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ABSTRACT: The use of ion mobility separation (IMS) in
conjunction with high-resolution mass spectrometry has proved
to be a reliable and useful technique for the characterization of
small molecules from plastic products. Collision cross-section
(CCS) values derived from IMS can be used as a structural
descriptor to aid compound identification. One limitation of the
application of IMS to the identification of chemicals from plastics is
the lack of published empirical CCS values. As such, machine
learning techniques can provide an alternative approach by
generating predicted CCS values. Herein, experimental CCS values
for over a thousand chemicals associated with plastics were
collected from the literature and used to develop an accurate CCS
prediction model for extractables and leachables from plastic
products. The effect of different molecular descriptors and machine learning algorithms on the model performance were assessed. A
support vector machine (SVM) model, based on Chemistry Development Kit (CDK) descriptors, provided the most accurate
prediction with 93.3% of CCS values for [M + H]+ adducts and 95.0% of CCS values for [M + Na]+ adducts in testing sets predicted
with <5% error. Median relative errors for the CCS values of the [M + H]+ and [M + Na]+ adducts were 1.42 and 1.76%,
respectively. Subsequently, CCS values for the compounds in the Chemicals associated with Plastic Packaging Database and the
Food Contact Chemicals Database were predicted using the SVM model developed herein. These values were integrated in our
structural elucidation workflow and applied to the identification of plastic-related chemicals in river water. False positives were
reduced, and the identification confidence level was improved by the incorporation of predicted CCS values in the suspect screening
workflow.
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1. INTRODUCTION

Plastics play an important role in our daily life as they are used
in a variety of materials, including packaging, building and
construction materials, transportation, and electrical and
electronic components.1 It has been reported that up to
2015, approximate 6300 million metric tons of plastic waste
was generated of which only 9% was recycled. The remaining
plastic waste was either incinerated, accumulated in landfills, or
disposed of in natural environments.2 The impact of plastic
waste on the environment and, subsequently, human health is
of great concern due to the release of microplastics3−5 and low-
molecular-weight (MW) chemicals.6−9 During the production
of plastics, a variety of additives are incorporated into the
polymeric formulations to enhance favorable characteristics
and extend service life. Commonly used additives include
plasticizers, flame retardants, lubricants, antioxidants, and UV
stabilizers.7 Such additives have been detected in indoor
dust,10,11 airborne particulate matters,12−14 waste water,15

soils,16 and rivers and oceans.17−19 Plastic products have

become an important source of contaminants in aquatic and
terrestrial environments.
In addition to the known substances included during the

production of plastic materials, non-intentionally added
substances (NIASs) can also occur. Typical NIAS include
impurities, oligomers, and degradation products of material
components,20 For example, organophosphate esters can result
from the oxidation of organophosphite antioxidants in plastics
and have been detected in indoor dust.21,22 If plastic products
are made from recycled plastics, NIAS can also include
contaminants resulting from the previous use of the material or
from the recycling process itself.23 In recent years, the presence
of perfluoroalkyl substances in plastic products has also
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attracted the attention of food safety and environmental
authorities.24−26

The complete structural elucidation of extractables and
leachables from plastics is a challenging process due to the
complexity of the matrix. In recent years, ion mobility
separation (IMS) coupled to high-resolution mass spectrom-
etry (HRMS) has emerged as a promising tool for analyzing
complex samples.27−31 IMS can separate molecules based on
their shape, size, and charge.32 Collision cross-section (CCS),
derived from IMS, is a physicochemical property of ions and is
related to the chemical structure and three-dimensional
conformation of the molecules.32 In addition, since CCS
measurements are independent from chromatographic and
mass spectrometric conditions, as well as the sample matrix,33

they can be used as an additional molecular identifier to
increase the specificity and identification confidence. Celma et
al.34 showed that CCS of imazalil was not affected by the
sample matrix, whereas the retention time (RT) deviations
ranged from 0.14 to 0.30 min; the consistent CCS values
provided an extra point for unknown identification. In
addition, incorporation the CCS values into the annotation
process can help reduce false positive identifications35 and
enable structural isomers to be separated and identified.36,37

Experimental CCS values of reference standards are often
measured in order to confirm compound identification by
comparing them to CCS values of candidate compounds in
qualitative analyses. Although public CCS databases of
pesticides,38,39 drugs,40 steroids,41 mycotoxins,42 and chemicals
in plastic food packaging43 have been established, there remain
many compounds that are not included in such libraries. As a
matter of fact, many experimental CCS values of chemicals in
plastics are not available due to the unavailability or high price
of commercial standards. In this case, theoretical CCS values
can be alternatives to be used for suspect and untargeted
screening analysis. Several public CCS machine learning
prediction tools have appeared in recent years, such as
MetCCS,44 AllCCS,35 CCSondemand,45 CCSbase,46 and
DeepCCS.47 Some laboratories have also developed their
own CCS prediction tools for specific classes of compounds,
such as pesticides,38 phenolics,48 and drugs.49 Many CCS
values, belonging to different chemical classes, can provide a
high structural diversity, and as such, the developed model can
provide satisfactory prediction results for diverse chemical
classes. At the time of writing, there are 3539, 7325, 7405, and
2439 CCS values in the data sets used by AllCCS,
CCSondemand, CCSbase, and DeepCCS, respectively.
In a previous study,43 635 CCS values derived from 488

standards associated with plastic packaging were used to
develop a support vector machine (SVM) model to predict
CCS values. The CCS values of 92.6% of protonated molecules
were predicted with an error of less than 5%. The CCS values
of some halogenated compounds were inaccurately predicted
due to the lack of halogenated compounds in the training set.
Consequently, in this study, additional experimental CCS
values of molecules related to plastics have been collected from
the literature, with the aim of achieving more accurate CCS
prediction for chemicals found in plastics. The effect of
different molecular descriptors (MDs) and algorithms on the
accuracy of the CCS prediction were also explored. Following
optimization and external validation, the model was used to
predict CCS values of molecules in two plastic-related
databases: the Chemicals associated with Plastic Packaging
Database (CPPdb)50 and the Food Contact Chemicals

Database (FCCdb).51 FCCdb also contains many plastic-
related chemicals since approximately 37% of food contact
materials (FCMs) are made from plastics.52 The two databases
were subsequently converted into screening libraries, contain-
ing the predicted CCS values, and used for the suspect
screening of plastic-related chemicals in river water.

2. MATERIALS AND METHODS

2.1. CCS Data Collection and Processing. A total of
2145 experimental traveling wave CCS (TWCCSN2) and drift
tube CCS (DTCCSN2) values were collected from seven recent
publications,27,29,38,39,43,53,54 of which 1425 and 720 CCS
values were for [M + H]+ and [M + Na]+ ions, respectively
(Table S1). The CCS values in the publication of Song and co-
workers43 were experimentally measured by injecting standards
of chemicals associated with plastic food packaging. Four of the
publications29,38,39,53 include CCS values mainly for pesticides
and pharmaceuticals found in environmental studies. The CCS
values in these four databases were used in this study because
pesticides are an important type of NIAS in plastic materials,
especially those made from the recycled plastics.55 Addition-
ally, many pesticides contain halogens in their structure, as
such, the predictions of CCS values for halogenated
compounds will be more accurate by including the pesticides
in the CCS data set. The last two publications27,54 mainly
contain CCS values for organophosphorus flame retardants,
compounds with a phosphate structure, which are common
additives used in plastic materials. Since only three organo-
phosphorus flame retardants were included in the previous self-
built CCS database,43 the addition of the CCS values from
these two publications significantly expanded the chemical
diversity of the current study.
CCS values for some compounds appeared in more than one

publication. In such cases, the CCS data were rationalized as
follows:

(1) Chemical information retrieval: information including
the compound identifier (CID), monoisotopic mass,
molecular formula, canonical SMILES, and InChIKey of
each CCS record was retrieved from PubChem using the
R package webchem.56

(2) Calculation of median CCS values for duplicated
records: in the cases where different names were used
for the same compound in the different publications, the
InChIKey was used as a unique identifier. The median
and relative standard deviation (RSD) of multiple CCS
values were calculated, and the median CCS values were
used in the model.

A total of 1721 CCS values were retained after the
consolidation of duplicate records, which included 1076 CCS
values for [M + H]+ ions and 645 CCS values for [M + Na]+

ions. In consolidated data, the CCS values of 248 [M + H]+

ions (23.0%) and 72 [M + Na]+ ions (11.2%) were median
values of multiple CCS records. The CCS data set ration-
alization was performed using the R package tidyverse,57 and
the chemical class of each compound contributing to the
model was obtained from ClassyFire.58

2.2. Calculation and Selection of Molecular Descrip-
tors. MDs play a crucial role in the prediction of CCS values.
In this work, three types of MDs were calculated using
OCHEM59 and ChemDes.60 More information about MDs is
shown in Supporting Information.
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Descriptors that have a constant value or very few unique
values relative to the number of samples have variance values
equal or close to zero. Such descriptors contain little
information and were considered less important for the
model and excluded from the data set. Correlation coefficients
(r) between individual MDs and CCS were subsequently
calculated, and only the MDs for which r > 0.6 were retained.
The remaining descriptors were auto-scaled to normalize the
effect of the magnitude. The alvaDesc MDs were further
rationalized by considering Extreme Gradient Boosting
(XGBoost) importance. In XGBoost, the contribution of
each variable to the model is calculated with respect to the
number of times the variable is selected for splitting, weighted
by the squared improvement to the model as a result of each
split. The variable importance is then averaged across all the
decision trees within the model.61 In this study, the alvaDesc
MDs accounting for 99 and 95% of the total XGBoost
importance were retained.
2.3. Development of the CCS Prediction Model. For

both [M + H]+ and [M + Na]+ ions, the data were randomly
divided into training and testing sets in the ratio of 7:3. The
training set was used for the calibration and optimization of the
model, and the testing set was used for the external validation.
The comparison of CCS prediction accuracy between various
models (models developed with different algorithms and MDs
in this study as well as public CCS prediction tools) was based
on the testing set data. The R code for model building was
provided in GitHub (https://github.com/songxuechao/
plasticCCS).
In addition to the CCS data and descriptors, the machine

learning algorithm employed was another important factor,
affecting the predictive performance of the model. In this
study, two algorithms that are often used for CCS prediction
were compared: XGBoost and SVM. XGBoost is an optimized
distributed gradient boosting library designed to be highly
efficient and flexible62 and was used to develop CCSonde-
mand.45 The XGBoost model tuning consisted of 576
combinations of five important model parameters: eta (0.01,
0.05, 0.1, 0.3), max_depth (3, 5, 7), min_child_weight (1, 3,
5), subsample (0.6, 0.7, 0.8, 0.9), and colsample_bytree (0.6,
0.7, 0.8, 0.9). All combinations were evaluated using the
training data set by a 10-fold cross validation. The optimal
value of the nrounds parameter which controls the maximum
number of iterations was returned using the minimized root-
mean-square error of cross validation (RMSECV). Finally, the
XGBoost model was built using the training data set with the
optimized combination of parameters using the R package
xgboost. The importance of MDs in the model was also
calculated.
SVM is also a commonly used machine learning algorithm

and has previously been used for the prediction of CCS
values.44,63 In this study, SVM with the radial basis function
kernel was used to build the model. Two important
hyperparameters were optimized in order to get accurate
predictions: cost of constraints violation (C) and gamma (γ).
The C parameter trades off the predictive performance of the
training set against the model’s margin, while the γ parameter
defines how far the influence of a single training example
reaches. Eight groups of C values (0.001, 0.005, 0.01, 0.025,
0.05, 0.1, 0.25, 0.5)/NMD (i.e. number of MDs) and nine γ
values (20 to 28) formed 72 parameter combinations, which
were then evaluated using 10-fold cross validation on the
training set. The parameter combination providing the

minimum RMSECV was used in the SVM model using the
R package e1071.
The performance of the models was assessed by comparing

the following parameters: the coefficient of determination of
the prediction (Rp

2), the root-mean-square error of the
prediction (RMSEP), the median relative error (MRE), and
the percentage of molecules with relative deviations from
experimental CCS values of less than 2, 3, and 5%.
The prediction performance of our model was compared to

three publicly available CCS prediction tools: CCSondemand
(https://ccs.on-demand.waters.com) from Broeckling and co-
workers,45 AllCCS (http://allccs.zhulab.cn) from Zhu lab,35

and CCSbase from Xu lab (http://ccsbase.net).46

2.4. Prediction of CCS Values for Compounds in
CPPdb and FCCdb. The CPPdb consists of 4283 substances
associated with plastic food packaging. The data set was
rationalized by removing the metals and salts together with any
substances with same InChIKey (replicates). Finally, only
substances with a neutral mass between 50 and 1200 were
retained. After following this procedure, 2883 substances from
the CPPdb were retained. The FCCdb data set was also
rationalized using the procedure described above, leading to
6508 substances retained in data set. The CCS values of the
compounds retained from the databases were then predicted
using the model that yielded the best performance in this
study. Meanwhile, the chemical space covered by CPPdb,
FCCdb, and our collected molecules was compared.

2.5. Application of Predicted CCS Values to the
Analysis of Plastic-Related Chemicals in Ebro River
Water. 2L of surface water were sampled from the Ebro River
near the urban areas of Zaragoza, Spain. The river water was
stored in an amber glass bottle and treated on the day of
collection, using the previously developed procedures.30 The
final samples were analyzed using a Vion IMS-QTof mass
spectrometer. The detailed procedures of sample treatment
and operating conditions of the Vion are given in the
Supporting Information. The features (m/z_RT_CCS pairs),
obtained from Vion IMS-QTof, were then screened against
two plastic-related databases, CPPdb (2883 compounds) and
FCCdb (6508 compounds), containing m/z values, adducts,
and predicted CCS values. The m/z deviations of the
measured values were less than 5 ppm as for CCS deviation,
the filter setting was based on its prediction accuracy.

3. RESULTS
3.1. CCS Data Set. A total of 1076 and 645 CCS values

were collated for [M + H]+ and [M + Na]+ adducts,
respectively. CCS values ranged from 118.6 to 332.2 Å2 for the
[M + H]+ data and from 134.7 to 321.9 Å2 for the [M + Na]+

data. Using ClassyFire,58 the compounds were categorized into
10 super classes for the [M + H]+ adduct and 11 super classes
for the [M + Na]+ adduct. The principal super classes assigned
were benzenoids, organoheterocyclic compounds, lipids and
lipid-like molecules, and organic acids and derivatives (Figure
S1). Benzenoids include compounds commonly detected in
plastics such as phthalate-based plasticizers, antioxidants,
bisphenols, primary aromatic amines, and pesticides.
248 and 72 duplicate CCS values were found for [M + H]+

and [M + Na]+ adducts, respectively, across the seven
publications, and the RSDs of the measurements are shown
in Figure S2. The RSD variation is less than 2% for 89.1%
(221/248) of the [M + H]+ adducts of the molecules and
95.8% (69/72) of the [M + Na]+ adducts. Consequently, there
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are 27 and 3 CCS values with RSDs higher than 2% for the [M
+ H]+ and [M + Na]+ adducts, respectively, and the
measurements contributing to these values are summarized
in Tables S2 and S3. The majority of CCS values with RSDs
greater than 2% were obtained from the publications of Bijlsma
et al. (2017),38 Celma et al. (2020),29 and Regueiro et al.
(2016).39 It appears that pesticide and drug-like compounds
are more likely to produce a high variation of CCS values. Such
compounds include picoxystrobin, acetopromazine, prochloraz,
and oxadixyl, with the variation of the CCS measurements for
the last two compounds being more than 20 Å2. The limit of
CCS reproducibility, presence of protomers, and inconsistent
CCS calibration across different instrument systems are three
possible sources of deviations in CCS measurements. A more
detailed explanation is given in the Supporting Information.
CCS is a value related to the size, shape, and charge of a

molecule and understandably, CCS is also strongly correlated
with the m/z value of a compound.27,31,41,54 The correlation
between m/z and the CCS value of the compounds considered
in this study is shown in Figure 1. In general, the relationship

between m/z and CCS can be described by a power regression
model. The inclusion of more halogenated compounds in this
study (a total of 302 and 149 halogenated molecules were
included for [M + H]+ and [M + Na]+ adducts, respectively),
highlighted a distinct difference in their m/z and CCS
relationship when compared to the relationship for non-
halogenated compounds. The halogenated compounds tended
to have smaller CCS values for a given m/z. It is believed that
halogens have a lower atomic radius per atomic mass unit in
comparison to other elements, such as C, H, O, and N. The
partially orthogonal structural information provided by CCS is
discussed in the Supporting Information.
Some CCS values collated in this study were measured using

drift tube IMS (DTIMS),27 and deviations between TMCCSN2
and DTCCSN2 have previously been observed.53 Since accurate
CCS values are fundamental to obtain a reliable CCS
prediction model, the DTCCSN2 values were compared to
TMCCSN2 values available in the literature (Tables S4 and S5).
16 TMCCSN2 values were found in the literature that could be
directly compared to DTCCSN2 values, and most of these values
were for compounds in the types of plasticizers and
organophosphorus flame retardants. Table S4 shows that
81.3% of the values agree to within 2% and the deviations
ranged from 0.11% (for atrazine) to 2.88% (for tri-n-butyl
phosphate) with an average of 1.15%. In the case of the [M +
Na]+ adduct, 75.0% of the values agree to within 2%, and the
deviations ranged from 0.15% (for di-n-butyl phosphate) to
4.23% [for mono(2-ethylhexyl) adipate], with an average of
1.32%. The median of the TMCCSN2 and

DTCCSN2 values was

used when building the model to reduce any outlier
measurements arising from the use of different IMS
technologies.

3.2. Selection and Weighting of Molecular Descrip-
tors. The selection of MDs can reduce training time, simplify
the prediction model, and avoid overfitting; however, it is
possible that meaningful information can also be lost, leading
to a decrease in accuracy. For this reason, it is necessary to
achieve a balance between the simplicity and accuracy of the
model.
The numbers of MDs retained after each step of variable

selection are shown in Figure S3, and the comparison of the
model performance before and after variable selection is
presented in Figure S4 and Tables S6−8. For alvaDesc MDs,
the first 316 and 72 descriptors accounted for 99 and 95% of
the total importance for [M + H]+ adducts. When the number
of MDs was decreased from 1528 to 72, both the SVM and
XGBoost models showed a slight decrease in the performance.
The RP

2 of the SVM model decreased from 0.9802 to 0.9737,
RMSEP increased from 4.47 to 5.43, and MRE increased from
1.50 to 1.52%. Considering that the model was significantly
simplified and the performance was still acceptable, the 72
most important alvaDesc MDs were selected for the [M + H]+

adduct data. In the case of the [M + Na]+ adduct CCS
predictions, the models based on the first 193 MDs showed a
comparable performance with the models built on 1361 MDs.
Therefore, the 193 most significant MDs were selected for [M
+ Na]+ adduct data.
On determining the descriptors using CDK and RDKit, after

the elimination of MDs that show low correlation with CCS (r
< 0.6), 84 and 65 CDK descriptors and 33 and 27 RDKit
descriptors were retained for [M + H]+ adducts and [M +
Na]+ adducts, respectively; they were not filtered further. Table
S7 shows that 84 CDK MDs can provide accurate prediction
results for [M + H]+ adducts. A remarkable reduction in the
performance of the model was observed for [M + Na]+

adducts, when the number of MDs was reduced from 207 to
65. Therefore, 84 and 207 CDK MDs were selected for the [M
+ H]+ and [M + Na]+ adducts, respectively. In the case of
RDKit, 33 and 125 MDs were retained for [M + H]+ and [M +
Na]+ adducts, respectively, based on the performance of the
model (Table S8).

3.3. Model Performance. After dividing the collated CCS
values into a training data set and a testing data set, 329 and
181 CCS values were included in the testing set for [M + H]+

and [M + Na]+ adducts, respectively. For each adduct, six CCS
prediction models were developed based on the combinations
of two algorithms (XGBoost and SVM) and three types of
MDs (alvaDesc, CDK, and RDKit). The distribution of
prediction errors and model parameters for each model are
shown in Figure 2 and Table 1, respectively. In the case of the
[M + H]+ adducts, more than 90% of molecules showed
prediction errors within 5% for all six models. The SVM-based
model in conjunction with the CDK descriptors provided the
best predictive performance. RP

2 and MRE were 0.9786 and
1.42%, respectively, and more than 93 and 64% of molecules
had prediction errors of less than 5 and 2%, respectively. This
model also provided a better predictive performance for the
[M + Na]+ adduct with more than 95 and 58% molecules
having prediction errors of less than 5 and 2%, respectively.
The results also show that the model for [M + H]+ adducts
should use a different set of descriptors to those used for the
model for [M + Na]+ adducts, implying that a unique CCS

Figure 1. Empirical CCS vs m/z for (A) [M + H]+ and (B) [M +
Na]+.
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prediction model should be developed for each adduct. This is
highlighted by the studies of Bijlsma et al. (2017),38 in which a
single set of descriptors was used for the CCS prediction of all
positive ions and demonstrated that the CCS values predicted
for [M + Na]+ adducts were less accurate in general.
In comparison to our previous study,43 a more accurate

prediction of CCS values for [M + Na]+ adducts is achieved
here. The value of RMSEP decreased from 8.2 to 5.5 Å2, the
percentage of molecules with prediction errors less than 5%
increased from 81.3 to 95.0% and those with prediction errors
less than 2% increased from 54.7 to 58%. Even though there is
a dramatic improvement, the prediction of CCS values for [M
+ Na]+ adducts was still less accurate than that for [M + H]+

adducts. It is believed that the main reason for this is that the
MDs are calculated from neutral molecules, and a sodium
adduct can lead to a more diverse range of molecular
conformations in 3D space compared to protonation.38,41,64

One way to improve the accuracy of CCS predictions would be
to determine the descriptors for ionized molecules, rather than
neutral molecules. However, such an approach is more
complicated and computationally expensive, in addition,
conformational analysis is always required before the
calculation of the descriptors.65

The CCS prediction for halogenated molecules was also
more accurate using the current SVM model compared to our
previous study.43 95.3% (81 out of 85 molecules) and 65.9%
(56 out of 85 molecules) of protonated halogenated molecules
had prediction errors of less than 5 and 2%, respectively. This
compares to our previous study43 for which the percentages
were only 86.7 and 40%, respectively. This significant
improvement could be due to the additional halogenated
molecules in the training set, which supports previous
observations that structure similarity between predictions and

the training set significantly affect the accuracy of CCS
predictions.35 To further validate this conjecture, we excluded
the 217 halogenated molecules from the training set for [M +
H]+ adducts, leaving 530 non-halogenated molecules to rebuild
the SVM model for the prediction of CCS values for molecules
in the testing set. A comparison of CCS prediction results, with
and without halogenated compounds in the training set, is
shown in Figure S5. It is evident that upon excluding
halogenated compounds from the training set, the prediction
errors for the 244 non-halogenated compounds in the test data
are similar to those generated when the halogens were
included in the training data. However, the predicted CCS
values of 85 halogenated compounds in the test data has
significantly larger errors when the halogens were excluded
from the training data: MRE increased from 1.46 to 1.87%, and
the proportion of halogenated compounds with prediction
errors <2% decreased from 65.9 to 54.1%. This confirms that
the chemical diversity of training set is an important factor,
which affects the prediction accuracy for the test data.
The protonated molecules for which the prediction error in

the CCS value was greater than 5% were further investigated.
The presence of protomers can lead to high CCS prediction
errors. For example, two different CCS values (160.5 and 176.2
Å2) have been reported for acetopromazine in previous
studies,29,38 the predicted CCS value of 179.8 Å2 matched
well with the CCS value of the more extended protomer.
Similar behavior was also observed in the work of Zhou et al.44

More discussions are given in the Supporting Information.
Through the comparison of the six models and the

comparison with our previous study,43 the SVM model based
on CDK MDs provided the most accurate predictions. The
chemical diversity of the training set seems to be a more crucial
factor for CCS prediction than descriptors and algorithms. The
possibility of multiple protomers is another important factor,
affecting the accuracy since only one predicted CCS value can
currently be determined for a given adduct by machine
learning models. Besides, we opted to use SVM due to its easy
configuration with few hyperparameters, as well as its ability to
provide reproducible prediction results.

3.4. Comparison between the SVM Model and Public
CCS Prediction Tools. The outcomes from the SVM model
based on CDK MDs were compared to those from three
publicly available CCS prediction tools: CCSondemand,
AllCCS, and CCSbase. The distributions of the prediction
errors for all models are illustrated in Figure S6, and the

Figure 2. Violin-plot illustrating the prediction errors of the SVM and
XGBoost models using different sets of descriptors: (A) [M + H]+

and (B) [M + Na]+.

Table 1. Performance of the Models Developed Using Different Descriptors and Algorithms

adducts descriptor algorithm Rp
2 RMSEP <2% <3% <5% MRE (%)

[M + H]+ alvaDesc SVM 0.9737 5.43 61.7 79.0 91.8 1.52
XGBoost 0.9727 5.53 61.7 75.7 90.6 1.44

CDK SVM 0.9786 4.90 64.7 82.7 93.3 1.42
XGBoost 0.9765 5.14 59.6 78.7 94.2 1.61

RDKit SVM 0.9772 5.09 63.8 79.6 93.0 1.46
XGBoost 0.9700 5.80 58.1 74.2 90.3 1.58

[M + Na]+ alvaDesc SVM 0.9570 5.83 54.1 67.4 90.1 1.81
XGBoost 0.9593 5.76 52.5 72.9 89.0 1.88

CDK SVM 0.9618 5.53 58.0 74.6 95.0 1.76
XGBoost 0.9555 5.95 53.0 68.5 90.1 1.81

RDKit SVM 0.9511 6.18 49.2 72.9 90.1 2.01
XGBoost 0.9577 5.82 53.6 69.1 87.8 1.81
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corresponding MRE for each chemical class is shown in Figure
S7.
The CCS values of 65 and 74% of protonated molecules

were predicted with an error of less than 2% by SVM and
CCSondemand, respectively. More than 93% of protonated
molecules has prediction errors less than 5% for both models.
CCSondemand was trained by approximately 7325 exper-
imental TWCCSN2 values obtained from 3775 compounds.45

The training data set contains CCS values of chemicals found
in plastic food packaging and pesticides, so when the CCS
values of such molecules are predicted by CCSondemand, one
would expect smaller prediction errors. The predictive
capabilities of AllCCS and CCSbase were not as good as
those for SVM and CCSondemand for the compounds
considered in this study. This is possibly due to the
dissimilarity of the structures of chemicals in plastics and the
molecules used in the training sets of AllCCS and CCSbase.
The results for [M + Na]+ adducts showed that the SVM

model gave more accurate predictions than the other tools.
The enhanced performance of SVM is possibly due to the
higher number of MDs used in this model (n = 207) as only 15
MDs were used in AllCCS.35 More detailed comparison is
shown in the Supporting Information.
The AllCCS tool is also based on the SVM algorithm and

CDK MDs; however, there are two main differences between
AllCCS and our model: the training data and the number of
MDs. In order to investigate which factor leads to the
significantly different prediction results between AllCCS and
our model, we built a SVM model based on our CCS training
data and the 15 MDs used for AllCCS and compared their
prediction results for the testing set to those obtained from our
original model and AllCCS (Table S9). For both [M + H]+

and [M + Na]+ adducts, less accurate prediction results were
obtained from SVM models based on 15 MDs than with our
original SVM model. MRE values increased from 1.4 to 1.6%,
for [M + H]+ adducts and 1.8 to 2.1% for [M + Na]+ adducts.
The results from the SVM model based on 15 MDs and the
AllCCS tool using the same MDs but different training data
can be seen in Table S9. AllCCS shows significantly larger

prediction errors, with MRE values of 2.2% for [M + H]+

adducts and 3.3% for [M + Na]+ adducts. These results show
that the data used to train the model have a greater effect on
the prediction accuracy of the model than the MDs.
These results show that, when compared to other available

prediction tools, the SVM model based on the CDK MDs can
improve the prediction of CCS values, especially for sodiated
molecules. The CCS values for the [M + H]+ and [M + Na]+

adducts of the molecules in CPPdb and FCCdb were
subsequently predicted by the SVM model developed here.
The two databases were then transformed into screening
libraries, which were used for the suspect screening of plastic-
related chemicals in Ebro River water.

3.5. Plastic-Related Chemicals Tentatively Identified
in Ebro River Water. Approximately 95% of predicted CCS
values (93.3% for [M + H]+ adducts and 95.0% for [M + Na]+

adducts) are within 5% deviation with respect to experimental
values. Thus, the tolerance for CCS deviations was set as 5% in
the suspect screening of plastic-related chemicals in Ebro River
water. Two main aspects of using predicted CCS values in the
identification of unknowns were investigated: reducing the
number of false positives and increasing the confidence level of
identified compounds. The river water samples were screened
against 9391 compounds in CPPdb and FCCdb to search for
plastic-related chemicals. The number of candidates with and
without the confirmation of CCS values was compared. The
addition of the CCS filter decreased the number of candidate
compounds from 376 to 204 (45.7%).
A total of 98 plastic-related chemicals were tentatively

identified in the Ebro River surface water samples from the
CPPdb and FCCdb databases, of which 26 compounds were
confirmed using reference standards. The tentatively identified
compounds consisted of 12 plasticizers, 10 flame retardants, 6
antioxidants, 9 slip agents, 10 dyes, and 26 surfactants
(including glycol and glycerol derivatives). NIAS were also
detected in Ebro River water, including the ethylene
terephthalate cyclic trimer, a common oligomer of poly-
ethylene terephthalate,66 and bisphenol A bis(2,3-dihydrox-
ypropyl) ether, a hydrolysis product of bisphenol A diglycidyl

Figure 3. Identification of tris(2,4-ditert-butylphenyl)phosphate. (A) Extracted ion chromatograms from the sample and standard, (B) low- and
high-energy spectra, fragment assignment, comparison between experimental and predicted CCS values.
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ether.67 Detailed information about the identified compounds
is available in the Supporting Information.
The most abundant compound detected in the Ebro River

water samples was tris(2,4-ditert-butylphenyl)phosphate. This
is a degradation product of Irgafos 168 (a commonly used
phosphite antioxidant in plastics).68 Previous studies have
shown that tris(2,4-ditert-butylphenyl)phosphate was an
abundant contaminant in indoor dust21 and fine particulate
matter.14 The predicted CCS values for tris(2,4-ditert-
butylphenyl)phosphate had deviations less than 2% versus
the experimental values (Figure 3).
The benefit of predicted CCS values in identification of

unknowns is more relevant either when the analyte is at low
concentration levels or the reference standard is not available.
1,4,7-Trioxacyclotridecane-8,13-dione is a reaction product
from adipate plasticizer/adipate acid and ethylene glycol, and
its molecular structure and mass spectra are shown in Figure
S8. The figure shows the isotopic pattern for the [M + H]+

adduct was indistinct, and no fragment ions were observed in
the high-energy spectrum for the compound, possibly due to
the low concentration and ineffectual assignment of fragment
ions to the respective precursor ions. A fragment ion at m/z
value 155.0699 was observed in low-energy spectrum, which
corresponds to the loss of the ethylene glycol unit. CCS
deviation for the [M + H]+ and [M + Na]+ adducts of 1,4,7-
trioxacyclotridecane-8,13-dione was 0.4 and −2.1%, respec-
tively. In this case, even though no abundant fragmentation
information was obtained for 1,4,7-trioxacyclotridecane-8,13-
dione, the combination of RT, m/z and CCS contribute to a
reliable identification.
In some cases, even when the analyte is at a high

concentration in the sample, fragments ions may still not be
assigned in the high-energy mass spectrum, as a result of rigid
structures of less labile molecules. An example of this is given
in Figure S9, in which the mass spectra of Antiblaze V6, a flame
retardant in plastics, are shown. The fragment ions observed in
the high-energy spectrum are in low abundance, and
substructures of the parent molecule could not be assigned.
The predicted CCS value (207.9 Å2) had a 3.5% deviation
when compared to the experimental value (215.2 Å2).
Additionally, an experimental CCS value (211.4 Å2) for
Antiblaze V6 was found in the literature27 and has a deviation
of −1.8% from our experimental value. It is not possible to
confirm the identification of this compound due to the lack of
a reference standard; however, the comparison between
predicted and experimental CCS values, the m/z values, and
the characteristic chlorine isotopic pattern provides high
confidence for the assignment.
False positive assignments have been observed for which the

tolerances of m/z error <5 ppm and CCS deviation <5% are
satisfied. For example, the ion with m/z 327.0785 and CCS
169.9 Å2 at a RT of 9.42 min is a good match for triphenyl
phosphate. However, the reference standard was detected with
a RT of 6.50 min, thereby showing this assignment to be a false
positive. The addition of RT predictions may be able to
eliminate this kind of false positives, as shown by previous
studies.67,68

4. DISCUSSION
4.1. Suitability of Combining Both DTCCSN2 and

TWCCSN2 Values in the Model. CCS values measured
using DTIMS can differ from those measured using traveling
wave IMS (TWIMS) platforms.53 Therefore, the suitability of

combining both DTCCSN2 and TWCCSN2 values in the CCS
prediction model was investigated. 16 compounds have both
DTCCSN2 and

TWCCSN2 values for both [M + H]+ and [M +
Na]+ adducts (Tables S4 and S5). Measurements of DTCCSN2
alone are present for 39 [M + H]+ adducts and 65 [M + Na]+

adducts. Of these, 27 DTCCSN2 values for [M + H]+ adducts
and 51 DTCCSN2 values for [M + Na]+ adducts are present in
the training data. The DTCCSN2 values were removed from the
training data, the SVM models were rebuilt, and their
performance was compared to the original SVM models
(Table S10). The prediction accuracy of the CCS values for
the [M + H]+ adducts remained similar to the original results;
however, the predicted CCS values for the [M + Na]+ adducts
were less accurate. RMSEP increased from 5.5 to 5.8 Å2, and
the proportion of compounds with prediction errors was <2%
decreased from 58.0 to 55.8%. The reduction in the prediction
accuracy upon removing the DTCCSN2 values from the training
data is probably due to the reduction in the diversity of
chemical structures. The DTCCSN2 values were mainly for
organophosphate flame retardants and phthalate monoesters,
both of which are additives commonly used in plastics.11,13

It should be noted that in this study, the differences between
DTCCSN2 and TWCCSN2 values are relatively small. Higher
CCS deviations were observed between TWCCSN2 values from
different laboratories than between DTCCSN2 and TWCCSN2
values (Tables S2−S5). Based on these observations, we
decided to use both DTCCSN2 and TWCCSN2 values in the
training data of the model.

4.2. Weighting and Collinearity of CDK MDs. The
important CDK MDs for the prediction of the CCS values are
shown in Figures S10 and S11, and a brief description of these
important MDs is also given in Table S11 and Supplemental
Results and Discussion. The effect of collinearity between
CDK MDs was investigated by building models that omitted
highly correlated MDs. The variance inflation factor (VIF) is a
measure of the correlation between MDs with higher values
indicating greater correlation. Two models were built to study
collinearity of MDs, one for which MDs with a VIF value
greater than 50 were excluded and one for which MDs with a
VIF value greater than 20 were excluded. A comparison of the
predictive performance between the two new models and the
original model is shown in Figure S12. The figure shows that
for [M + H]+ adducts, 33 MDs with a VIF value below 50 were
retained and 24 MDs with VIF value below 20 were retained.
The reduction in the number of the MDs slightly decreased the
prediction accuracy of both the SVM and XGBoost models.
Similar behavior was observed when the same procedure was
applied to the models for the [M + Na]+ adduct. Since the
models built with 84 and 207 CDK MDs for the [M + H]+ and
[M + Na]+ adducts, respectively, provide more accurate
predictions, and the complexity of the model was still deemed
to be acceptable, the number of MDs was not reduced in the
final models.

4.3. Approaches to Improve the Prediction Accuracy.
There are several ways in which the accuracy of CCS
predictions could potentially be improved. First, more
experimental CCS values can be collected for the training set
to increase the chemical diversity and universality of the
model. A total of 17 and 15 chemical super classes are
considered in CCSondemand and AllCCS respectively, while
in this study, only 10 and 11 super classes are covered by 1076
and 645 CCS values for [M + H]+ and [M + Na]+ adducts,
respectively. Table S12 presents the 50 compounds in CPPdb
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and FCCdb that were not covered by the chemical space of our
collected CCS records. Generally, these compounds have high
molecular mass and contain long linear-chain structures.
Second, MDs based on ionized molecules could improve

predictions, especially for [M + Na]+ adducts. There is a much
bigger difference between the structural conformation of
sodiated and neutral molecules than there is between
protonated and neutral molecules.64 This makes it difficult to
obtain accurate predicted CCS values for sodiated molecules
when the descriptors are derived from neutral molecules.
Taking into account that deriving MDs from ionized molecules
is time-consuming and complex, and as such, MDs derived
from neutral molecules are probably sufficiently accurate for
[M + H]+ adducts. In the study by Gonzales et al. (2016),48

MDs of deprotonated phenolics were determined for a CCS
prediction model, and 92.8% (52/56) of molecules was
predicted within 5% of their measured values. In the present
study, a similar proportion (93.3%) of protonated molecules
was predicted with an error less than 5%, highlighting that
MDs determined from neutral molecules are sufficient for the
accurate prediction of CCS values of protonated molecules.
Third, improving the reproducibility of commercially

available IMS devices such as TWIMS and DTIMS will lead
to more precise and accurate CCS measurements, which, when
used as inputs to prediction models, will improve the
performance of the models. At the time of writing, commercial
IMS devices have relatively low reproducibility, which makes it
impractical to adopt an accuracy threshold lower a than 2%
when matching measured CCS values to library values within a
suspect screening workflow.41,42,69

4.4. Current Limitations and Future Prospects. In this
study, the CCS prediction models were only built for positive
ions. This is understandable to some extent as most additives
in plastic products, such as plasticizers, antioxidants, flame
retardants, photoinitiators, and slip agents, are detected in the
positive ion mode.20 In some cases, compounds can be only
detected, or show a higher response, in the negative ion mode.
Such compounds include lubricants (lauric acid and oleic acid)
and surfactants (perfluorooctanesulfonic acid and perfluor-
obutanesulfonic acid), which were detected in the Ebro River
water samples using our in-house plastic additives library (see
the Supporting Information). Therefore, a CCS prediction
model for negative ions needs to be developed in the future.
Additionally, the CCS prediction models developed herein are
only available to a small set of privileged users, and work needs
to be undertaken to develop them into an open-access tool.
Many emerging contaminants associated with plastics, such

as tricaprin, polyethylene glycol, and polypropylene glycol
oligomers, do not exist in the CPPdb and FCCdb databases.
These compounds were detected at high abundance in the
Ebro River water samples using our in-house plastic additives
library. With the rapid growth of newly reported plastic-related
chemicals, the CPPdb and FCCdb databases need to be
continuously expanded and updated. The construction of an
integrated plastic-related database containing name, adducts,
m/z values, predicted CCS values, and predicted RTs will
facilitate the identification of extractables and leachables from
plastics in HRMS-based screening strategies.
In summary, the SVM model, based on CDK descriptors

presented here, provided more accurate CCS predictions than
the XGBoost algorithm and other descriptors. The CCS values
of 93.3% [M + H]+ adducts and 95.0% [M + Na]+ adducts
were predicted within 5% of their measured values. It has been

shown that the chemical diversity of the training set appears to
have more influence on the predictive performance than
alternative algorithms and MDs investigated here. Indeed, CCS
predictions for halogenated compounds were more accurate
following the incorporation of more CCS records of
halogenated compounds into the training set. Increasing the
number of experimental CCS values and improving the
reproducibility of CCS measurements seem to be two feasible
ways to further increase the performance of prediction models.
In future work, a CCS prediction model for negative ions will
be developed, and work toward making all models open-access
will be undertaken.
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■ ABBREVIATIONS

IMS ion mobility separation
HRMS high-resolution mass spectrometry
CCS collision cross-section
SVM support vector machine
MRE median relative errors
CPPdb Chemicals associated with Plastic Packaging Data-

base
FCCdb Food Contact Chemicals Database
MW molecular weight
NIAS non-intentionally added substances
PFAS perfluoroalkyl substances
FCMs food contact materials
TWCCSN2 traveling wave CCS
DTCCSN2 drift tube CCS
CID compound identifier
RSDs relative standard deviations
MD molecular descriptor
r correlation coefficients
XGBoost extreme gradient boosting
RMSECV root-mean-square error of cross validation
RBF radial basis function
C cost of constraint violation
γ gamma
Rp

2 determination coefficient of prediction
RMSEP root-mean-square error of prediction
RT retention time
DTIMS drift tube ion mobility separation
PET polyethylene terephthalate
TWIMS traveling wave ion mobility separation
VIF variance inflation factor
PEG polyethylene glycol
PPG polypropylene glycol
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