also be simulated using LigninGraphs (not demonstrated 
in this work).

The monomer distributions closely match the experi-
ments. For pine (Fig.  5), we have G units only. β-O-4 
linkages dominate, and the fractions of β-5 and β-β are 
significant. The experiments for pine and poplar detect a 
small fraction (< 0.1%) of 5-5. For poplar, the simulations 
often assign a higher percentage to 5-5 (less than 5%) and 
lower percentages to β-β or β-5. We find that having a 
fraction of 5-5 is essential to minimizing the overall dis-
tance. Otherwise, a larger percentage of β-O-4 would be 
needed.

Pine and poplar lignin structures could be branched. 
With a nonzero branching propensity, the simulations 
attempt adding monomers to branched locations while 
still prioritizing matching other metrics. We observe a 

Table 1  Target versus simulated values of lignin structure for pine, poplar and miscanthus

a Average polymer size (no. monomers)
b Branching coefficient
c Number of average MW

Feedstock Pine Poplar Miscanthus

Metrics Experiments (this 
work)

Simulated Experiments (this 
work)

Simulated Experiments (literature 
[25, 34])

Simulated

H (%) 0 0 0 0.00 4 3.2

G (%) 100 100 37 37.7 46 48.0

S (%) 0 0 63 62.3 50 48.8

4-O-5 (%) 0 0 0 0 0 0

α-O-4 (%) 0 0 0 0 0 0

β-O-4 (%) 66 68.7 78 79.4 68 73.2

5-5 (%) 0.1 0 0.1 4.9 0 0

β-5 (%) 18 19.2 7 4.2 15 14.2

β-β (%) 16 12.1 15 11.7 17 12.6

APSa 5.5 4.7 6.6

BCb 0 0.02 0 0.0

NMW(Da)c 986 928 1240 1272
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minor effect of the branching propensity on the branch-
ing coefficient of the resulting libraries (Additional file 1: 
Fig. S8a). The branching coefficients in the optimal struc-
tures for pine and poplar are 0 and 0.02, respectively. It 
is possible that the degree of branching is insignificant in 
both feedstocks. We also observe a strong positive corre-
lation ( rpearson = 0.95 ) between the 5-5 linkage percent-
age and the branching coefficient (Additional file 1: Fig. 
S8b), indicating the 5-5 linkage could encourage branch-
ing. Such observation is consistent with the finding of 
Broadbelt and co-workers. [25] Other linkages, such as 
β-β or β-5, show a weak negative correlation with the 
branching coefficient (Additional file  1: Fig. S8b). The 
experiments have a margin of error in the linkage distri-
butions up to 5% [25]. The extraction and characteriza-
tion methods could also contribute to the uncertainty. 

The simulated statistics can also be improved by running 
at a lower Metropolis temperature or using more MC 
events.

Computational performance
LigninGraphs shows a significant computational 
improvement compared to prior works. The hash-map-
encoded bonding rules, enabled by the multiscale coarse-
graining method, ensure a constant time for each lookup 
operation. We sacrifice a small amount of extra memory 
to store the list of available bonding C1 atom indices in 
a growing polymer but achieve a rejection-free addi-
tion of monomers and linkages at a linear runtime. As 
a result, the overall time complexity for polymeriza-
tion is at a near quadratic time, ∼ O

(
n2
)
 , faster than the 

O
(
n2.5

)
 of Lignin-KMC (detailed comparison is shown in 

Fig. 5  Pine lignin structure metrics of simulated optima and experimental (target) values. Monomer percentages: a H, b G, c S. Linkage 
distributions: d 4-O-5, e α-O-4, f β-O-4, g 5–5, h β-5, and i β-β. The means (µ) and standard deviations (σ) of the population are shown at the top of 
each subfigure
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Additional file  1: Note 4). In addition, due to the rejec-
tion-free scheme, LigninGraphs uses fewer iterations to 
converge than the conventional Metropolis Monte Carlo-
based methods [17, 25]. Prior methods require repeated 
sampling from a high-dimensional decision tree, employ-
ing more than 107 Monte Carlo attempts in the optimi-
zation. In LigninGraphs, a specific monomer/linkage 
addition is obtained by sampling a simpler version of 
such a decision tree and is always executed. Depending 
on the Metropolis temperature, a typical simulation gen-
erating a structure library of 100 polymers would finish 
within 105 MC attempts in ~ 1–30 min on a Windows 10 
laptop with an Intel(R) Core(™) i7 processor. LigninGraphs 
is expected to be at least 100 × more efficient than other 
simulation methods based on its rejection-free approach 
and save additional time due to its multiscale graph 
approach. Table  S6 shows the acceptance ratios, total 
MC attempts, and runtime as a function of the Metrop-
olis temperature from the test simulations on the three 
feedstocks. The speedup becomes more pronounced at 
lower temperatures, where the classic Metropolis algo-
rithm results mainly in rejected attempts, and for larger 
polymers. Multithreading on parallel machines could fur-
ther increase the computational speed and is a potential 
direction for a future version of LigninGraphs. Each pol-
ymer molecule could be created on one thread concur-
rently and be aggregated into a population based on the 
Metropolis acceptance rule.

Multiscale representation and big SMILES
The multiscale structure representation in LigninGraphs 
provides a wealth of information spanning from the 
atomic level to the population level. In general, the graph 
data structure makes it easy to store property informa-
tion and perform visualization. Atomic graphs and asso-
ciated bonding rules serve as a detailed atomic structure 
generator to eliminate human errors. We can also query 
the number of functional groups, such as –OCH3 and 
phenolic –OH groups that are unavailable in prior works. 
The big coarse-grained graphs allow fast characterization 
of the monomer and linkage distributions. At the popula-
tion scale, a lignin structure library for a particular feed-
stock represents a stochastic distribution of polymers. 
We compute the observable metrics and save the SMILES 
strings for all polymer molecules. One could relate such a 
branched stochastic polymer to the BigSMILES notation 
[37]. BigSMILES can be an indexing tool to distinguish 
different simple lignin structures: branched vs. linear, 
S/G lignin vs. G lignin, etc. We include an example in 
Additional file 1: Fig. S2 to show the BigSMILES notation 
for hypothetical linear lignin with only G units and β-O-4 

linkages. When more linkages or branching are allowed, 
the notation becomes complex and less comprehensible 
as the bonding descriptor ([$]) can be added to the 4th, 
5th, 7th, or 8th C. BigSMILES alone could not represent 
structures due to the loss of the polymer size and linkage 
distributions which are essential in modeling the chem-
istry and predicting product distributions in the lignin 
valorization. In such cases, one should utilize the entire 
structure library.

Conclusions
We introduce a multiscale graph-based modeling frame-
work to construct lignin structure libraries based on 
experimental data. The framework represents lignin 
structures at the atomic, molecular, and population scales 
and coarse-grains information from scale to scale to save 
computational and storage needs. The multiscale rep-
resentation in graphs enforces bonding rules, provides 
structure visualization, and characterizes observable 
properties, such as monomer and linkage distributions, 
functional group counts, molecular weights, and branch-
ing coefficients. The hierarchical Metropolis Monte 
Carlo optimization scheme guides structure generation 
to match the target experimental values. We introduce 
rejection-free polymerization and structure optimiza-
tion algorithms for faster convergence. We illustrate the 
framework for pine, poplar, and miscanthus lignin with 
new 2D-HSQC NMR data for the first two obtained 
herein and from the literature for miscanthus. The 
branched structures of pine and poplar reveal a posi-
tive correlation between branching and the percentage 
of 5-5 linkage. The software implementation in Python, 
LigninGraphs, is modular, easy to use, and open-source, 
with online documentation. Future work could easily 
extend the current framework by including more types 
of linkages, such as β-1 (or spiro-dienone) [38, 39], and 
caffeyl alcohol monomers and associated bonding rules 
to obtain structures for diverse lignin feedstocks. In addi-
tion, more quantitative characterization techniques [40] 
on linkage distributions can be used to replace 2D HSQC 
NMR, the same computational approach would still 
apply. We believe LigninGraphs can be valuable in creat-
ing biopolymer and other polymer structures in general. 
It can be used to model the kinetics of lignin valorization, 
such as pyrolysis, based on mechanistic principles and 
chemical knowledge. For instance, one can easily connect 
it to previous approaches, such as LigninBuilder [31], to 
unveil thermodynamic properties. The structure library 
can also provide a feasible pool of candidate radicals for 
first-principles calculations when simulating radical cou-
pling events in lignin polymerization.
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Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​022-​00627-2.

 Additional file 1. (1) Software design of LigninGraphs, including the key 
modules and functions, (2) Details of the Metropolis Monte Carlo-based 
optimization algorithm, (3) Optimal structure metrics and simulated 
libraries for pine, poplar, and miscanthus lignin, (4) Computational 
performance. Figure S1. Units in big graphs where each monomer is a 
node and each linkage is an edge. In this example, both nodes 0 and 1 are 
H monomers, and the edge (0,1) represents a beta-O-4 linkage between 
the two. Figure S2. BigSMILES notation1 for a hypothetical linear lignin 
structure with only G units and β-O-4 linkages. The corresponding atomic 
indices, as shown in Figure 2a, are marked for each C/O atom. In this case, 
the bonding descriptor ([$]) indicates that the 4th or the 8th C can be 
connected to any other atom with the same bonding descriptor. Such 
linkages can be written as G-(4,8)-G or G-(8,4)-G in the M1-(C1,C2)-M2 
format. Following smiles notation, the lower case ‘c’ indicates aromatic 
ring carbons, and capital case ‘C’ means non-aromatic carbons. Figure 
S3. LigninGraphs software design. (a) High-level workflow and (b) main 
modules, classes, functions (marked in bold), and their usages. Figure S4. 
Hierarchical optimization scheme in LigninGraphs. Table S1. Proposed 
structure additions, stopping criteria, and return values in each optimiza-
tion loop. Figure S5. Illustration of new monomer addition via random 
sampling. For instance, the experimental monomer distributions are 0, 
0.37, and 0.63 for H, G, S; the linkage distributions are 0, 0, 0.78, 0, 0.07, 
and 0.15 for 4-O-5, 5-5, α-O-4, β-O-4, β -5, β-β; the branching propensity is 
0.25. After random sampling for each property, with random numbers r ∈ 
[0,1] shown in dials, a new G monomer is added via a β-O-4 to a terminal 
monomer to avoid branching. Table S2. List of hyperparameters in the 
multiscale optimization framework. Figure S6. Poplar lignin structure met-
rics for the simulated optima and target values. Monomer percentages: a, 
H. b, G. c, S. Linkage distributions: d, 4-O-5. e, α-O-4. f, β-O-4. g, 5-5. h, β-5. 
i, β-β. The population’s means (µ) and standard deviations (σ) are shown at 
the top of each subfigure. Figure S7. Miscanthus lignin structure metrics 
for the simulated optima and target values. Monomer percentages: a, H. 
b, G. c, S; Linkage distributions: d, 4-O-5. e, α-O-4. f, β-O-4. g, 5-5. h, β-5. i, 
β-β. The population’s means (µ) and standard deviations (σ) are shown at 
the top of each subfigure. Figure S8. Correlations between (a) branching 
propensity, (b) 5-5 linkage percentage, (c) β-O-4 linkage percentage, and 
(d) β- β simulated branching coefficient for pine and poplar simulations. 
The values of Pearson correlation coefficients ( rpearson ) are indicated. 
Values close to 1, -1, and 0 suggest a strong positive, negative, and weak 
correlation, respectively. Table S3. Example structure library for pine lignin. 
The counts of monomers, linkages and functional groups, branching 
coefficient, and the smiles strings of the structures are shown. Table S4. 
Example structure library for poplar lignin. The counts of monomers, 
linkages and functional groups, branching coefficient, and the smiles 
strings of the structures are shown. Table S5. Example structure library 
for miscanthus lignin. The counts of monomers, linkages and functional 
groups, branching coefficient, and the smiles strings of the structures are 
shown. Figure S9. Computational time complexity of polymerization. For 
LigninGraphs, blue dots indicate the measured mean CPU execution time 
for a simulation at a specific polymer size; the blue error bars indicate the 
95% confidence interval of the CPU time, averaged over five runs. The blue 
and orange dashed lines are the power-law fits of the polymerization time 
complexity for LigninGraphs and Lignin-KMC, respectively. Figure S10. 
Example distance trajectories in the Metropolis Monte Carlo simulations 
for (a) a structure population and (b) a single polymer. Table S6. Accept-
ance ratios, total Monte Carlo (MC) attempts, and runtime for various 
lignin feedstocks.
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