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ABSTRACT: Phytate (myo-inositol hexakisphosphate salts) can

constitute a large fraction of the organic P in soils. As a more S&Y -
recalcitrant form of soil organic P, up to S1 million metric tons of s:;g:gn /&% +solubilization it
phytate accumulate in soils annually, corresponding to ~65% of the = e Ol / Phytate ecd \
P fertilizer application. However, the availability of phytate is limited YT WL"”\ goes Labjle | Limiting factors “
due to its strong binding to soils via its highly-phosphorylated phytate phytate
inositol structure, with sorption capacity being ~4 times that of Vi ki N e Hydrolysis
orthophosphate in soils. Phosphorus (P) is one of the most limiting " surface ’ \ o . /’
" q g q J‘}‘ chelation "w X o, *
macronutrients for agricultural productivity. Given that phosphate b T o Wt g
rock is a finite resource, coupled with the increasing difficulty in its Rhizosphere Phytic acid Inositol P,

extraction and geopolitical fragility in supply, it is anticipated that " PMV@e

both economic and environmental costs of P fertilizer will greatly

increase. Therefore, optimizing the use of soil phytate-P can potentially enhance the economic and environmental sustainability of
agriculture production. To increase phytate-P availability in the rhizosphere, plants and microbes have developed strategies to
improve phytate solubility and mineralization by secreting mobilizing agents including organic acids and hydrolyzing enzymes
including various phytases. Though we have some understanding of phytate availability and phytase activity in soils, the limiting
steps for phytate-P acquisition by plants proposed two decades ago remain elusive. Besides, the relative contribution of plant- and
microbe-derived phytases, including those from mycorrhizas, in improving phytate-P utilization is poorly understood. Hence, it is
important to understand the processes that influence phytate-P acquisition by plants, thereby developing effective molecular
biotechnologies to enhance the dynamics of phytate in soil. However, from a practical view, phytate-P acquisition by plants competes
with soil P fixation, so the ability of plants to access stable phytate must be evaluated from both a plant and soil perspective. Here, we
summarize information on phytate availability in soils and phytate-P acquisition by plants. In addition, agronomic approaches and
biotechnological strategies to improve soil phytate-P utilization by plants are discussed, and questions that need further investigation
are raised. The information helps to better improve phytate-P utilization by plants, thereby reducing P resource inputs and pollution
risks to the wider environment.

KEYWORDS: organic P, phytate and phytase, availability, transgenic plants, organic acids, Pteris vittata

1. INTRODUCTION improving the acquisition of P, by crops has attracted much
attention to enhance agricultural production.” Still, to use the
finite P resources efficiently, a better understanding of soil P,
availability and factors constraining its plant acquisition is
necessary, which helps to improve agricultural production and
environment quality.”

Phytate. In agricultural soils, P, is mainly present as the
highly-phosphorylated inositol phosphate (IP), which exists in
six phosphorylation states with 1—6 phosphate groups (i.e.,
mono, bis, tris, tetrakis, pentakis, and hexakis; IP,_¢) (Figure

Phosphorus (P) is an essential and nonrenewable resource
critical for agricultural production. On one hand, worldwide P
reserves are limited and becoming harder to extract;' on the
other hand, P is often fixed strongly in soils, thereby becoming
unavailable to plants.” Due to the limited availability of P in
many soils, excess fertilizer is applied to ensure optimal plant
growth and crop yield annually.” The excess P, together with
its inefficient use by plants, leads to large accumulation of
unavailable P in soils." Organic P (P,) is the dominant P
fraction in many soils, typically accounting for ~50%, but can

be up to 95% of total P in some agricultural soils.” This is Received: January S, 2022
because inorganic P (P,) in fertilized soils is often transformed Revised: ~ March 9, 2022
to P, through microbial and plant activities. This is particularly Accepted:  April 21, 2022

significant in systems with large carbon reserves such as Published: June 8, 2022

pastures, while it is less in some overfertilized soils where
. Lo e o 6,7
microbial immobilization capacity is saturated.”” As such,
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Figure 1. Conceptual model of phytate cycle in the environment: (A) origin from plants and animal wastes, (B) immobilization by sorption or
chelation, (C) mobilization by exuding organic acids, and (D) hydrolyzation by plant- and/or microbial phytase.

1A)."" In soils, IP is generally found as hexakisphosphate (IPg;
~83% of IP). As its P is only completely stripped during
dephosphorylation, it is rare to find other phosphorylation
states (IP,_) in soils. The IP occurs in soils in four isomeric
forms (i.e., myo, D-chiro, scyllo, and neo) but predominantly
occurs as the myo isomer (~56—90% of IP;) with small
amounts of other stereoisomers (20—50% of scyllo, 6—10% of
D-chiro, and 1—5% of neo) (Figure 1B).'"">

Phytate (myo-IP,), with six phosphate groups around its
inositol ring, includes all metal derivatives of myo-inositol
1,2,3,4,5,6-hexakisphosphate.” Phytate is synthesized by plants
to serve as the primary storage form of phosphate (up to ~90—
100%) in plant seeds (Figure 1A). In soils, it can account for
up to ~50% of P, and ~80% of IP (Figure 1B), thus being an
important source for plant P nutrition."”

Due to its six orthophosphate moieties, phytate is highly
reactive in soils, with a molecular welght of 660 g mol™ Land 12
hydrogen donors in its structure.” With six phosphates on its
inositol ring, phytate is not only bound to soils via sorption,
surface complexation, and ternary phytate complexation
(Figure 1B),"* but also becomes incorporated into organic
matter (OM) structures via Fe/Al bridges.15 As such, large
amounts of phytate can accumulate in soils and contribute to
the soil P, pool,'”'” but with limited availability to plants."®
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As the main P storage form in cereals and grains, phytate
binds essential metal cations with low availability and is often
introduced to soils via deposition of plant residues and
manures from grain-fed animals, particularly monogastric
animals, which lack phytase in their guts (Figure 1A).
Phosphorus added to soils from the undigested phytate in
animal manure poses potential pollution risks in areas of
intensive animal production as it promotes eutrophication in
aquatic systems, mostly surface waters like rivers, lakes, and
oceans.'””® Despite the prevalence of phytate in soils, the
understanding of its solubility and availability is inconsistent
due to difficulties in its extraction, separation, and detection.

Phytase. Although phytate is important in maintaining P
supply to crops, the mechanisms associated with its
solubilization in soils and acquisition by plants are poorly
understood.”" As an essential macronutrient, P is taken up by
plant roots as P.**** As P, phytate must be hydrolyzed to
release P into the soil solution before being taken up by
plants.** Plants can secrete different phosphatase enzymes that
target different P, compounds, 1nclud1n% phosphomonoester-
ase, phosphodlesterase, and phytase.”> ™"

Phytase (myo-inositol hexakisphosphate phosphohydrolase)
is a class of phosphatase enzymes that specifically catalyze the
hydrolysis of phytate to inositol, P, and free metals (Figure

https://doi.org/10.1021/acs.est.2c00099
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1C,D).> Phytate-P is released by phytase (EC 3.1.3.8, EC
3.1.3.72, and EC 3.1.3.26), often occurring at the 3, S, and 6
phosphate positions. Phytase in the rhizosphere may originate
from plant roots”””’ and/or soil microbes® (Figure 1D).
Their relative contributions to soil phytate hydrolysis are still
unclear.’!

To estimate phytate availability in soils, phytase-hydro-
lyzable P based on sequential extraction and enzyme hydrolysis
has been used, which is the soluble P, that can be hydrolyzed
by phytase to be used by plants.'”>” Soluble P, can be
obtained using various extractants including H,0O, NaHCO;,,
NaOAcg, citrate, NaOH-EDTA, and HCI, which account for
different processes and represent different solubilities.”*"**
For example, water extracts estimate the P, that might be
transferred in runoff,*® while NaHCOj extracts estimate the P,
that is readily mineralizable.’" Citrate extracts estimate the P,
that is released by plant root exudates. This is because, among
organic acids exuded by plants, citrate is the most abundant.
Further, citrate shows greater extraction efficiency for P, than
bicarbonate such as NaHCO; (44—79% vs 1-9% of the
P,).””***> While NaOH-EDTA targets all phytate in soil as it
can extract 71—90% of total soil P including phytate,® HCI
extracts recover minimal phytase-labile P, from soil.”"

Crops that can utilize P, in soils require less external P
inputs, thereby reducing nutrient loss and consumption of
nonrenewable mineral P.>”** Phytate can be hydrolyzed by
phytase to enhance plant uptake, which is limited by the poor
solubility of phytate and low activity of phytase in soils.”
Therefore, enhancing phytate solubility and phytase activity is
critical to improve phytate availability for sustainable use of P
in soils."” Phytate can also become soluble after dissolution of
OM that binds phytate.”*

As such, this review aims to provide an overview of phytate
availability in soils, especially the processes to improve phytate-
P acquisition by plants. Understanding the mechanisms
controlling phytate availability in soils helps to select plants/
microbes that can exude organic acids/enzymes to enhance
phytate-P utilization by crop plants.

2. PHYTATE IN SOILS

Phytate is stable in soils primarily due to its strong
complexation by various metals and its strong binding to
various components of soils.”'” This section covers its origin,
abundance, forms, solubilization, and availability in soils.

2.1. Origin, Abundance, and Forms. Origin. Phosphorus
accumulation as phytate in soils can reach up to ~51 million
metric tons annually, corresponding to ~65% of the P
fertilizer."' Soil phytate may come from plant tissues,
monogastric animal manures, and microbial conversion from
soil P;. Phytate is synthesized by Flants and microbes, with
plants being the main source.'”** In particular, plants
accumulate large amounts of phytate in the grains and seeds,
being up to 80% of total P and 90—100% of P, as a P reserve
for seed germination (Figure 1A).*> Phytate also occurs in
other tissues but in smaller concentrations, which participates
in molecular signaling and biochemical reactions.*** In short,
plant is an important source of soil phytate.’

Monogastric animals including poultry and swine cannot
effectively utilize phytate-P in grain feed, and even ruminant
animals like cattle and sheep are unable to mineralize all
phytate-P, especially in high-phytate grain-based diets.**
Phytate accumulation in animal manures is attributed to
several factors, including its high concentration in grain-based
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diets, complexation with metals, and rapid passage through the
digestive tract."* Therefore, phytate-rich animal manure is also
an important source of phytate inputs to agricultural soils
(Figure IA).%’47

In addition, phytate can be transformed from immobilized P;
in soils (Figure 1A). George et al.” showed that P fertilization
increased phytase-hydrolyzable P, attributing to the continuous
accumulation of soil P. Even in soils after more than a decade
without P fertilization, phytase-hydrolyzable P is still
significantly greater than unfertilized soils.” The data indicate
that phytate accumulation is associated not only with external
inputs of phytate-rich substrates but also with soil immobiliza-
tion and transformation from P fertilizers."

Abundance. In soils, P, is abundant and typically accounts
for 40—95% of total P, with phytate being the major fraction,
accounting for up to 50—80% of the P, (Figure 1B).”'*
Phytate concentrations in soil depend on land use and soil
properties and vary with extraction methods. For example,
phytate-P concentrations range from 1.4—220 mg kg™’ in
arable soils to 42—220 mg kg™" in crop and pasture soils and to
153—1325 mg kg™! in manures (Tables 1A, 1B, and S1A). The
average phytate-P concentrations are 457, 1047, and 2277 mg
kg_1 in swine, cattle, and poultry manure, accounting for ~16—
17% of total P (Table S1B). The phytase-hydrolyzable P
concentrations range from 0.1—0.4 mg kg_1 in water extracts to
26—189 and 153—613 mg kg~' in NaOH-EDTA extracts of
pasture soils and cattle dung in Southern Chile (Table 1A),
averaging ~20% of total P or ~40% of P, **~%°

The contribution of phytate to P, also varies greatly among
soils. For example, phytate-P concentrations in 47 Australian
soils are 1—356 mg kg™!, accounting for 0.4—38% of P,. For
Scottish soils and Chilean Andisols, they are 56—460 and ~674
mg kg~', accounting for 24—58% and 42—67% of P, (Table
1C).>" In addition, phytate-rich animal manures (3413—8412
mg kg™') have often been used as fertilizers, thereby increasing
soil phytate content. For example, after 10 years of applying
swine manure to soils with conventional cultivation in Maine,
soil phytate-P reached 118 mg kg™' (Table 1A).>* After 7 year
of surface applications of 30 kg ha™" dairy manure in Christiana
soils with a permanent grass stand, soil plant-available P via
Mehlich-3 is elevated by 78 mg kg™!, with phytase-hydro-
lyzable P making up 48—55% of the extractable P.>’

Forms. Of the six inositol phosphate esters (IP), i.e., mono-,
bis-, tris-, tetrakis-, pentakis-, and hexakis-phosphates (IP;_),
IP¢ is the predominant form, accounting for up to 83—100% of
IP (Figure 1B)."” There are also four stereoisomeric forms of
IP4, with the abundance being in the order of myo > scyllo > b-
chiro > neo, representing 56—90, 20—50, 6—10, and 1-5% of
1P (Figure 1B).""'* Synthesized in plants, myo-IP or phytate
is the principal form and the most common IP in soils, with
lower order esters being rare.'” Since plants contain only the
myo stereoisomer of 1P, with chemical epimerization of myo-
IP4 being ruled out, microbes play a key role in synthesizing
other TP, stereoisomers in soils (Figure 1B).""

Due to its higher degree of phosphorylation with six
phosphate groups on its inositol ring, phytate has a high charge
density, thereby interacting strongly with soils.” Phytate is
bound to Fe/Al-oxides in acid soils and Ca/Mg minerals in
alkaline soils.">'” For example, phytate sorption onto goethite
and ferrihydrite is greater than that of P; (3.8—12.7 vs 2.4—4.6
umol m?), and its binding to amorphous Al-oxide induces
formation of stable Al-phytate precipitates (log K;_,s = 8.84—

https://doi.org/10.1021/acs.est.2c00099
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Table 1A. continued

ref

extraction and analytical method

%P,

%P,
0.9-52

phy

P, (%P,)
12.3 (H,0), 0 (NaHCO,),

soil description

location

322 (H,0), 822

yr at

fine loam + poultry li

(NaOH)

37.6 (NaOH), 0 (HCI)

(NaHCO3}), 230
(NaOH), 34.6 (HCl)

tter for 20
yr ! (n

1)

rates of 1.36 mg ha

Hill and

NaOH-EDTA extraction, solution

48-51 77.5—84.1

5135—5968
3413—-8412

6103—7700 (61—62)
3550—11090 (31—68)

9988—12436
11372—-16256

poultry litter (PL)
composted litter (CL): poultry litter

17

Cade-
Menun

31p NMR

75.9-96.1

21-52

Delmarva

and cow manure

37.6—44.2
21.1-24.2

17.4—40.1

6—13
2—6
4.93-16.9

42-53

95—141 (17-29)
14.2-86.7 (10-29)

326—827
49—-687

604—858

crop soil (CS): soy or corn

Peninsula

3-21
31-111
53—-106

ditch sediment (DS)

fine loam (n = 10)
fine loam + animal manure or spent

Dou et al.'”*

178—378 (28.2—60.9)
114—244 (6.91—-19.4)

Pennsylvania

22.6—43.4

1.57-6.76

808—4866

mushroom compost (n = 10)

Murafl)}llyz et

20-52

97-185

188—592

616—2580

nonbasaltic grassland soils (n = 4)

Irish

“Numbers with underlines are the mean values.
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20.1; Table 2B).'*** Besides minerals, phytate also binds
strongly to OM.™

2.2. Sorption, Complexation, and Stability. Although
phytate may be present in the soil solution, its direct uptake by
plants has not been demonstrated.'®** Thus, to contribute to
plant P nutrition, soil phytate must first be dephosphorylated
from phosphate ester (C—O—P), phosphoanhydride (P—O—
P), or phosphonate (C—P) via phytase-mediated hydrolysis.”*
However, it can only occur in the soil solution. Thus, its
desorption from the solid phase is a prerequisite for its
enzymatic hydrolysis by phytase. This section addresses its
sorption, complexation, and stability in soils.

Sorption. Among P, compounds, phytate has the strongest
affinity for soils, whose immobilization and fixation are
stronger than IP,_5 and P.>° Its immobilization involves
rapid sorption via surface complexation, which includes
formation of phytate complexes with soil minerals'* and
incorporation of phytate into OM structures via Fe/Al
bridges. "

Since phytate has 12 ionizable protons, with pK, values
being 1.1-12 for pK;—pK;, (Table 2A), phytate is a strong
ligand due to its high anionic charge at —6 to —10 under pH
4—10."" The six orthophosphate moieties and 12 replaceable
protons in the phytate structure render its polyanionic
property and strong ability to sorb onto soil solid phases and
chelate with metal cations.'® Phytate sorbs to metal oxides, clay
minerals, and OM, with sorption capacity being ~4 times that
of P,>* Depending on pH, phytate chelates metal cations to
form sparingly-soluble precipitates, with Fe/Al complexes
under acidic conditions and Ca/Mg complexes under alkaline
conditions (Table 2B).>”

Phytate sorption occurs through its phosphate groups, which
react with metal oxides via ligand exchange through surface
H,0 and OH groups, forming inner-sphere complexes.’®
Strong sorption of phytate has been demonstrated with
calcite,”® Illite, kaolinite, and montmorillonite,* (goethite,ém2
hematite,®> ferrihydrite,é4 aluminum hydroxides, ° and gibb-
site,*® especially at low pHs, as phytate sorption decreased with
increasing pH. For example, phytate sorption on goethite and
hematite decreased from 94% to 47% or from 0.95 to 0.38
umol m™? with pH increasing from 3 to 10.5%63 Similarly,
phytate sorption on ferrihydrite decreased by 25—61% with pH
increasing from S to 9, with P1,3 and P2 phosphate functional
groups showing preferential affinities at pH 5 and 8.5.°*
Moreover, the mechanism for phytate sorption is via formation
of amorphous Fe-phytate precipitates on ferrihydrite surfa-
ces.”” However, phytate sorption onto gibbsite increases
(0.47—-0.52 pmol m™2) with increasing temperature (4—5S
°C) at pH 6, while it decreases (0.41—0.33 yumol m™2) at pH
10 as the temperature is raised.”® Phytate sorption onto soil
minerals increases its negative charge, making it more
reactive.”®

Complexation. Complexation with metal cations occurs by
ligand exchange and/or surface complexation, by which OH,
or OH groups are replaced by the PO, anion.'> Complexation
can occur via one phosphate group, between two phosphate
groups of a molecule, or between phosphate groups of different
phytate molecules.'” Phytate complexation with Fe®" is
stronger than Ca®', so Fe-phytate is more stable than Ca-
phytate, with their stability constants (log K;5_;5) at 8.89—18.2
and 8.3—8.4 (Table 2B). As such, Ca-gphytate can be
transformed to Fe-phytate in soils over time.’” Besides, phytate
incorporation increases the stability of Fe oxyhydroxide via

https://doi.org/10.1021/acs.est.2c00099
Environ. Sci. Technol. 2022, 56, 9196—9219
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Table 1C. Classification and Amount of P and Phytate in Soils: P,, P,, Inositol-P (INP), Humic-P (HA-P), Fulvic-P (FA-P),
and Specific P Fraction/P, Ratios in 15 Cultivated and Uncultivated (Native Grasslands) Chilean Volcanic Soils and 9

Representative Volcanic Soils under Grasslands®

soil description and FA-P
soil type no. P, P, (% P,) INP (% P,) HA-P (% P,) (% P,) extraction method ref
cultivated (+P) 1422—4011, 870—3197 (59-95, 61) (5—41,39) hypobromide oxidation ~ Borie and
2582 (42—80), 1618 (Anderson, 1964) Rubio™'
. . (56)
Chilean volcanic soils .
uncultivated (-P, 1150—-3243, 650—-2375 (43-81, 53) (19-57,
native grasslands) 1854 (48-79), 1147 47)
(62)
Typic Distrandept 1 2348 1007 (43) 499 (49) 637 (63) 370 (37)
2 1925 1052 (55) 705 (67) 638 (61) 414 (c)
3 2697 1302 (49) 612 (47) 867 (66) 435 (33)
4 2327 1492 (64) 987 (66) 1041 (68) 478 (32)
, o 5 2476 1450 (59) 612 (42) 965 (66) 485 (33)
Chilean volcanic soils
under grasslands 6 3121 1310 (42) 750 (57)  841(64) 469 (36)
7 2362 1208 (51) 778 (64) 793 (6S) 415 (34)
mean 1925-3121, 1007—-1492 499-987 793—1041 370—48S
2465 (42—-64) (42-67) (61-68) (32—49)
Typic Vitrandept 8 1849 1083 (59) 709 (65) 721 (66) 362 (33)
9 1107 654 (59) 415 (63) 333 (51) 321 (49)
“Values in parentheses are % of P, or P,; numbers with underlines are the mean values.
Table 2A. Protonation Constants of Phytate in Different Media and Ionic Strengtth
medium ionic strength(mol L™!) log K;* log K,” logK; logK, logK; logK, logK, logKs logK, logK;, logK; logKj,
(C,H,),NI 16.7 14.4 122 992 753 611 353
(n-C,H,),NBr >12 >12 >12 115 797 641 393 273 2 <L <L <15
LiCl 9.71 9.46 8.63 7.6 6.27 S 2.63
NaNO; 0.1 9.48 9.98 9.53 8.2 6.49 S.17 3.02
NaCl 9.58 9.84 9.5 8.14 6.5 5.25 2.88
KCl 10.2 9.5 9.93 8.37 6.62 5.35 2.93
CsCl 10.4 10.3 10.1 8.62 6.53 S5.16 3.18
(CH3)4NCI 0.15 10.8 10.5 10.3 8.79 6.9 5.72 3.1 1.9 1.9
NaClO, 0.15 8.59 10.5 9.02 7.82 6.13 4.88 2.49 1.98
(C,H),NCIO, 0.17 >13 >13 123 9.92 7.42 6.13 3.59 2 2.4 1 <1 <1
KCl 0.2 9.53 9.53 9.19 7.98 6.25 5.2 3.16 2.38 2.38 1.92 1.92 1.92
(C,H,),NI 14.9 13.3 1.6 979 75 612 3.6l
LiCl 9.06 8.81 7.96 6.93 5.63 4.39 2.08
NaNO; 0.5 8.73 9.39 8.82 7.57 5.88 4.59 2.6
NaCl 8.93 9.19 8.83 7.48 5.88 4.65 2.37
KCl 9.59 8.85 9.26 7.71 6.01 4.77 243
CsCl 9.79 9.54 9.51 7.93 5.78 4.51 2.49
(C,H,),NI 136 12.5 1.1 971 7.5 616 372
LiCl 8.83 8.57 7.69 6.67 54 4.15 1.92
NaNO; 8.36 9.22 8.51 7.34 5.66 4.39 2.52
NaCl 1 8.69 8.95 8.56 7.21 5.65 4.42 2.22
NaClO, 8.41 9.19 8.29 7.03 5.38 4.14 1.77 1.8
KCl 9.35 8.61 8.99 7.45 5.77 4.54 2.28
CsCl 9.82 9.38 9.41 7.77 5.57 4.34 2.33
LiCl 8.6 8.34 7.34 6.35 S.18 3.95 2
NaCl 8.47 8.71 8.21 6.89 543 4.22 2.3
NaClO, 3 8.29 8.62 8.01 6.61 5.07 3.86 1.52 1.63
KCl 9.13 8.38 8.64 7.13 5.56 4.34 2.36
NaCl S 8.5 8.74 8.12 6.83 5.47 4.27 2.63

“Predicated values in italics. bAdapted from Crea et al.”’

inhibiting its transformation. For example, 10 months of aging
at 22 °C or 60 h of hydrothermal treatment at 70 °C fails to
transform the phytate-coprecipitated ferrihydrite (~60% is Fe-
phytate) into hematite or goethite.”” The data indicate that the
strong complexation of phytate suppresses Fe polymerization
and crystallization.”” In the presence of Ca, phytate can form

9202

soluble complexes (Ca;- or Ca,-phytate) or insoluble
precipitates (Ca;-phytate) at all pH values.”* Higher reactivity
of phytate than P; and other P, compounds suggests that
phytate undergoes strong immobilization, limiting it from
being hydrolyzed by phytase, resulting in its low availability
and high accumulation in soils.”*

https://doi.org/10.1021/acs.est.2c00099
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Table 2B. Stability Constants of Phytate-Metal Complexes”

cation ionic strength(mol L") medium t (°C) log K3
Mg** 0 10 7.93
0 25 7.82
0.15 NaClO, 37 10.5
Ca** 0 10 7.67
0 25 7.64
0.15 NaClO, 37
cd* 0.15 NaClO, 37 9.7
0.15 NaCl 25
Cu?* 0 25
0.15 37 13.5
Zn** 0.15 NaClO, 37 11.3
Ni** 0.15 37
0.10 KCl 36 7.27
Co™ 0.15 NaClO, 37 9.1
Hg** 0.15 NaCl 25 15.6
0 25 14.7
Mn* 0.15 37
2+
Fe3+ 0.15 NaClO, 37 10.5
Fe 0.15 37 182
AP* 0.15 37 20.1
(CH,),Sn** 0 25 14.0
(CH,);Sn* 0.05 25
0.075 25

log Ky, log K5 log K¢ other i:j species”
6.49 5.47 2:3, 2:4, 2:5, 3:2, 3:3, 3:4, 3:5
6.66 6.03
9.76 8.76 7.25 1:2
6.34 5.31 2:3, 2:4, 2:5, 3:2, 3:3, 3:4, 3:5
5.82 541
8.3 8.4 7.4
8.76 7.53 6.92 1:2
5.25 4.71 4.42 1:7, 2:4, 2:5, 2:6, 2:7, 3:4
10.3 7.79 2:5
12.2 9.07 5.73
10.3 8.54 6.94
8.78 8.44 7.20
5.96 5.18 5.05 1:0, 1:1, 1:2, 1:7
79 6.96 6.26 1:2, 1.7
159 16.3 16.5 1:0, 1:1, 1:2, 1:7, 2:0, 2:1, 2:2
15.1 15.5 15.7
8.78 8.44 7.2
8.99 7.71 5.94 1:2
12.7 8.89 1:2
16.4 122 8.48 1:2
11.6 9.16 6.59 1:0, 1:1, 1:2, 1:7, 2:0-2:5, 3:0—-3:5
2.45 2:5, 3:4, 3:5, 4:6, 5:1
3.25

“K;; refers to the equilibrium: iM"* + HiPhym”')’ = M,.H/.Phy(lzf"”’j)’. bAdapted from Crea et al.”’

Besides soil minerals and metal cations, phytate also binds to
OM via Fe/Al-bridges. Coupled with Fe/Al, its sorption
capacity exceeds 1.3 mM phytate-P mM ™" Fe/AL’> However,
without Fe/Al, OM shows limited binding capacity for phytate,
similar to P.”* The data indicate that Fe/Al helps OM to sorb
phytate (Figure 1B). Further, extraction with 1 M NaOH fails
to liberate phytate from OM,”* as it takes hydrolysis with 6 M
HCl at 100 °C to release phytate from OM.” The data
indicate incorporation of phytate into the Fe/Al-OM complex.
As such, phytate bound to the Fe/Al-OM complex behaves
differently from those bound to OM or Fe/Al-oxides.’

Stability. Phytate stability in soils is controlled by many
factors including OM, clay type, clay content, pH, and metal
oxides.”®" For example, peat soils contain greater amounts of
phytate than sandy soils due to their greater OM content.”®
Clay type affects phytate sorption strenﬁgth as phytate is more
strongly sorbed to Illite than kaolinite.”” pH impacts phytate
sorption by soils, with more being accumulated in acid soils
than alkaline soils. For example, after 24 h of reaction at pH
4.5, 2.12 pmol m™ phytate is sorbed by ferrihydrite.””
However, the amount sorbed is reduced by half at pH 6.5.>
This is because phytate can complex with Fe, Al, Ca, and/or
Mg, which is pH-dependent, being stable at pH < S (sorbs to
Fe/Al minerals) and > 7.5 (precipitates with Ca).'"*®

Besides, phytate stability varies with metal oxides, especially
amorphous Fe and AL’® For example, phytate is sorbed onto
goethite via four of the 6-phosphate groups, with the remaining
two being free.”® This explains the 3:2 sorption ratio between
phytate and P in soils.”* The large number of phosphate
groups involved in phytate sorption leads to its stability with
goethite, even in the presence of citrate and bicarbonate.’’
Unlike goethite, phytate sorption onto ferrihydrite occurs via
two phosphate groups, showing less stability than onto
goethite, with its desorption increasing with increasing pH.””
In addition, phytate stability is metal-dependent, with AI*" >
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Fe’* > Mg*" > Fe** > Ca®".’” Their corresponding stability
constants (log K;;_;5) are 12.2—20.1, 8.89—18.2, 8.76—10.5,
7.71-10.5, and 8.3—8.4 in the NaClO, solution at 37 °C
(Table 2B). These complexes are soluble only at pH < 2, as
they are insoluble at mid-range pH values as Fe,/Al,-phytate
(pH = 5-7) or Cag/Mg-phytate (pH > 7.5) complexes.””*

3. PHYTATE-P UTILIZATION BY PLANTS

Phytate plays two roles in plants: serving as a reserve for P,
inositol and minerals, and controlling P homeostasis.” Phytate
is only available to plants after its solubilization and hydrolysis
via phytase, with the released P diffusing to rhizosphere
solution.”*" However, phytate is strongly bound to soils, so the
concentrations of soluble phytate-P in the soil solution are
typically very low (4—14.3 ug L™').*” Therefore, plants and
their associated microbes have developed strategies to
solubilize and/or hydrolyze phytate to increase its availability.

3.1. Phytate Solubilization by Organic Acids. The
accumulation of phytate in soils compared to other P-esters is
attributed to its strong affinity for soils. The availability of soil
phytate is low, hindering its interaction with phytase, thereby
reducing its enzymatic cleavage of gphytate ester bonds and the
mineralization of its inositol ring."> Desorption and solubiliza-
tion are two ways to increase phytate access by phytase.” In
soils, P can be desorbed or solubilized by protons, organic
acids, and phenolic acids, with organic acids being the primary
factor in solubilizing sparingly-available P (Tables 3A, 3B, and
SZ).84’85

Organic acids contain carboxylate groups that can mobilize
phytate via three mechanisms. First, carboxylates can desorb P
anions from soil through ligand exchange by replacing P with a
carboxylate anion. Specifically, tribasic citrate releases more P
than dibasic oxalate due to its greater number of carboxyl
groups, with closer pK, value (4.76 vs 4.28) to soil pH (4.5—
9.5), leading to rapid degradation of oxalate.”* Second,

https://doi.org/10.1021/acs.est.2c00099
Environ. Sci. Technol. 2022, 56, 9196—9219
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carboxylates can solubilize Fe and Al via HY, thereby
destroying P sorption sites. Third, they can solubilize OM
that binds to P via Fe/Al-bridges, with P being solubilized as
the OM-Fe/Al-P complex."®

Since the interaction of phytate-P with soils is like P;, similar
reactions may solubilize phytate-P in soils but with more
mechanisms being involved: 1) chelation of metals bound in
metal-phytate complexes to release P and 2) chelation of
metals to form complexes, which sorb to soils to prevent
microbial degradation of organic acids, resulting in their lon§-
lasting effect to improve phytate solubilization in soils.”*
Organic acids in the soil solution can be quickly degraded by
microbes, whereas sorption onto soil hinders their degradation.
For example, 70% of citrate added to soil is degraded after 10
d, but its sorption onto Fe/Al-hydroxide reduces its
degradation by 50—90%."” The presence of organic acids in
the soil solution is necessary for phytate solubilization in
soils,"*** and the effects of organic acids on phytate-P
acquisition by plants were summarized by Gerke.”*

Phytate solubilization is essential for phytate-P acquisition
by plants. Under P deficiency conditions, plant roots alter soil
chemistry by releasing organic acids (Tables 3A and S2).*
The typical organic acids exuded by plants include citrate,
oxalate, malonate, gluconate, and acetate. In the rhizosphere,
phytate solubilization and hydrolysis, and the subsequent P
acquisition by plants are greater than bulk soil due to its
greater organic acid concentrations.** The concentrations of
organic acids in the bulk soil solution are generally <50 uM,
but they can be in the range of 92.8—282, 15—50, and 45.4—
228 pumol g™* root dw in white lupin and chickpea, with citrate
(63—88%) and malonic (60—81%) being predominant (Table
3A).3559

Many plants exude organic acids, with those being effective
including rape, chickpea, and lupin.35 For example, cluster-
forming plant species, such as white lupin and yellow Iuopin,
excrete citrate to enhance P uptake under P deficiency.” In
addition, organic acids such as citrate from legumes and malate
from chickpea can solubilize phytate-P in soils, showing greater
phytate-P acquisition compared to plants with limited exudates
such as sunflower or wheat.””?"?*

However, plants like pea and chickpea are unable to access
phytate in sand culture despite their ability to release organic
acids into the rhizosphere.”” Similarly, organic acids in the
rhizosphere can not induce a significant difference in P
acquisition from insoluble P by white lupin, implying that there
is no simple relation between exudation of organic acids and
available P in soil. It is possible that plant roots exude a basal
level of organic acids into the rhizosphere. Plants increase the
exudation of organic acids considerably when soil solution P
availability is limiting (<1—2 yM), which often occurs in soils
with a strong ability to bind P or nutrient-poor soil with
sparingly-available P as Fe/Al-phosphate.”””* Therefore,
further work is needed to establish the relationship between
the concentrations of organic acids in the rhizosphere and the
amount of phytate-P that can be taken up by plants in different
soils.

3.2. Phytate Hydrolysis by Phytase. Phytate Hydrolysis.
Phytate hydrolysis is mediated by phytase, which is classified
according to its catalytic mechanism as belonging to histidine
acid phosphatase (HAP), purple acid phosphatase (PAP), Cys
phosphatase, or S-propeller phosphatase,” with HAP and PAP
being more prevalent. Each group consists of several
phosphatases, but only a few of them have phytase activity.”®

ref

citric

Tyson
malic

malonic
123 d s 0
Mobilized P was extracted from a soil with

citric

Kaniva
malic

malonic

cultivars and % total organic acids
malate, or malonate. bicarb.-extr. = bicarbonate-extractable; extr. = extractable.

Sona
malic citric
3 17
3 19
ref
Grierson'”*

80
78

% total organic acids
S0
11
18
17
4

malonic

Tyson

anic acids

g
(umol g~* root dw)

total or
Kaniva

Sona
162
52

12.6

2.88

4.58

4.34
1

8.7
10.3
concn (mg L™'in 100 mL soil leachates

bicarb.-extr.” P

location and soil P concn (mg kg™")
Pt
91

location
Mullewa
Morowa
aconitic
fumaric

organic acid species
citric
maleic
malic

plant species
Fabaceae

Proteaceae
Banksia integrifolia

Bicarbonate-extractable P is extracted with 0.5 M sodium bicarbonate at pH 8.5.%” “Carboxylates in the rhizosphere were extracted with 0.2 mM CaCl,.”"

The P-mobilizing capacity of carboxylates on soils was analyzed by extracting 3 g soil with 30 mL of 0.5 mM citrate,
total and bicarbonate-extractable P at 66 and 4 mg kg™."!

Table 3A. continued

a
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Table 3B. Summary of Microbially-Secreted Organic Acids to Mobilize Soil P

microbe species

mobilized P

strain organic acid species exptl conditions mg L™ pH ref
D 5/23 Pantoea succinate, hydroxyglutarate, adipate, lactate, 200 ug P mL™" as Cay(PO4),, 28 °C 62.8 593 Deubel and_
agglomerans ketogluconate 7d Merbach'”®
PsIA12 Pseudomonas succinate, lactate, malate, ketogluconate, 44.1 4.77
fluorescens galacturonate, citrate
CC 322 Azospirillum gluconate, succinate, 2-ketoglutarate, 834 6.19
sp. ketogluconate
Mac 27 Azotobacter citrate, malate, fumarate, succinate, lactate 98.1 4.84
chroococcum
Msx 9 Azotobacter citrate, fumarate, malate, lactate, succinate 65.9 5.82
chroococcum
ER 3 fumarate, isocitrate, lactate, malonate 75.5 5.32
ER 10 lactate, gluconate, malonate, citrate 36.2 5.72
citric 200 mg L™' P as Cay(PO4),, 28 °C 236 mg g~
succinic 7d 178
lactic 126
citric 2 g soil +100 mL S g L™" carboxylic 250 mg kg™
oxalic acid, pH 7, 24 h 175
gluconic S0
succinic 25
A. calcoaceticus YC-Sa  oxalic, malic, lactic, tartaric 5 g L™ Cay(PO,), 28 °C, 7 d 518 +17.3 3.92 + 0.02 Ren et al'7
E. agglomerans KMC-7  oxalic, lactic, citric, succinic 435 + 15.6 4.13 + 0.01 ’
microbe species
fungi organic acid species ref
Aspergillus flavus, A. candidus, A. niger, A. terreus, A. wentii, Fusarium oxysporum, Penicillium lactic, maleic, malic, acetic, tartaric, citric, ~Akintokun et
sp., Trichoderma isridae, Ttrichoderma sp. fumaric, gluconic al.'”’
Penicillium oxalicum malic, gluconic, oxalic Shin et al.'”®
Aspergillus flavus, A. niger, P. canescens oxalic, citric, gluconic, succinic Malailhla7 ot

Penicillium rugulosum
A. niger

Penicicllium variabile

e . 180
citric, gluconic Reyes et al.

succinic Vazquez et
181
al

1.

gluconic Fenice et
a.l 182
. . L . . 183
oxalic, lactic, glycolic, citric, succinic, ‘Whitelaw

tartaric

HAPs originate mainly from plants and show specific activity
toward phytate. Their catalytic hydrolysis is via a N-terminal
RHGXRXP motif and a C-terminal HD motif position to form
an active site.”” Unlike HAPs, PAPs originate from both plants
and microbes and can hydrolyze various P, forms besides
phytate.”” They are metallohydrolases that bind two metal
cations in the active center. One of the cations is usually Fe',
while other metals can be Zn, Mn, or Fe', which are
responsible for PAP’s color.”®

Phytase activity in soils is affected by soil pH and its
sorption.” Phytases show optimal activity toward phytate at
2.5—8.0 (Tables 4A and 4B) and then decline with increasing
pH; thus, normally it is higher in acidic soils than alkaline
soils.”” Besides, phytase activity is inhibited due to its sorption
onto soil minerals such as montmorillonite.'”’

Plant Phytase. Plant phytase is associated with various
cellular functions, including energy metabolism, nutrient
transport, metabolic regulation, and protein activation.'”!
However, it is the extracellular phytase released from the
roots that is of particular importance for phytate hydrolysis in
soils.”” Plant extracellular phytase is induced under P
deficiency conditions, which either remains associated with
root cell walls or is released directly into the rhizosphere to
catalyze phytate hydrolysis.””'*> For example, by exuding
phytase into the rhizosphere, 1.7 ug P g”' d™" is released via

9206

phytate hydrolysis, facilitating phytate-P utilization by
wheat.'”” Similarly, the arsenic-hyperaccumulator Pteris vittata
(Chinese brake fern) can grow in Murashige and Skoog media
supplied with phytate as the sole source of P.”>”* After 40 days
of growth, P. vittata takes up similar amounts of P grown in
media with phytate or P, with tissue P concentrations being
2351 and 2208 mg kg™". In comparison, other plants including
angiosperms (Lactuca sativa, Trifolium subterraneum, and
Allium  schoenoprasum) and pteridophytes (Pteris ensiformis
and Thelypteris kunthii) fail to grow with phytate as the sole
source of P.”” The authors show the phytase activity in P.
vittata roots at 0.018 U mg_1 (3 x 107* pkat mg_l). However,
for most plants, they do not show phytase activity in the roots
as most of the phytate is stored in the seeds.*

More recently, Sun et al.* identified a novel root-specific
phytase PvPHY1 from P. vittata via prokaryotic expression,
which can hydrolyze phytate, showing activity analysis at 37 °C
and pH 5.5. Unlike typical plants such as rice and A. thaliana,
expression of PvPHY1 in P. vittata roots is greater than the
fronds, which is consistent with the 7-fold stronger phytase
activity in the roots than the fronds at 19.2 and 2.9 ymol P g™
protein min~". Besides, expressing PvPHY1 in tobacco plants
enhances its growth by 0.7—1.1 g plant™" and P concentration
by 10—50% under low- and adequate-P conditions.” Further,
PvPHYI-expressed tobacco shows 25—32% less intracellular

https://doi.org/10.1021/acs.est.2c00099
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Table 4A. Summary of Known Plant Phytases to Hydrolyze Mobilized Phytate

phytase activity

plant species and fraction U mg™ pKat mg™' pH optim temp (°C) temp optim (°C) K, (uM) molecular wt (kDa) ref
buttercup squash 4.8 48 - - 67 Goel and Sharma'®*
scallion leaves - - S.S Sl - 200 - Phillippy'®
sunflower 52 SS - 290 - Agostini and Ida'®
tomato roots 4.3 45 - 38 164 Li et al.'®’
205 3.44 4.3 S0 = -
Lilium longiflorum 0.066 0.001 8.0 55—60 7.2 88 Scott and Loewus'®*
maize roots 5.7 0.1 5.0 40 71 Hubel and Beck'*’
Typha latifolia pollen - - 8 - 17 - Hara et al.'”’
rye - - 6.0 - 4S 300 67 Greiner et al."”!
spelt 262 4.38 6.0 45 400 68 Konietzny et al."”>
scallion (Allium fistulosum) 500 8.35 5.5 51 200 72 Phillippy"*®
maize seedlings - - 4.8 SS 117 76 Laboure et al.'”?
activity
plant species substrate (EU®x107%) ref
cereals (wheat, pear] millet, sorghum), legumes (mung, moth, cluster bean), oil seed P-deficient 29.3
crops (groundnut, sesame, mustard) phytin® 29.1
(250 mg L")
phytin (mg L™)
S0 232
150 5.25
wheat (Triticum aestivum) 200 7.89
250 9.35
300 9.82
500 9.87
activity P released
plant species (EU®x107%) incubation condition (mg L) ref
sorghum (Sorghum bicolor 65 5.4 X 107° EU, 500 mg kg™ P as phytin, 68
SSG-1000) 2 wks
cowpea (Vigna unguiculata RC-19) 69 10.8 X 107° EU, 500 mg kg™ P as phytin, 7 d 136 Tarafdar et al.'”
mung bean (Phaseolus radiatus 67
K-851)
phytase activity
plant species and fraction P-fed plants No-P plants ref
wheat whole root extract (soluble; mU g™ root fw) 44 + 1.1 239 + 1.2
wheat total intact root (mU g™! root fw) 12.1 +£ 4.0 Celi and Barberis**
wheat external-root solution (mU g™' root fw h™") <0.3 <0.3

“One unit (U, ,ur)no(l) n;g’l) of phytase activity is the amount of phytase required to hydrolyze sodium phytate to produce 1 gmol P per min at 37
°C and pH 5.5.°°**°* ®*One EU corresponds to the amount of enzyme required to hydrolyze 1 ymol of p-nitrophenyl phosphate s™! at pH 5.4, 35

0 194 “Phytin: Ca/Mg-phytate salts.

phytate and 30—56% more P in the roots, likely due to
phytase-mediated hydrolysis of phytate within the roots.*
However, PvPHY] expressed into tobacco plants fails to use
phytate in the media, which is probably due to its inability to
exude root phytase into the growth media. In comparison,
PvPHY1 in P. vittata roots can help to use extracellular phytate
in the media. In short, P. vittata can grow on media with
phytate as the sole source of P likely because it can exude
phytase into the media to hydrolyze phytate for its uptake.
Though root extracellular phytase can help plants to obtain
P from phytase-hydrolyzable phytate under sterile media,'”
phytase shows limited ability in soils.'"®* This is because both
phytase and phytate are readily sorbed by soils, with phytase
activity being reduced by 95%.'*"'*° This is consistent with
wheat and pasture species growing in soils, which can use P
from readily-hydrolyzable monoester (glucose-6-phosphate)
and diester (ribonucleic acid) P, substrates, but show limited
capacity to acquire P from phytate (227—238 vs 74 ug P

9207

shoot™)."” This is especially true in soils with high OM
content and/or a history of P fertilizer applications.''

Microbial Phytase. Both plant roots and microbes possess
phytase activity. However, the accumulation of phytate in soils
indicates that phytate is resistant to mineralization compared
to other P, such as glucose 1-phosphate, nucleic acids, and
phospholipids."® Phytate hydrolysis and subsequent plant P
uptake have been assessed based on the depletion of phytase-
hydrolyzable phytate in the rhizosphere.'”® However, there are
conflicting results regarding the ability and relative contribu-
tion of root- and microbe-derived extracellular phytases to
hydrolyze phytate in soils.'*”'%"

For example, soil microbial phytase shows a greater ability to
hydrolyze phytate than those from plant roots, i.e., 41.8—43.5
EU X 10" mL™" filtrate for Aspergillus niger (A. terreus and A.
rugulosus) vs 0.65—0.69 EU X 10" mL™" filtrate for Sorghum
bicolor (cowpea and mung bean) (Table 4B).'” In addition, it
is speculated that significant extracellular phytase activity from

https://doi.org/10.1021/acs.est.2c00099
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plants is rare, and soil phytase activity is mainly attributed to
microbes. However, Belinque et al.''’ show that phytate-P
acquisition by several plants is not improved with microbial
inoculation, rather it is improved by plant-derived phytase.
Besides, plant-derived phytase hydrolyzes phytate at a high
rate, making acquisition of phytate-P similar to P,.''" This
result is consistent with Tarafdar and Claassen,""' suggesting
that root phytase activity may be sufficient to hydrolyze
phytate in the rhizosphere. On the other hand, microbial
phytase may be important for microbial P turnover in soil.

The role of soil phytase in phytate hydrolysis was reviewed
by Quiquampoix and Mousain,'"> but the role of microbes in
phytate-P acquisition by plants is not well understood. The
close relation between phytase activity in the rhizosphere and
P acquisition by plants does not address the question whether
the enzyme comes from plants or microbes.'’ Interestingly,
recent research demonstrates that arbuscular mycorrhizal fungi
show less ability to produce phytases than saprophytic fungi,
but they compensate for this by recruiting hyphosphere
bacteria that are able to produce phytase."'” In fact, in some
circumstances, these bacteria migrate to phytate hotspots along
the fungal hyphae.''* As such, the contribution of plant and
microbial phytase in improving plant phytate-P acquisition
needs further elucidation, especially in different soils.

Besides, phytase activity toward phytate is determined by
both soil properties and microbial populations.'” For example,
in two soils with comparable pools of phytase-hydrolyzable
phytate (12.5—17.0 mg P kg™'), transgenic subterranean clover
expressing phytase depletes ~80% of phytate in a Spodosol soil
with low ability for P retention, whereas only a small amount of
phytate is depleted from an Alfisol with a greater P sorption
capacity.'”” In addition, the fact that phytate depletion in soils
is similar for all plants (control and transgenic) and unplanted
controls indicates that the ability of a plant to obtain phytate-P
is independent of plant species. Further, depending on soil
type, it is more likely a function of microbial activity.”
Nevertheless, this study highlights the potential contribution of
phytate to plant P nutrition and the importance of microbial
activity.

3.3. The Limiting Steps. Being the most abundant but
also the most recalcitrant P, in soils, phytate has the potential
to contribute to plant P nutrition. Two hypotheses have been
proposed regarding the limited acquisition of phytate-P by
plants: 1) limited solubility of phytate due to its strong binding
in soils and 2) low activity of phytase in soils makes phytate-P
unavailable to plant roots.>** As such, both phytate solubility
and phytase activity are the limiting steps in plant acquisition
of phytate-P.

It is generally known that soil phytate is relatively
unavailable to plants, but findings are often inconsistent. In
sand culture, Adams and Pate'"> show that both white lupin
and narrow leaf lupin take up P; and phytate-P at a similar rate,
indicating little phytate sorption by sand and little limitation of
P acquisition by a low phytase activity. Further, Lessl et al.*’
show that phytase from As-hyperaccumulator P. vittata roots
can retain 93—98% of activity after being mixed with soils for a
day, thereby helping phytate hydrolysis in the media and P
utilization by P. vittata. Soil phytase is mostly effective in sand
with low concentrations of organic matter, low microbial
growth, and/or low sorption capacity.''> The results agree
with Tarafdar and ]ungk116 and Lung and Lim,'*® but are in
contrast to Hayes et al.'® and George et al.""’
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In P-fixing soil, both transgenic and nontransgenic lupin
plants take up less phytate-P than P,** although phytate
application increases plant P uptake. The results suggest that,
in both plants, phytate-P acquisition is limited by phytate
sorption onto soils, not phytase activity. Tarafdar and
Claassen''” and Lung and Lim'%" also conclude that phytate
solubility is the limiting step in phytate-P acquisition by plants.

However, others show that phytase activity is the limiting
step for phytate-P acquisition by plants.*>'"® Richardson et
al."” find that wheat grown under sterile conditions with
soluble phytate but not phytase activity is unable to use
phytate as a P source. Similar results were reported for grasses
and clovers."'® Therefore, low plant phytase activity is a critical
factor limiting phytate-P use under sterile conditions. On the
other hand, some studies demonstrate phytate-P use by plants
under nonsterile conditions, which may be attributed to
microbial phytase in the rhizosphere.''” This hypothesis is
supported by increased plant P acquisition via microbial
inoculation and microbial enzyme addition.'®"*”"*! The
results suggest that phytase activity on the root surface is the
limiting step in phytate-P acquisition by plants, but this is only
demonstrated in low-sorption capacity media such as
agar.'’”'?* Besides, the experiments fail to show the
mechanism of how soil extracellular phytase improves
phytate-P nutrition for plants.

As such, there is no agreement regarding the limiting step in
phytate-P acquisition by plants. The possible reasons for the
conflicting results may be due to the following: 1) phytate is
often complexed with multivalent metals with low availability,
whereas most experiments use sodium phytate with high
availability; 2) variations among plant species with inherent
phytase activity and therefore the ability to use phytate-P; 3)
variations in the strength of phytate sorption in different soils,
so that even plants with extracellular phytase cannot use
phytate in all soils; and 4) substrates contain substances that
may detach metals from phytate-metal complexes.

4. STRATEGIES TO IMPROVE PHYTATE-P
ACQUISITION BY PLANTS

Factors affecting phytate availability, phytase activity, and
phytate—phytase interaction determine the acquisition of
phytate-P by plants. There are three main ways to help plants
acquire phytate-P: 1) accelerating solution P depletion by plant
uptake to increase phytate desorption from the rhizosphere; 2)
improving phytate solubilization into the soil solution to
increase its availability to phytase; and 3) increasing phytase
activity to enhance phytate hydrolysis in the soil solution.

Plants can adapt to soils with limited available P via
changing root features by forming longer root hairs and large
roots, both increasing root surface area. This may be feasible
only when soil solution P is not too low (>1—2 uM).** If soil
solution P is too low, the diffusive flux of P to the root surface
can not satisfy the P demand by plants. Under these
conditions, plants and the associated microbes have developed
strategies to increase rhizosphere P by secreting exudates
(organic acids) and hydrolyzing enzymes (phytase).

4.1. Plant and Microbial Traits. Plant Genotypes.
Organic acids and phytases exuded by plant roots vary across
and within different species, which helps to select §enones to
improve phytate solubilization and hydrolysis.”*"*"**

The most effective organic acids to solubilize phytate include
those containing carboxylate groups, especially citrate and to a
lesser extent oxalate,”* which can exude 25—187 and 26—210
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pmol g~' root dw (Table 3A). There is genetic variation across
different plant species and intraspecific variation among
different cultivars of a plant species. For example, white
lupin from acidic and alkaline soils exhibits different root
exudation and capacity to access Ca-phytate.”> The composi-
tion and concentration of root exudates also vary among
chickpea cultivars, with their concentrations in lateral roots
increasing with plant growth.”'>* Likewise, different abilities
in plant root exudation are identified in pigeon pea cultivars.'**
In addition, cluster roots can help plants to efficiently uptake P
by releasing organic acids. In a conventional single root, ~80—
90% of its soluble P diffuses away, while the cluster roots can
take up most of that soluble P.**

Phytases from different origins have different physicochem-
ical and biochemical properties, which affect their mobility and
ability to hydrolyze phytate in soils. Studies show the activities
of extracellular phytase vary in different plants. For example,
tobacco exudes phytase of the purple-acid-phosphatase class,
which is responsible for Na-phytate utilization. The phytase
shows a high affinity for Na-phytate (K, = 14.7 uM) with
specific activity at 6.03 ykat mg™' and a V,,, value at 7.2 pkat
mg~.'** George et al.'""* screened a range of wheat lines and
identified considerable variation in extracellular phytase
exudation among genotypes. Though relationships exist
between root-exuded phytase activities and the ability to
utilize phytate substrate in vitro, no clear relationships are
demonstrated between extracellular phytase activities with P
nutrition or plant growth when grown in soils.*

The data suggest that the variability in phytase activities
among plants either has little effect on P nutrition of soil-
grown plants or that the basal levels of phytase activities among
plants are similar in their ability to hydrolyze phytate.
However, it is more likely that the differences in plant-exuded
phytase are masked by a much greater contribution of
microbial-derived phytase.'”> Clarifying the capacity and
condition of effective root exudation of organic acids and/or
phytase benefits crop growth by increasing phytate solubiliza-
tion.

Microbial Species. Root inoculation with microbes that
produce organic acids helps to improve phytate solubility,
thereby enhancing phytate-P acquisition by plants. Specifically,
evidence shows that the symbioses of red clover -with
arbuscular mycorrhizal fungi (AMF; Glomus versiforme)
increase P solubilization in soils compared with nonmycor-
rhizal control plants, with AMF contributing 55—64% to shoot
P uptake."”” The data indicate that AMF hyphae play a main
role in increasing soil P similar to the roots,*® and it is critical
to recruit phytate-solubilizing microbes to allow access to
phytase in soils.'*”

Microbes that can secrete phytase have been identified via
screening studies based on their abilities in utilizing phytate,
homologue sequences, and protein databases.” The method-
ologies for screening phytase-producing microbes have been
reviewed by Hill and Richardson,*° which include both
phytase positive and negative individuals. The methods for
screening phytase-producing microbes (medium with phytate
as the sole P source) in some cases select microbes that can
solubilize (via organic acids) and/or hydrolyze (via phytase)
phytate. The ability of isolated microbes in improving phytate
availability has been identified. In one case, 39% Pseudomonas
are negative for phytate utilization, but they become positive
after citrate addition to the medium, suggesting these isolates
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can produce phytase to hydrolyze phytate, but their ability is
hindered by limited phytate availability in soils."*°

To improve phytate solubility, plant inoculants, e.g.,
Pseudomonas spp.,””" Citrobacter sp., > and Pantoea sp.'””
that can secrete organic acids into the rhizosphere have been
found. For example, in vitro experiments show that Ca-phytate
hydrolysis by phytase is improved in the presence of microbial
organic acids, due to either Ca’>"-mediated phytase activation
or solubilization via divalent metal chelation.”””** To increase
phytate hydrolysis, plants are often inoculated with phytase-
producing microbes. For example, pasture plants inoculated
with phytase-producing Pseudomonas spp. increase their shoot
P by 3.9-fold over control plants.'** Recombinant Pseudomonas
fluorescens CHAO and P. putida KT2440 that overexpressed
Citrobacter braakii appA (HAP-like phytase) improve phytate-
P utilization of mung beans by 1.2—1.5-fold."*’

Microbial phytases from different microbes are different in
activity but are more abundant and with higher activities than
plant phytases."** However, microbial phytase activity in soils
has not been clearly linked to P nutrition. This is because
microbes tend to secrete intracellular phytases, which do not
play a role in extracellular phytate hydrolysis, instead being
more related to cell metabolic functions. Despite this, phytase
activity is often interpreted as an expression of microbial
community metabolic requirements under P deficiency.'*
Besides, independent of the methodology, the environmental
conditions and colony structure also affect the microbial ability
to solubilize and hydrolyze phytate. For example, bioaggregates
of microbes can improve P release from Al-phytate
precipitates.136

At present, the understanding of the role of microbes in
phytate solubilization and hydrolysis, and plant P nutrition is
complex and incomprehensive.''” Nevertheless, due to the
large amount of phytate in soil and its potential contribution to
plant P nutrition,”” much research shows AMF’s roles in
improving soil phytate solubility. Specifically, they change the
bacterial community structure and enhance phytate mineral-
ization by carrying bacteria along their extraradical hy-
phae."" "™ As such, biotechnologies using AMF’s phytase
enzymes to increase phytate bioavailability are desirable.

Plant Intercropping. Certain plants can be used in
agriculture via intercropping to increase phytate availability
by optimizing plants’ contribution in modifying the soil P
cycle. Their interactions in the rhizosphere are evident when
plants with roots exuding phytase are intercropped with plants
whose roots exude organic acids."*” The benefit is greater with
intimate interaction between phytase and organic acids when
the roots are intermingled. For example, wheat when
intercropped with white lupin shows improved phytate-P
uptake and growth compared with a wheat monoculture,
attributing to the ability of wheat roots to acquire more
phytate-P, which is freed up by citrate from white lupin cluster
roots."** Similarly, positive effects are apparent when wheat is
intercropped with chickpea or pigeon pea is intercropped with
rice or sorghum."*”

Changes in Plant Root Traits. Several key morphological
and physiological traits associated with P-uptake efficiency
have been identified. In addition to plant and microbe
strategies, agronomic practices can also improve phytate-P
acquisition via facilitating root growth, enabling greater access
to soil phytate, and ameliorating soil acidity and subsoil
compaction. For example, breeding desirable root traits
including rapid root growth, extensive root branching, and
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long dense root hairs are feasible by identifying specific
genes.'

Though it is known that these morphological features can
increase phytate availability in soils, there are few successful
attempts to increase the efficiency of phytate-P use by crops.'*®
This is largely due to the complexity of plant P-acquisition
mechanisms and their responses to different environments.
Further, the difficulty in identifying and selecting specific root
traits in plant populations to increase P uptake, and
compensatory effects of alternative mechanisms for a given
environment make it difficult to implement."*’

Despite these difficulties, it is possible to select enhanced
specific P-acquisition processes such as selecting organic acids
and/or phytase-producing genotypes to increase phytate
utilization by plants or developing more phytate-efficient
plants by manipulating desired traits through molecular
biotechnologies.

4.2. Soil Management. Besides plant and microbial
factors, phytate mobilization and mineralization are influenced
by soil conditions, including pH, temperature, redox state,
moisture, nutrients, and vegetation type.'*' Generally,
mobilization is increased under anaerobic conditions and
reduced with increasing labile P; and organic C.'*’
Mineralization is positively correlated with pH and temper-
ature,"**"** while its responses to the redox state and moisture
are conflicted.'*

Phytase shows the highest activity at optima pH, which
ranges from 2.2 in yeast (Pichia farinosa) to 5.6 in Rhizopus
oligosporus and 7.5 in Bacillus subtilis and mung bean (Table
4A).""? However, pH optima can be changed within 1—2 units
when phytase enters into soils. This is because at high pH,
electrostatic interactions between the negatively-charged
phytase and clay are repulsive. This prevents phytase
adsorption, so it is free to diffuse into the soil solution and
performs better activity.''” Phytate mineralization is also
affected by soil pH."**'*® In 50 different British soils, phytate
mineralization rates increase with soil pH from 3.9 to 7.1.'*
However, phytate mineralization only increases significantly as
soil pH is at 6.5 compared to 5.0—6.0."* Moreover, phytate
mineralization increases with exchangeable Ca concentration,
indicating that soils developed from limestone parent material
favor mineralization.'* This can be attributed to the fact that
Ca improves soil structure through aggregation and promotes
microbial activity."**

Temperature affects phytate mineralization by influencing
microbial growth and phytase activity.'** Phytase activity peaks
at 45—57 °C for Bacillus subtilis, while it decreases considerably
at 80 °C and stops at 90 °C. Particularly, Aspergillus fumigatus
and A. niger phytase are denatured at SO °C (Table 4A,
4B)."">'* However, phytase from As-hyperaccumulator P.
vittata shows activity after being heated at 100 °C for 10 min,
indicating its extreme heat-tolerance.”” Normally, phytate
mobilization and mineralization increase at temperature > 30
°C. Therefore, tropical forest soils with consistent temperature
show greater mineralization than temperate forest, where
phytate concentration tends to increase in winter and decrease
in spring.1

The role of the redox state in phytate mineralization is
complex, so the findings are inconsistent. Mineralization can
occur under both aerobic and anaerobic conditions.'** For
example, Dick and Tabatabai'*’ found greater mineralization
under aerobic conditions, while Brannon and Sommers'*
reported higher mineralization under anaerobic conditions.
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The soil redox state affects phytate mineralization via affecting
microbial populations, which are active in producing phytase.

Moisture is essential for phytase production and microbe
survival. Phytase activity is positively correlated with soil
moisture, and optimal hydrolysis of phytate is observed at
100% saturation.'*”"*° For example, phytate mineralization is
increased more during the wet season than the dry season; this
is because moisture and nutrients stimulate microbial growth
and their access to phy‘cate.151 Nevertheless, the correlation
between flooding and mineralization is complex, so the
significance of moisture in phytate mineralization remains
uncertain.'**

In short, many factors affect phytate mobilization and
mineralization in soils. They are inter-related, making the
outcome difficult to predict.

4.3. Genetic Engineering. Genetic engineering can be
used for plants producing limited organic acids or extracellular
phytases. Plants including subterranean clover, potato, A.
thaliana, and tobacco-expressed microbial ph?rtases can release
extracellular phytase to utilize phytate-P.'*”"*""5!5% For
example, the transgenic expression of Medicago truncatula
phytase gene (MtPHY1) in A. thaliana increases its root
phytase activity by 12—16 fold, thereby increasing phytate-P
acquisition and plant growth by 4.1-5.5 and 3.1-4.0 fold,
respectively.'>’ Besides, the secreted phytase and the
associated gene have been characterized in the proteoid
roots of white lupin.'**

In addition to microbial phytases, plant phytase has been
expressed in plants with limited phytase secretion. For
example, expressing genes encoding extracellular phytase
from Indian mustard into A. thaliana improves its phytase
expression and secretion from lateral roots.'”> However,
tobacco after expressing P. vittata phytase PvPHY1 shows
different results. Though tobacco P accumulation is increased
by 10—50% and its growth is enhanced by 3.5—-3.9 g plant™},
tobacco plants fail to use phytate in the media.”> The data
indicate that, though phytase is probably exuded into growth
media by P. vittata, thereby enabling its growth with phytate-
P,”” tobacco expressing PyPHY] fails to exude phytase into the
media.”> More research is needed to understand the
controlling factors to make PvPHYI extracellular phytase.

Transgenic plants with extracellular phytase can hydrolyze
phytate to enhance plant P nutrition and better growth under
P-deprived conditions (Table §3)#15%15¢ and sand or sterile
media.””"?”"*! For these experiments, plants are often grown
in agar media using Na-phytate as a P source. For example,
tobacco plants expressing A. niger phytase (phyA; ex::phyA)
show increased extracellular phytase activity and accumulate
3.7-fold more phytate-P than control plants grown in sterile
agar."”’ Moreover, the expressed phytase in tobacco from B.
subtilis phytase (168phyA) has a higher K, than the native
enzyme, maintaining unchanged thermostability and catalytic
activity at 2.3 U mg_1 protein (0.038 pkat mg_l) in agar.158

However, compared to phytate in soils, which often binds to
multivalent metals, Na-phytate is much more soluble, so the
above results may not apply to soils. As such, when grown in
soils, transgenic plants often show limited ability to access
phytate-P. For example, the phytate-P utilization of transgenic
tobacco overexpressing A. niger phytase _(;JhyA) in soil
conditions is similar to wild-type plants.'*>">” Even in soils
with greater phytase-hydrolyzable phytate and greater extrac-
ellular phytase activity, subterranean clover does not show
significant advantages in P nutrition and plant growth.”
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Further, tobacco grown in sand at pH 6 accumulates more P
when supflemented with Mg-phytate than less-soluble Ca-
phytate,'"”® indicating the importance of phytate solubility
during phytase hydrolysis. Therefore, although extracellular
secretion of phytase is increased, poor availability of the
phytate substrate due to its sorption by soil still constrains its
activity in soils.

5. CONCLUSIONS AND RECOMMENDATIONS FOR
FUTURE RESEARCH

Phosphorus is an essential nutrient for plant growth, and its
management in soil is critical to ensure sustainable agriculture
while protecting the environment." Although soils often
contain a large amount of P, only a small proportion is
available to plants. For many soils, the use of P fertilizer and
manure results in considerable P, accumulation, especially in
the form of phytate, which is relatively unavailable to plants.
This review summarizes the following: 1) the origin,
abundance, forms, solubility, and availability of phytate in
soils; 2) limiting steps for phytate-P utilization by plants; and
3) strategies to improve phytate-P utilization by plants. The
strategies include native traits to enhance the ability of plants
and microbes to secrete organic acids and/or phytase. This can
be achieved by selecting specific plant genotype or microbe
species, plant intercropping, and genetic engineering. Genetic
engineering can develop plants with increased phytase
extracellular secretion by expressing microbial or plant phytase
genes. Further, information regarding the limiting steps in
phytate-P plant utilization, roles of OM-associated phytate,
AMF, and manure phytase, and issues during practical
application remains poorly understood and needs further
study.

5.1. Limiting Steps in Phytate-P Acquisition by
Plants. It is unclear whether soil phytate availability and/or
phytase activity is the limiting step for phytate hydrolysis and
its plant utilization, so efforts to understand the associated
mechanisms are needed.

In terms of phytate availability, besides phytase-hydrolyzable
phytate, there are other types of phytate in soils. Research
shows that phytase-hydrolyzable phytate is not correlated with
the growth or P acquisition of subterranean clover after
expressing A. niger phytase phyA.'®”'** The limited P
acquisition by plants in the presence of phytase indicates
that water-soluble phytate not phytase-hydrolyzable phytate
may be the phytate pool available to plants. However, water-
soluble phytate is a smaller portion of phytase-hydrolyzable
phytate in soils (0.7—1.9 vs 42.3—83.3 mg P kg™") (Table 1A)
and animal manures (417 vs 708—1629 mg P kg™') (Table
S1B).°>"? As such, more attention should be paid to plant
available phytate to clarify what constrains its access to
phytase, thereby limiting its plant utilization. Besides, studies
on extraction methods for available phytate and its
predictability for plant-availability are needed.

In terms of phytase activity, besides increasing native
phytase activity and genetic modification to increased phytase
expression and extracellular secretion, the efficiency and
performance of phytase once entering soils need more
attention. Research shows that, with increased native phytase
activity and transgenic-expressing extracellular phytase, soil
phytate-P utilization is still limited,”> suggesting reduced
phytase activity in soils. Therefore, phytase catalytic adaptation
to environmental conditions (e.g, soil texture, pH, temper-
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ature, and metal cations) to reduce inactivation, and the
associated mechanisms need further investigations.

5.2. Further Efforts and Practical Issues. OM-
Associated Phytate. Similar to orthophosphate, phytate
binds not only to soil minerals but also to OM via Fe/Al
bridges. As such, OM-metal-phytate complexes may be
transported to the rhizosphere for hydrolysis and P uptake
by plants."” However, experimental data on P availability of
OM-associated phytate are old, so there is limited information
on the interaction between phytate and OM.”*”®> More
recently, Celi and Barberis'® proposed hydrogen and covalent
bonding as the mechanism, but this has not been tested.

Phytate Utilization in Manures. Given the worldwide
scarcity in phosphate rock, a raw material for producing P
fertilizer, it is necessary to utilize phytate in animal manures.
During the production of animal feeds, phytase is added to
facilitate phytate utilization. Since animal feeds are often rich in
phytate, even with added phytase, manures with high phytate
enter soils as amendments. As such, approaches to enhance the
agronomic use of manure-derived phytate are needed. This
way, manure phytate can be hydrolyzed to P before being
applied to soil where it becomes poorly available. Another
method is to increase phytate availability to plants. Coupling
phytate reduction in manure and phytate uptake by plants
helps to reduce P runoff and contamination of waters.

Plant and Microbial Processes. The organic acids and
phytase in the rhizosphere arise from both plant roots and
microbes, but their relative importance in contributing P
acquisition is unclear.'®” Phytate utilization by plants is often
based on experiments using sterile media, with results using
nonsterile media being variable.”'® The continued discovery of
widespread phytate-utilizing microbes and phytase-releasing
plants may help to use recalcitrant phytate in soils.””* Thus,
contributions of phytase from plants and microbes and their
efficiency in different environments need further research.

In addition, soil microbes are an integral component of the
soil P cycle, so they play important roles in phytate
transformation and hydrolysis. Still, the relative importance
of microbial processes to use phytate and the interaction of
different microbes (e.g., AMF and bacteria) with plant roots in
facilitating phytate-P utilization need further elucidation.

Practical Application. From an application perspective,
there are issues and challenges regarding these agronomic,
plant, microbe, and molecular strategies to effectively utilize
soil phytate.

For phytate solubilization mediated by organic acids, the
challenge is whether it can be exploited to better intercept
soluble phytate in competition with its fixation in soils. For
phytase-mediated hydrolysis, when soils are limed to elevated
pH, the benefit of phytase exudation may be reduced due to
decreased phytase activity under alkaline conditions (optima at
pH 2.5 and 5.0) and phytate precipitation with metal cations
such as Ca and Mg. Besides, phytate and phytase are readily
sorbed by soils, so the relationship between the concentrations
of organic acids and activities of phytase with the amount of
phytate-P that can be taken up by plants needs to be
established. In this case, correlation indexes based on soil
parameters, organic acid-dependent solubilization, phytase-
dependent hydrolysis, and plant availability of different
phytates can be incorporated into mathematical models to
better evaluate phytate utilization potential by plants.

For agronomic practices to improve plant phytate-P
acquisition, whether these options are practical for different
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agricultural systems remains to be determined. For genetic
modification, transgenic plants need to be evaluated for their
ability to access insoluble phytate in soils, which is often
associated with metals and/or OM.

In short, plant- and microbe-based approaches have the
potential to increase phytate-P utilization by plants. This is
particularly relevant for organic farming where the use of
soluble-P fertilizers is restricted by industry rules. Therefore,
more research is needed for effective phytate-P acquisition by
plants via developing plants that can secrete organic acids and/
or synthesize phytase, which resist sorption to soils or retain
activity when sorbed onto soils.
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