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Abstract

Purpose: Data-driven rigid motion estimation for PET brain imaging is usually performed using 

data frames sampled at low temporal resolution to reduce the overall computation time and to 

provide adequate signal-to-noise ratio in the frames. In recent work it has been demonstrated that 

list-mode reconstructions of ultra-short frames are sufficient for motion estimation and can be 

performed very quickly. In this work we take the approach of using image-based registration of 

reconstructions of very short frames for data-driven motion estimation, and optimize a number 

of reconstruction and registration parameters (frame duration, MLEM iterations, image pixel 
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size, post-smoothing filter, reference image creation, and registration metric) to ensure accurate 

registrations while maximizing temporal resolution and minimizing total computation time.

Methods: Data from 18F-fluorodeoxyglucose (FDG) and 18F-florbetaben (FBB) tracer studies 

with varying count rates are analysed, for PET/MR and PET/CT scanners. For framed 

reconstructions using various parameter combinations inter-frame motion is simulated and image-

based registrations are performed to estimate that motion.

Results: For FDG and FBB tracers using 4 × 105 true and scattered coincidence events per frame 

ensures that 95% of the registrations will be accurate to within 1 mm of the ground truth. This 

corresponds to a frame duration of 0.5 –. 1 sec for typical clinical PET activity levels. Using 4 

MLEM iterations with no subsets, a transaxial pixel size of 4 mm, a post-smoothing filter with 

4–6 mm full-width at half-maximum, and averaging two or more frames to create the reference 

image provides an optimal set of parameters to produce accurate registrations while keeping the 

reconstruction and processing time low.

Conclusions: It is shown that very short frames (≤ 1 sec) can be used to provide accurate 

and quick data-driven rigid motion estimates for use in an event-by-event motion corrected 

reconstruction.

Keywords

Brain imaging; data-driven motion estimation; list-mode; PET reconstruction; rigid motion 
correction; ultra-short frames

I. Introduction

Head motion in PET brain imaging is a substantial problem which causes loss in diagnostic 

value of the reconstructed images due to motion blur, or in the worst case renders them 

unusable. Even compliant patients struggle to remain completely motionless for the duration 

of most clinical scans which can range from several minutes to up to an hour. Devices such 

as head restraints are used to mitigate motion, but with the improved spatial resolution of 

modern scanners (3–4 mm) even motion on the order of millimetres can have a substantial 

effect.

Using an external tracking device to monitor head motion, followed by a full event-by-event 

rigid motion corrected list-mode reconstruction, has been shown to be a very successful 

solution to this problem1,2. However the external hardware and the subsequent impact on the 

clinical routine have hindered this solution’s implementation in the clinic.

Data-driven techniques which estimate the rigid motion directly from the PET data are 

promising since they are completely software-based and have no impact on the clinical 

routine. They are also easily portable between scanners and can be applied retrospectively. 

The primary concern with such approaches is a low temporal resolution and poor motion 

accuracy, but, as will be shown, these issues are being solved.

Data-driven techniques generally fall into two groups, both of which split the data up 

into many frames. The first approach uses some format of the data, e.g. downsampled 
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sinograms3, centroid-of-density calculations4, or full reconstructions5,6, to identify time 

points where motion occurred. The data are reframed according to these time points, 

reconstructions of each new frame are performed, and the subsequent reconstructions are 

aligned and combined. This is usually referred to as the multiple acquisition frame approach 

based on work by Picard et al.7. The second approach uses the framed data to directly 

estimate the 6 degrees-of-freedom describing the head position. These estimations can 

then be used to perform a single fully motion corrected (usually list-mode) reconstruction. 

This is preferable since superior noise properties are achieved when performing a single 

reconstruction of all the data rather than summing framed reconstructions, because of the 

non-negativity constraint of the maximum-likelihood expectation-maximization (MLEM) 

algorithm8. Feng et al.9 used the first and second inertial moments of the list-mode 

data to derive the motion (and Rezaei et al.10 extended this for time-of-flight data), and 

several groups have used the fully reconstructed frames to estimate the motion using 

image registration11,12. In the case of a largely static tracer distribution, registering the 

reconstructed frames to a reference image is the ideal approach since it can provide very 

accurate motion estimates. However, due to the combined factors of low count statistics per 

frame and typically long reconstruction times, it is common to use frame durations on the 

order of tens of seconds or longer. Thus intra-frame motion may not be detected or may bias 

the images leading to an inaccurate motion estimation.

Image registration, which forms the basis of the motion estimation in this work, is 

an important aspect of medical imaging. In the case of motion estimation for brain 

imaging, registration is generally straightforward since it is applied to the same patient 

in the same imaging session for a single modality. Various groups have studied how to 

optimize registration for brain imaging13,14. Usually a mean square difference or a cross 

correlation metric is used for static data where the pixel intensities are similar between the 

images, while the mutual information metric15 is usually used for dynamic data where that 

assumption might not be true.

In previous work we have demonstrated the ability to take advantage of the improved 

sensitivity and timing resolution of modern scanners to very quickly produce reconstructions 

of ultra-short frames of list-mode data16. We now present an investigation into the optimal 

frame duration to provide high temporal sampling while maintaining a good image 

registration accuracy for the purpose of registration-based motion estimation (extending 

work in17). These estimates can then be used to perform an event-by-event motion corrected 

list-mode reconstruction of the data. List-mode reconstructions provide complete freedom 

to frame the data and thus static or dynamic reconstructions can be performed, although 

in the latter case, due to the tracer dynamics, the registration-based approach needs special 

considerations.

II. Method

II.A. Data

Five PET data sets were used during this study, the use of which were approved by 

the relevant IRBs. The data were acquired on either a SIGNA PET/MR (GE Healthcare, 

Chicago, IL, USA) at UW Madison and Stanford University, or a D710 PET/CT (GE 
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Healthcare) at UW Madison. The SIGNA and D710 scanners have, respectively, a 4.4 mm 

and 4.52 mm radial resolution, an axial field-of-view of 25 cm and 15.7 cm, a sensitivity of 

22.9 cps/kBq and 7.5 cps/kBq, a time-of-flight (TOF) resolution of 390 ps and 500 ps, and 

an energy resolution of 10.3% and 12.4%18,19,20. The data sets were:

A. An 18F-fluorodeoxyglucose (FDG) research study on the SIGNA with a high 

injected activity (504 MBq, 27 min uptake time).

B. The same data as in (A) but with the events subsampled by a factor of 3.

C. An FDG clinical study on the SIGNA with a standard protocol (183 MBq 

injected, 70 min uptake time).

D. An 18F-florbetaben (FBB) clinical study on the SIGNA with a standard protocol 

(245 MBq injected, 43 min uptake time).

E. An FDG clinical study on the D710 with a standard protocol (412 MBq injected, 

49 min uptake time).

A summary of the data sets is given in Table 1. Data Sets A-D were acquired with an 

accompanying external motion tracker (HobbitView Inc., CA, USA)21 which tracked the 

head motion to a high degree of accuracy and precision (≤ 0.15° rotations and ≤ 0.39 mm 

translations)22 throughout the scan. This enabled us to identify a 200 sec segment of each 

data set where the motion of the patient’s head was insignificant (< 1° rotations and < 1 mm 

translations). An example of the recorded motion over the chosen 200 sec segment for one 

data set is shown in Fig. 1. No external motion tracking was available for Data Set E, but the 

patient’s head was restrained, and using the image registration techniques described in this 

paper it was verified as conclusively as possible that there was negligible motion during the 

chosen portion of data (< 0.5° rotations and < 0.5 mm translations were observed).

For all data sets 40 ultra-short frames were reconstructed with the frames separated by 5 sec, 

yielding 40 noise realizations spanning the 200 sec of data without overlap. A cohort of 40 

noise realisations was used for each combination of parameter settings (e.g. frame duration, 

pixel size, etc.) as detailed in section II.E..

All reconstructions were performed using pure list-mode time-of-flight MLEM (with no 

subsets), as described in16. A low number of iterations was performed (between 2 and 

8, as described in section II.E.) to ensure quick reconstructions. This was found to be 

sufficient for the purposes of motion estimation. An optimized ray-tracing projector was 

used without any point spread function modeling. The transaxial field-of-view was set to 300 

mm. Attenuation and scatter correction were not performed since, if the attenuation map was 

misaligned with the PET data, these could bias the motion estimates towards the attenuation 

map. Randoms correction was performed using the singles count rate measured during the 

frame duration under consideration. All other corrections, i.e. normalization, deadtime, and 

decay, were performed. Example reconstructions for three frame durations are shown in Fig. 

2 for Data Sets A and D.
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II.B. Influence of Activity Level and Randoms

In order to make a general statement to guide the choice of frame duration it is necessary 

to know a priori what signal-to-noise ratio is expected for a given reconstruction. Due to 

variations in the injected tracer activity it is more appropriate to consider the number of 

coincidence events (or counts) per frame, rather than frame duration, in order to know what 

noise level to expect. Additionally, since the number of random coincidence events increases 

with the square of the activity, the number of true and scattered coincidence events is a 

more accurate indicator of the expected reconstruction noise level23. For example, if 1 × 

105 true and scattered coincidence events are reconstructed from a low activity and a high 

activity data set then the resultant images will have similar signal-to-noise ratios but very 

different frame durations and randoms fractions (note that the high activity data set will have 

a slightly lower signal-to-noise ratio due to the increased presence of random events).

To verify this Data Sets A - D will be used, which all have different coincidence event rates.

II.C. Simulated motion

A diagram of the process of simulating motion is shown in Fig. 3. For a chosen set 

of parameters (e.g. frame duration, pixel size, etc.), the 40 ultra-short frames were 

reconstructed to produce the reference images for the registrations. Following this, for each 

of the 40 frames of list-mode data a single transformation was applied to the list-mode 

events (and similarly for the sensitivity image used in the MLEM reconstruction), which 

were then reconstructed again to produce the “moved” images. This was repeated for three 

transformations, given here as [Rx, Ry, Rz, X, Y, Z] in degrees and millimetres:

Static     [0, 0, 0, 0, 0, 0] (i.e. effectively no transformation was applied).

Motion A  [4, −4, 4, −4, 4, 4]

Motion B  [−8, 6, −12, 8, −8, −8]

These transformations represent motion which we have observed within about 50 clinical 

cases at our institution using data-driven motion estimation, with Motion B representing less 

common high motion cases. Similar values have been reported in, for example,24,25. These 

simulated motions represent only inter-frame motion; intra-frame motion is not considered. 

The aim of this work is to demonstrate that frames of ≤ 1 sec duration provide accurate 

registrations. In most clinical scenarios intra-frame motion within this time range would be 

very limited and have little impact on the registration accuracy.

Since it was verified that negligible patient motion was present in this data, when registering 

to the reference images the applied transformation can be treated as the ground truth when 

assessing the accuracy of the registration.

For our analyses we used a new reference image for each registration to ensure that we have 

a set of unique noise realizations. However in a real world scenario it is recommended to use 

the same reference frame for all registrations to avoid introducing any drift into the motion 

estimates.
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II.D. Image Registration

Rigid registrations were performed using MATLAB’s built-in functions (namely 

imregtform)26. A mean square difference metric was used with a gradient descent optimizer. 

The stopping condition was when the gradient magnitude fell below a small tolerance 

(10−9). A mutual information metric was also investigated although it is not usually used 

for single-modal and static data registration. The registration sampled the image fully (i.e. 

no random pixel sampling was used) and used a 3 level multi-resolution approach where 

the images were downsampled by a factor of 4, then 2, then with no downsampling. Planes 

inferior to approximately the upper jaw region were cropped from the images since the neck 

does not move rigidly with the head. Several planes superior to and outside of the head were 

also cropped to remove possibly noisy edge planes. For the neck region cropping the image 

is preferable to masking since it avoids introducing false edges into the image. A mask was 

applied which encompassed the support of the head with a large margin. The mask was 

heavily smoothed to avoid any hard edges, although it was entirely outside of active regions.

Each “moved” image was registered to the reference image corresponding to the previous 

frame or mean of several frames, i.e. if X frames were averaged over to create the reference 

image, then frame N was registered to the mean of frames (N − X) to (N − 1). Thus there 

were (40 − X) unique registrations for each parameter setting. Utilizing the preceding frames 

as the reference further ensures that there is negligible real motion between the frames. 

Observed mean residual displacement between frames was on the order of 0.08 mm.

The accuracy of a particular registration was quantified as follows (see Fig. 3): a 14-point 

ellipsoidal mesh was automatically generated with diameter of [150, 120, 100] mm in 

the anterior-posterior, left-right, inferior-superior directions, respectively, and was located 

to approximately coincide with the position of the brain under consideration. These mesh 

points were then transformed according to the ground truth transformation as well as the 

registration parameters. The pair-wise Euclidean distances between the points in these 

two sets were calculated and averaged yielding a “mesh displacement error”. The mesh 

displacement error was averaged over all the noise realizations, and this “mean mesh error” 

was used as a metric for the accuracy of the registration. To report the spread of the mesh 

displacement errors the 95th percentile was calculated, i.e. the value below which 95% of the 

mesh displacement errors fell.

II.E. Investigated Parameters

The primary investigated parameter was the frame duration. As shown in Table 2 the frame 

duration was varied between 20 ms and 5 sec. In all cases the 40 frames were separated 

by 5 sec, thus spanning the 200 sec of data without overlap. Note that frame duration is 

used as a more relatable proxy for the number of coincidence events per frame, but the 

final conclusion will necessarily be for the number of coincidence events in order to be 

general, as discussed in Section II.B. For this analysis Data Sets A, D, and E were used to 

demonstrate the effect of different scanners (SIGNA and D710) and tracers (FDG and FBB). 

Note that for the FBB tracer, similar to FDG, the distribution of this tracer usually involves 

the whole brain, particularly for amyloid positive patients.
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Additionally, a number of reconstruction and registration settings were investigated for their 

effect on registration accuracy: the number of MLEM iterations used for the reconstruction 

(more iterations yield less biased but noisier images, and take longer to execute); the 

transaxial pixel size of the reconstruction (smaller pixel sizes yield higher resolution images 

but with increased reconstruction time, the axial pixel size was kept fixed at 2.78 mm); the 

full-width-at-half-maximum (FWHM) of the image smoothing applied after reconstruction 

(more smoothing may improve registration accuracy to a point); the number of frames 

averaged together to create the reference image for the registration (more frames yield a less 

noisy reference); and the registration metric used (the mean square difference metric versus 

the mutual information metric). These parameters and their ranges are summarized in Table 

2.

It was not feasible to optimize over the entire 6 dimensional parameter space. In preliminary 

work various combinations of parameters were tested, including with different frame 

durations, but for the final analysis when one parameter was being tested all of the other 

parameters were held at the bold-faced values shown in Table 2.

The 40 frames were reconstructed using a set of parameter values, and this was repeated 

for each of the three transformations; a diagram of the process is given in Fig. 3. Data Set 

A was used for all of these investigations. Except for the frame duration analysis all of the 

reconstructions used a frame duration of 0.5 sec which corresponded to approximately 3.15 

× 105 true and scattered counts per frame.

III. Results

III.A. Influence of Activity and Randoms

Fig. 4 demonstrates the effect of the activity level and randoms fraction on the registration 

accuracy. The registration accuracy is plotted against both the frame duration and number of 

counts per frame. For a particular frame duration the registration accuracy across different 

data sets improves with increasing activity levels (Fig. 4, left), but when considering a 

particular number of true and scattered counts per frame the registration accuracy values are 

very similar across the data sets (Fig. 4, right). This indicates that even for very different 

tracer activity levels the registration accuracy can be predicted with some certainty using 

the number of true and scattered counts per frame. Data Set D has been included here even 

though it is a different tracer since it also follows the same behavior. Note that Data Set C, 

having the lowest randoms fraction and therefore less noisy images, does provide a slightly 

superior registration at the same count level particularly at very low count frames.

III.B. Investigated Parameters

Fig. 5 shows the results of the frame duration analysis for Data Set A, D, and E. The 

registration accuracy, as measured by the mean mesh error, improves with increasing 

number of counts per frame. For Data Set A, in all motion cases, for frames with 4.4×105 

true and scattered counts, at least 95% of the noise realizations had registrations with a mesh 

error of less than 1 mm (the maximum error was 1.3 mm). For this data set this corresponds 

to a frame duration of 0.7 sec. For Data Set D this occurred for frames with at least 3.7 × 105 
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true and scattered counts (1.5 sec duration, 1.0 mm maximum error), and for Data Set E for 

frames with at least 3.4×105 true and scattered counts (1.2 sec duration, 1.1 mm maximum 

error). The mean mesh errors in the Static case are much smaller, which is not unexpected 

since in the Static case the registration initialization (i.e. the identity) is very close to the 

ground truth.

Fig. 6 shows the results from the investigation into the effect of various parameters on the 

registration accuracy. As before, the mesh errors for the Static case are smaller than those 

from the Motion cases, but this is not unexpected. The Motion cases are the most interesting 

since they more closely simulate real-world scenarios. The results do not indicate a very 

strong dependence of the registration accuracy on any of the parameters, but there are clear 

trends nonetheless. Very similar results were observed when using a frame duration of 1 sec 

(not shown here).

It was found that the mutual information metric was more susceptible to image noise than 

the mean square metric, as can be seen in Fig. 7 where the dependence of the registration 

accuracy on the number of counts per frame is shown for the two metrics. While we 

could not identify a source in the literature which investigated the performance of the 

mutual information metric in the presence of significant noise, it stands to reason that since 

it utilizes the joint entropy histogram increased noise in the images would disperse that 

histogram and possibly increase the likelihood of converging to a local maximum. It should 

be noted that the mutual information metric is usually used for multi-modality cases or 

where the tracer distribution varies between frames27.

IV. Analysis

IV.A. Scanner Considerations

Certain scanner specifications might affect the results we report here: a different sensitivity 

(which is affected by the axial field-of-view, amongst other factors) as well as a different 

energy resolution would imply a different scatter fraction and thus require a different 

optimal number of true and scattered counts per frame, and a different TOF resolution 

would influence the quality and noise properties of the reconstructed images. Varying 

axial coverage also changes how much of the head is available for image registration. We 

have presented results from two different scanner geometries and demonstrated similarities 

in registration accuracy when frame duration is based on count rate. We expect that 

this investigation should approximately translate to most clinical scanners, but a new 

investigation may be required for systems with very different specifications.

IV.B. Execution Time Considerations

The execution time of the reconstruction and registration is a significant factor which 

underlies all the other results already presented. The optimal parameter settings need 

to be balanced against their effect on the execution time. The most significant factors 

are the number of iterations used for the reconstruction (which has a linear relationship 

with the reconstruction time) and the transaxial pixel size (which has an inverse squared 

relationship with the reconstruction time). Note that the frame duration is not a concern 
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since computation time for list mode reconstruction is proportional to the number of counts, 

therefore the total time to reconstruct a series of frames covering a set amount of data is 

approximately constant regardless of how many frames are used (except for some overhead 

per frame).

Our reconstruction implementation is described in16 and a more thorough discussion of the 

reconstruction time can be found there. The reconstruction of each frame is executed much 

faster than the duration of the data in the frame, depending on the number of events in each 

frame. Typically for frames of 1 sec duration (4 MLEM iterations, 4 mm transaxial pixel 

size) the reconstruction is executed in less than 0.5 sec on a standard 8-core 2.4 GHz Intel 

Core i9 CPU system, processing approximately 1.5 × 106 prompt events per second. Further 

acceleration can be achieved with a more powerful system or a GPU implementation. The 

registrations for the frame duration analyses shown in Figs. 4 and 5 using MATLAB’s 

functions were executed in parallel with a mean processing time of approximately 0.25 sec 

per frame. The total time taken to estimate the motion for a typical clinical scan is on the 

order of minutes and is by no means computationally prohibitive.

IV.C. Investigated Parameters

We chose a figure of merit (FOM) of 1 mm registration accuracy to identify parameters 

whose 95th percentile will be more accurate than that FOM.

IV.C.1. Number of Counts per Frame—Fig. 5 demonstrates that using 4.4 × 105 true 

and scattered counts per frame satisfies the registration accuracy FOM of 1 mm for FDG 

and FBB studies, and for the SIGNA and D710 scanners. Fig. 4 shows that this conclusion 

holds across varying activity levels and randoms fractions since all data sets satisfy the 

accuracy FOM when using 3.0 – 4.4 × 105 true and scattered counts per frame. The fact that 

FDG and FBB show very similar results can be explained by the fact that both tracers have 

distribution patterns involving much of the brain (an example of which can be seen in Fig. 2) 

and therefore similar noise properties for a given number of true and scattered counts. Thus 

the conclusion of number of counts per frame should be applicable to almost any brain study 

where the brain uptake is distributed throughout the brain and is largely consistent across 

the patient population. In cases of severe pathologies where this assumption is not true (e.g. 

where a large brain tumor exists for FDG studies) it is likely that the distribution of activity 

would actually aid the registration, or at least not degrade it.

It can be concluded for FDG and FBB scans that by using at least 4 × 105 true and 

scattered counts per frame a registration accuracy of 1 mm can be achieved. The frame 

duration needed to achieve this count level will depend on the injected activity. By taking 

the difference between the prompt rate and the randoms event rate (calculated, for example, 

from the single events rate reported in the list-mode data), the frame duration can be set to 

ensure that each frame contains the desired number of true and scattered coincidence events 

(this may need to be corrected for decay over time). In most clinical cases the frame duration 

should be 0.5 – 1 sec.

IV.C.2. Number of Reconstruction Iterations—Fig. 6(a) demonstrates that very 

similar results are achieved in the moving cases when using 4 iterations or more, with 
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6 and 8 satisfying the defined accuracy FOM. However when accounting for execution 

time considerations we conclude that using 4 iterations provides sufficiently accurate 

registrations.

IV.C.3. Pixel Size—Fig. 6(b) shows that using images with pixels in the 2 – 5 mm 

range produces very similar results in the moving case, with slightly higher spread in the 

registration accuracy for the larger pixels. Since the pixel size has the largest impact on the 

reconstruction time we conclude that a transaxial pixel size of 4 mm is appropriate to ensure 

accurate registrations.

IV.C.4. Post-smoothing FWHM—Fig. 6(c) indicates that the FWHM of the smoothing 

applied to the reconstructions before registration does not have a large impact on the 

registration accuracy. This could be due to the multiple resolution approach employed during 

the registration which behaves like a smoothing by downsampling the image. However, even 

though the impact of the smoothing is small, it is prudent to apply some smoothing to avoid 

any confounding effects due to noise, and therefore a FWHM of 4 – 6 mm is recommended.

IV.C.5. Number of Averaged Frames for Reference Image—Fig. 6(d) indicates 

that averaging over at least 2 frames improves image registration accuracy due to reduced 

noise. Care must be taken though in a real world case to ensure that there is no motion 

between the frames which are averaged over as this would produce a motion-blurred 

reference image.

V. Discussion

In this work we have presented an investigation into the effect of various parameters on the 

accuracy of rigid registration of brain images for the purpose of data-driven head motion 

estimation.

While other groups have investigated how to optimally set up and execute a registration13,14, 

we have focussed primarily on the frame duration and reconstruction and registration 

parameters which affect the noise properties of the images to establish how short the frame 

duration can be while ensuring an accurate registration.

We have shown that for registration based data-driven motion estimation in brain scans using 

either the FDG or FBB tracers, accurate motion estimates can be obtained by using 4 × 

105 true and scattered coincidence events per frame, a TOF ray-tracing projector to perform 

pure MLEM reconstructions using 4 iterations, a transaxial image pixel size of 4 mm, a 

post-smoothing FWHM of 6 mm, and summing 2 frames together to produce the reference 

image. For most clinical scans this will result in frames of duration 0.5 – 1 sec, yielding 

sufficiently high temporal sampling of the motion to avoid intra-frame motion blurring.

The resulting estimated rigid motion parameters can then be used to perform a full event-

by-event list-mode reconstruction, as described, for example, by Spangler-Bickell et al.2, 

where each event is re-positioned according to the motion estimate at the corresponding time 

before being used in a reconstruction of the entire acquired data set.
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V.A. Limitations

This work focused on FDG and FBB and the results are largely specific to those tracers. 

Other tracers, particularly neuroreceptor tracers such as raclopride, may have a very different 

distribution in the brain which could affect the optimal frame count level for accurate 

registrations.

The conclusions from this investigation are primarily for static data where changes in the 

tracer distribution over time are negligible. For dynamic data there are other considerations 

which fall outside of the scope of this work. Usually for static data a single reference 

frame is used throughout the motion estimation, while for dynamic data it may be necessary 

to continuously update the reference image to account for the changing distribution. This 

may introduce drift into the motion estimates and cause an inadequate motion correction. 

Alternatively the mutual information metric could be utilized, perhaps using an anatomical 

scan from another modality (computed tomography (CT) or magnetic resonance (MR) 

imaging) as the reference image. The best strategy to handle this requires further research.

As mentioned earlier this analysis does not account for intra-frame motion in the ultra-short 

frames used for the registration. Our assumption has been that with such short frame 

durations (≤ 1 sec) intra-frame motion will be very limited and will likely not have a 

significant impact on the registration. In our experience with clinical data, if sufficiently 

rapid motion occurs which causes substantial intra-frame motion within a 1 sec frame 

(e.g. sneezing or coughing) that motion is short-lived and has negligible impact on the 

reconstruction. Nonetheless, the conclusions above represent an ideal case where there is 

essentially no intra-frame motion.

The approach described in this manuscript leverages the spatial domain for motion 

estimation. Other data-driven motion estimation techniques, e.g. using center-of-mass 

analysis, inertial tensors, principal component analysis (PCA), make use of the raw 

sonogram or list-mode data to avoid performing lengthy image reconstructions. But 

provided that the reconstructions can be easily generated (as has been demonstrated in16), 

using image registration is expected to provide more accurate and precise estimates.

We identified parameter settings which ensured that the 95th percentile of the accuracy of 

the registrations fell below a certain figure of merit. The small number of registrations which 

fall outside of this threshold should have only a very minor impact on the final motion 

corrected reconstruction.

VI. Conclusion

In this work we have presented an investigation into the optimal parameter set to perform 

an accurate data-driven registration based motion estimation for brain scanning. For FDG 

and FBB tracers, with the SIGNA PET/MR or D710 PET/CT scanners, using 4×105 true 

and scattered coincidence events per frame will provide registrations which are accurate to 

at least 1 mm (95th percentile), defined as the error in the resultant displacement of the 

brain according to the registration parameters. In most clinical cases this will translate to a 

frame duration of 0.5–1 sec. Other reconstruction parameters were also optimized, such as 
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the number of MLEM iterations, pixel size, post-smoothing, and how to create the reference 

frame.

With these results one can reliably determine motion estimates directly from the data 

with a high temporal resolution, and then perform an event-by-event motion corrected 

reconstruction.
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Figure 1: 
Motion plots as recorded by the HobbitView external tracker for Data Set A. Relative to the 

first position the rotations change by less than 0.2° and the translations by less than 0.4 mm. 

The small high frequency oscillations which can be seen are due to respiration.
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Figure 2: 
Examples of reconstructions for Data Set A (FDG, top row) and Data Set D (FBB, 

bottom row) for three different frame durations and number of counts to demonstrate the 

image noise level. A transaxial slice is shown for the last reconstruction. These have been 

smoothed with an isotropic Gaussian kernel with 6 mm FWHM. No attenuation or scatter 

correction was applied.
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Figure 3: 
Diagram illustrating the motion simulation, registration, and quantification process.
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Figure 4: 
Left: The log-log scale plots of the registration accuracy against the frame duration for 

Data Sets A - D. See Table 1 for count rates and randoms fractions. The one-sided error 

bars indicate the value of the 95th percentile. Right: When plotting the same data against 

the number of true and scattered counts per frame the plots all lie very close together, 

indicating that the number of true and scattered counts per frame is a good indicator of the 

expected registration accuracy even for very different activity levels. The errors bars have 

been removed in this plot for clarity.
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Figure 5: 
Left: The mean accuracy of the registration of the 40 frames for (a) Data Set A, (b) Data Set 

D, and (c) Data Set E, plotted against both the number of true and scatter counts per frame 

(bottom x-axis) and the frame duration (top x-axis), with a zoomed in inset, showing that 

the registration accuracy improves with increasing counts per frame.The one-sided error bars 

indicate the value of the 95th percentile. The dashed line is for reference and indicates where 

the chosen figure of merit of 1 mm lies. Above figure (a) are shown some representative 

reconstructed frames for Data Set A with arrows indicating their frame duration. Right: The 

same plots on a log-log scale.
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Figure 6: 
Results of the investigations into the effect of various parameters on the registration 

accuracy using Data Set A and 0.5 sec frames. The one-sided error bars indicate the value of 

the 95th percentile. The dashed line indicates where the chosen figure of merit of 1 mm lies.
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Figure 7: 
Comparing the influence of the registration metric on the accuracy with respect to the 

number of counts per frame for Data Set A on a log-log scale. Only one motion case is 

shown. The mutual information (MI) metric results in less accurate registrations than the 

mean square difference (MSD) metric. The one-sided error bars indicate the value of the 95th 

percentile. The dashed line is for reference and indicates where the chosen figure of merit of 

1 mm lies.
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Table 1:

Summary of Data Sets

Set A Set B* Sec C Set D Set E

Tracer FDG FDG FDG FBB FDG

Scanner SIGNA SIGNA SIGNA SIGNA D710

Injected Activity (MBq) 504 183 245 412

Uptake Time (min) 27 70 43 49

Prompts per sec (×103) 1215 405 541 422 575

True & Scatter per sec (×103) 636 212 402 258 402

Randoms per sec (×103) 579 193 139 164 173

Randoms fraction 0.477 0.477 0.257 0.389 0.302

*
This data set was created by subsampling Set A by a factor of 3.
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Table 2:

Investigated Parameters

Parameter Range

Frame Duration [0.02, …, 0.5, …, 5.0] sec

MLEM Iterations [2, 4, 6, 8]

Transaxial Pixel Size [1.0, 2.0, 3.0, 4.0, 5.0, 7.5] mm

Post-smoothing FWHM [0, 2, 4, 6, 8, 10] mm

Number of averaged frames [1, 2, 3, 4, 5]

Metric [Mean Square Diff., Mutual Info.]

When one parameter was being tested all of the other parameters were held at the bold-faced values shown here.
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