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Abstract

Mechanical thrombectomy (MTB) is one of the two standard treatment options for Acute Ischemic 

Stroke (AIS) patients. Current clinical guidelines instruct the use of pretreatment imaging to 

characterize a patient’s cerebrovascular flow, as there are many factors that may underlie a 

patient’s successful response to treatment. There is a critical need to leverage pretreatment 

imaging, taken at admission, to guide potential treatment avenues in an automated fashion. The 

aim of this study is to develop and validate a fully automated machine learning algorithm to 

predict the final modified thrombolysis in cerebral infarction (mTICI) score following MTB. A 

total 321 radiomics features were computed from segmented pretreatment MRI scans for 141 

patients. Successful recanalization was defined as mTICI score >= 2c. Different feature selection 

methods and classification models were examined in this study. Our best performance model 

achieved 74.42±2.52% AUC, 75.56±4.44% sensitivity, and 76.75±4.55% specificity, showing a 

good prediction of reperfusion quality using pretreatment MRI. Results suggest that MR images 

can be informative to predicting patient response to MTB, and further validation with a larger 

cohort can determine the clinical utility.
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I. INTRODUCTION

A total of 795,000 strokes are diagnosed each year in the United States, which causes 

more than 140,000 deaths. Acute Ischemic Stroke (AIS) accounts for 87% of all strokes. 

[1] For AIS patients, thrombolysis and thrombectomy treatments can restore blood flow 

ischemic tissue. Successful mechanical thrombectomy (MTB), which physically removes 

the clot from the occluded artery, has many potential factors that could influence a patient’s 

response to treatment. [2] In practice, success is measured by restoration of blood flow to 

the stroke area, quantified by the modified treatment in cerebral infarction (mTICI) score. 

[3] During MTB, this score is assessed after every attempt to remove the clot, and a final 

mTICI score is assigned to the patient at the end of the procedure to signify how much blood 

flow has been restored. [4] Clinical trials and other studies have illustrated that patients who 

experience partial and/or full recanalization of the blood vessel typically experience better 

outcomes, particularly if recanalization is achieved in three attempts or less. [5]-[7] Thus, 

predicting a patient’s post-treatment mTICI can inform interventional neuroradiologists 

about the potential benefit of MTB.

Per current clinical guidelines, advanced imaging (i.e., perfusion-weighted imaging) may be 

taken at admission to determine a patient’s vascular status such as collateral flow. [8] Some 

imaging biomarkers have been statistically linked to successful recanalization, but they are 

not perfect predictors, and some are prone to inter-reader assessment. Previous machine 

learning methods applied to mTICI classification have used CT sequences as input, and the 

top performing models required manually segmented regions of interest (ROI) performed 

by an expert. [9]-[12] On the other hand, there is no reliable publicly available automated 

stroke lesion or thrombus segmentation algorithm, and none has been validated at a large 

scale . [13] Even with the help of segmentation by experts, which may not be feasible in 

a time-sensitive clinical setting, to our knowledge, there does not yet exist a method to 

automatically predict final mTICI from MR imaging. MR imaging has already proven to 

contain signal that can elucidate individual patient characteristics, informing how one might 

respond to thrombolytic, or the more invasive MTB treatment. [14] Developing an automatic 

classification of the mTICI score from admission MR imaging alone can help clinicians 

assess the most efficient course of treatment.

II. METHODS

A. Dataset

We retrospectively evaluated 141 patients from UCLA Ronald Reagan Medical Center who 

received MTB from 2014-2019. This work was performed under the approval of the UCLA 

Institutional Review Board (#18-000329). A patient was included if they were diagnosed 

with AIS, underwent a diffusion-weighted MR prior to treatment, and received MTB. 

Although perfusion imaging may provide more information about collateral flow status, 
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we decided to only use diffusion-weighted image, as it included the broadest patient cohort 

within our study. Clinical characteristics are summarized in table 1. The study cohort had 

a median age of 73 (61-81) years, a median National Institutes of Health Stroke Scale 

(NIHSS) score of 15 (8-19), and were 55% female. The distribution of final mTICI score 

was 6.53% 0, 1.96% 1, 11.11% 2a, 45.75% 2b, 15.03% 2c, and 19.61% 3.

B. Image Preprocessing

All patients underwent MRI using a 1.5T or 3T echo-planar Siemens MR imaging 

scanner, performed with 12-channel head coils. DWI, FLAIR and ADC sequences 

were used in this study. The DWI images were acquired using a TR range of 

4,000-9,000ms and a TE range of 78-122ms. The pixel dimension for DWI varied from 

0.859x0.859x6.000mm to 1.850x1.850x6.500mm. FLAIR images were acquired using 

a TR range of 8,000-9,000ms and a TE range of 88-134ms. The corresponding pixel 

dimension varied from 0.688x0.688x6.000mm to 0.938x0.938x6.500mm. ADC images were 

calculated from DWI sequences. After image retrieval, the sequences were fed into our 

previously published automated preprocessing pipeline to ensure data consistency across 

individuals and reduce noisy information [15]. First, N4 bias field correction was applied 

to all sequences. Then, DWI image was skull-stripped and registered to a T2w MNI-152 

atlas. FLAIR and ADC were co-registered afterwards. Finally, intensity normalization 

and histogram matching were performed using a reference case. Last, a vascular territory 

template was mapped on the registered images to extract ROI where the stroke lesion 

was located [16]. Instead of manually segmenting the stroke lesion or thrombus, or using 

unreliable algorithms, our detection method extracted the affected brain region.

C. Feature Extraction

Radiomic features were extracted from the ROI for DWI, FLAIR and ADC sequences 

separately using pyradiomics [17]. The features included a) 13 3D shape features and 19 

first order features b) 24 texture features computed from the Gray Level Co-occurrence 

Matrix (GLCM) c) 14 features from Gray Level Dependence Matrix (GLDM) d) 16 

features from Gray Level Size Zone Matrix (GLSZM) e) 16 features from Gray Level Run 

Length Matrix (GLRLM) and f) 5 features from Neighbouring Gray Tone Difference Matrix 

(NGTDM).

D. Feature Selection

Many extracted radiomic features have a high degree of correlation, and they may 

provide overlapping information to our machine learning model. To minimize information 

overlap, we implemented three feature selection methods and compared the performance 

of each using different classifiers. Two supervised methods, Least Absolute Shrinkage 

and Selection Operator (LASSO), Random Forest (RF), and one unsupervised method, 

Principle Component Analysis (PCA), were selected due to their popularity and efficiency in 

literature [18]. Briefly, LASSO applies a regularization process that penalizes the coefficient 

of regression features to minimize the prediction error and the features with non-zero 

coefficient after shrinking process are selected. For RF, features are selected by calculating 

each feature’s contribution to the decrease of the weighted impurity of a tree. Feature 

importance is calculated by averaging the decrease of impurity across trees and ranking 
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the features according to this measure, only keeping the top 50th percentile of features 

in this rank. For PCA, the current features are transformed to a representation with fewer 

new features (principle components) by a dimensionality reduction process that involves 

orthogonal linear transformation while preserving the variance presented in the data.

E. Classification Modeling

To predict mTICI, the following classifiers were compared: Support Vector Machines 

(SVM), K-Nearest Neighbor (KNN), Logistic Regression (LR), and RF. Classifiers were 

trained using 5-fold cross-validation in the training set. The best model hyper-parameters 

were selected via grid search. For example, different kernel functions (radial basis, linear, 

sigmoid), gamma and C values were examined for SVM to generate best combination of 

hyper-parameters. The selected features were scaled using min-max normalization before 

being used in classification training. All feature selection and classification models were 

evaluated using area under the curve (AUC) of receiver operating characteristic (ROC) 

curve, as well as sensitivity and specificity, which were calculated using optimal Youden’s J 

statistic as defined below:

J = Sensitivity + Specificity − 1 .

Performance ranges for a held-out validation set were calculated for each combination of 

feature selection method and classifier.

III. Results

A total of 321 features were extracted for each patient with DWI, FLAIR, and ADC 

sequences. 112 patients were assigned to the training set and 29 patients were assigned to 

the validation set following a 4-1 split, where the validation set was never seen by neither the 

feature selection, grid search nor classifier training processes. The demographic distribution 

for both training and validation sets remained the same for all experiments. In order to 

examine the stability of model performance, we trained and validated the results 100 times 

by changing the random seed to shuffle the training stage cross-validation. The results were 

reported as the mean +/− 95% confidence interval. All model training was performed using 

scikit-learn in Python 3. The best parameters for each model from grid search were: Random 

Forest with 80 max depth of the tree, max features 3, minimum number of samples required 

at a leaf node 3, minimum number of samples required to split an internal node 12, number 

of trees 200; SVM with radial basis kernel, penalty parameter C 10 and gamma 0.001; LR 

with L2 penalty and inverse regularization C 0.1; KNN with 10 neighbors.

The RF feature selection determined 138 features were informative for mTICI classification. 

The LASSO feature selection kept 36 important features. We implemented PCA at 

0.99 explained variance cutoff with 5 principle components for modeling. The average 

performance was reported in table 2. In addition, ROC curves on the validation set for 

each of the top models with best feature selection was reported in figure 2. RF feature 

selection and LASSO feature selection yielded comparable performance across different 

models where the combination of RF feature selection and RF classification model achieved 
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best ROC-AUC 74.29%±0.68%. On the other hand, PCA feature selection yielded lower 

performance across models. Moreover, models with PCA features tended to be less stable 

with a larger variance except for LR model, showing that the PCA method may exclude 

much important information during dimension reduction step. Although the RF model 

achieved the highest performance, the LR model achieved 72.91%±0.84% using the RF 

feature selector and 72.29%±0.85% using LASSO feature selector. SVM achieved > 70% 

ROC-AUC for RF features but lower for LASSO and PCA features. In general, KNN model 

achieved lower ROC-AUC values for all three feature selectors with higher variance across 

experiments.

IV. DISCUSSION AND CONCLUSION

To our knowledge, this study presents the first algorithm to predict successful MTB 

recanalization from MRI taken from patients pre-treatment imaging. It is clear that there 

is important information from standard diffusion MR images before treatment that is 

directly related to MTB recanalization, leading to a potential new path of investigation 

in pre-treatment MR imaging and thrombectomy outcome. Our results produce a few 

findings. First, we demonstrated that the RF feature selector combined with the RF model 

achieved the best performance. Based on the 95% Confidence Interval for 100 times 

repeated experiments, RF and LR models both show stable performance, that is, minimal 

variation when shuffling the training data. Random forest models have been illustrated to 

be robust across many iterations, and moreover, have proven to achieve high classification 

performance for other radiomics tasks. Other tasks have found optimal performance using 

other classifiers, however, so more testing is needed to evaluate these models at a broader 

scale. A second finding is that our automated region extraction method yielded benchmark 

performance comparable to those generated from manually segmented regions on CT 

images. It could serve as a reference for future radiomics based MR image studies in the 

MTB recanalization field. Given the time-sensitive nature of stroke treatment decisions, this 

fully automatic method can quickly provide a model with the relevant stroke region without 

sacrificing performance.

There are a few areas of future research direction this study provides given the promising 

result of this preliminary study. Our analysis and modeling were conducted from a single 

center with images acquired retrospectively over eight years. A multi-center prospective 

study with a larger sample size is needed in the next step. In this study, we only examined 

several popular feature selection methods and machine learning algorithms. Many other 

feature selection methods and ML classification should be examined in future study. A 

reliable automated stroke lesion or thrombus segmentation algorithm is expected to provide 

more accurate radiomics features for use. By incorporating more accurate 3D image 

features, stratification by the type of MTB technique, and clinical factors as features into 

the machine learning model, the model performance can be improved.
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Fig. 1. 
Our methodological pipeline. RF: Random Forest, LASSO: Least Absolute Shrinkage and 

Selection Operator, PCA: Principal Component Analysis, LR: Logistic Regression, SVM: 

Support Vector Machine.
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Fig. 2. 
ROC curves - Best feature selection method for each model. Top RF model = RF feature + 

RF model, top SVM model = RF feature + SVM model, top LR model = RF feature + LR 

model, top KNN model = LASSO feature + KNN model.
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TABLE I

Patient cohort demographics. Numbers are n (%) or median (interquartile ranges). NIHSS, National Institutes 

of Health Stroke Scale.

Training Set
(n = 112)

Validation Set
(n = 29)

Age (years) 73 (62-81) 73 (52-85)

Female 63 (57%) 22 (61%)

NIHSS 15 (8 - 19) 17 (10 - 21.75)

mTICI < 2c 40 (36%) 12 (41%)
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TABLE II

Performance metrics across feature selection methods and classification models. Double lines separate models 

with different outputs. FS = Feature Selection, Sens = Sensitivity, Spec = Specificity, AUC = Receiver 

Operating Characteristic Area Under Curve

Model FS AUC Sens. Spec.

RF RF 74.29±0.68% 69.92±2.53% 80.59±2.29%

LASSO 70.94±0.75% 77.67±2.27% 68.18±2.22%

PCA 65.71±2.01% 65.00±9.64% 72.06±9.15%

SVM RF 71.15±1.21% 81.67±2.29% 59.65±1.13%

LASSO 66.33±3.32% 83.50±1.66% 64.18±5.27%

PCA 65.37±3.12% 74.33±6.63% 59.18±3.51%

LR RF 72.91±0.84% 57.67±1.84% 90.59±1.47%

LASSO 72.29±0.85% 67.75±1.51% 80.53±1.32%

PCA 67.16±0.02% 66.67±0.63% 82.35±0.05%

KNN RF 67.03±2.91% 80.42±6.56% 57.65±7.72%

LASSO 69.52±1.54% 77.50±5.31% 65.00±5.38%

PCA 65.34±1.77% 67.92±7.51% 67.65±7.08%
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