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Abstract

For several decades, genetically selected alcohol-preferring rats have been successfully used to 

mimic and study alcohol use disorders (AUD). These rat lines have been instrumental in advancing 

our understanding of the neurobiology of alcoholism and enabling pharmacological studies to 

evaluate drug efficacy on alcohol drinking and relapse. Moreover, the results of these studies 

have identified genetic variables that are linked to AUD vulnerability. This is an up-to-date 

review that focuses on genetically selected Marchigian Sardinian alcohol-preferring (msP) rats. To 

support the translational relevance of the findings that are obtained from msP rats and highlight 

important similarities to AUD patients, we also discuss the results of recent brain imaging studies. 

Finally, to demonstrate the importance of studying sex differences in animal models of AUD, 

we present original data that highlight behavioral differences in the response to alcohol in male 

and female rats. Female msP rats exhibited higher alcohol consumption compared with males. 

Furthermore, msP rats of both sexes exhibit higher anxiety- and depressive-like behaviors in the 

elevated plus maze and forced swim test, respectively, compared with unselected Wistar controls. 

Notably, voluntary alcohol drinking decreases foot-shock stress and depressive-like behavior in 

both sexes, whereas anxiety-like behavior in the elevated plus maze is attenuated only in males. 

These findings suggest that male and female msP rats both drink high amounts of alcohol to 

self-medicate negative affective symptoms. For females, this behavior may be driven by an attempt 

to treat stress and depressive-like conditions. For males, generalized anxiety appears to be an 

important additional factor in the motivation to drink alcohol.
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1. Introduction

According to a recent report by the World Health Organization (WHO), alcohol is one of the 

most commonly abused psychotropic drugs in the world, second only to tobacco, leading to 

more than 3 million deaths as a result of its harmful use. At the global level, an estimated 

237 million men and 46 million women suffer from alcohol use disorder (AUD), with the 

highest prevalence among men and women in Europe (14.8% and 3.5%, respectively) and 

the United States (11.5% and 5.1%, respectively). The Diagnostic and Statistical Manual of 
Mental Disorders, 5th edition (DSM-5), describes AUD as a chronic relapsing disorder with 

substantial heritability (American Psychiatric Association, 2013). It is the most prevalent 

mental disorder at the global level (Disney et al., 1999; Slutske et al., 1999). The chronicity 

and relapsing nature of AUD is caused by maladaptive changes in the brain that occur in 

response to prolonged exposure to alcohol (Costin and Miles, 2014). Furthermore, AUD is 

associated with many physical (e.g., liver and heart disease) and psychiatric (e.g., anxiety 

and depression) comorbidities, the loss of productivity, and impairments in interpersonal 

functioning (Grant et al., 2015; Li et al., 2004).

Alcohol use disorder is also characterized by individual variability. Not all people are 

equally vulnerable to the disease. Various factors, including the age at which people start 

drinking, comorbid psychiatric conditions, and mental, social, and cultural status, can 

contribute to the development and progression of AUD. Nevertheless, family history studies 

have shown that genetic factors are key elements in shaping the vulnerability to AUD.

Well-designed human and animal studies have clearly shown that individuals may be 

genetically predisposed to AUD, although this does not exclude the importance of 

environmental factors (Bierut et al., 2002; Edenberg, 2002; Gianoulakis and de Waele, 

1994). Genetic predisposition is estimated to contribute to approximately 50–60% of the 

vulnerability to AUD (Costin and Miles, 2014; Goodwin et al., 1974; Prescott and Kendler, 

1999), as shown by adoption studies (Bakhireva et al., 2018; Bohman et al., 1981; Cloninger 

et al., 1981; Goodwin et al., 1977; Waaktaar et al., 2018) and twin-pair studies (Heath et al., 

1997; Kendler et al., 1992, 1995). The multigenic nature of AUD hampers the identification 

of specific genes that confer either vulnerability or resilience to the disease, thus limiting 

successes in this field of study (Costin and Miles, 2014). Because of the complexity of AUD, 

preclinical research has encountered significant difficulties in successfully mimicking all 

characteristics of the disease in laboratory animals. However, the general consensus is that 

there are minimal criteria, such as predictive, face, and construct validity, that must be met to 

consider an animal model valid (for details, see Ciccocioppo (2013)).

Despite these difficulties, extensive work over the past few decades has been performed 

to develop new preclinical procedures and animal models that are able to mimic the 

human condition. One of the major contributions in this field has come from studies of 
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genetically selected alcohol-preferring rats. These models allow studies of genetic factors 

that are associated with excessive alcohol drinking, links to specific phenotypes, and the 

impact of the environment on disease progression. Furthermore, the establishment of in 
vivo brain imaging techniques and new experimental paradigms that promote excessive 

alcohol drinking and intoxication in rodents have further helped bridge the gap between 

preclinical and clinical research. Unfortunately, despite these advances, female rodents have 

been relatively understudied. Sex differences in the response to alcohol are a neglected area 

of research that deserve particular attention.

The present review provides an update on different rat lines that have been genetically 

selected for high alcohol preference, with a particular focus on Marchigian Sardinian 

alcohol-preferring (msP) rats. We describe major advances in the field that have been 

achieved through the use of this rat line. We also present original data that underscore 

the importance of studying sex differences in AUD. Furthermore, we provide a summary 

of in vivo brain imaging data that demonstrate the importance of experimental approaches 

to improve the translational impact of preclinical research. Lastly, we critically discuss 

the translational validity of genetically selected alcohol-preferring rat lines as model to 

fully mimic the human AUD conditions. In particular we analyze the case of corticotropin 

releasing factor one (CRF1) receptor antagonists that in several animal models, including the 

msP rat, demonstrated significant efficacy, but then failed in the clinic.

2. Historical overview of genetically selected alcohol-preferring rats

Genetically selected alcohol-preferring rat lines were originally developed to gain insights 

into genetic factors that affect voluntary alcohol intake and preference. Through genetic 

selection and selective breeding, animals with high alcohol preference and animals with low 

alcohol preference have been generated. As a result of this work, at least six different rat 

lines have been generated around the world.

In 1951, the first selective breeding program was initiated at Universidad de Chile 

(UCh), where high alcohol-drinking (UChB) and low alcohol-drinking (UChA) lines were 

developed (Mardones et al., 1953; Mardones and Segovia-Riquelme, 1984; Quintanilla et al., 

2006). Eriksson and colleagues later initiated another selective breeding program at Alko 

Research Laboratories in Finland, where the Alko Alcohol high alcohol-preferring (AA) 

and Alko Non-Alcohol low alcohol-preferring (ANA) rat lines were generated (Eriksson, 

1968). After the success of these two initiatives, additional selective breeding programs were 

initiated in several laboratories. These programs resulted in the development of alcohol-

preferring (P) and non-preferring (NP) rat lines at Indiana University/Purdue University 

Indianapolis (Indianapolis, IN, USA; Li et al., 1979) and Sardinian alcohol-preferring (sP) 

and non-preferring (sNP) rats in Cagliari, Italy (Ciccocioppo et al., 2006; Colombo et al., 

2006; Li et al., 1979). Years later, starting from selectively bred rats from the N/NIH 

founder stock (a cross of eight inbred rat strains with varying levels of alcohol intake) in 

Indianapolis, the same research team launched a new bidirectional breeding program that 

resulted in the generation of High Alcohol Drinking (HAD) and Low Alcohol Drinking 

(LAD) rat lines (Hansen and Spuhler, 1984; Murphy et al., 2002).
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Over the years, some of these rat lines have been transferred to other laboratories, from 

which additional genetically selected alcohol-preferring rat lines were derived. For example, 

using P rats as founders, an inbred alcohol-preferring (iP) rat line was developed in 

Indianapolis. This new iP line was made available to colleagues at the Howard Florey 

Institute (University of Melbourne, Australia) that are now maintaining it. The iP line 

conserved the high alcohol-drinking phenotype of the founder stock. Over the years, it has 

been used in several genetic and pharmacological studies (Carr et al., 2007; Ciccocioppo et 

al., 2006; Cowen et al., 2005; Kimpel et al., 2007; Rodd et al., 2007).

In Italy, a few pairs of sP rats have been transferred from the University of Cagliari 

to the University of Camerino. Starting from this founder stock, a new line of alcohol-

preferring rats was generated, namely Marchigian Sardinian alcohol-preferring (msP) rats 

(for details, see (Ciccocioppo et al., 2006; Ciccocioppo et al., 1999a,b,c). We have used 

this rat line in an extensive program to characterize these rats genetically, behaviorally, 

and pharmacologically. Moreover, in an attempt to obtain translationally meaningful 

information, msP rats have been used in various functional magnetic resonance imaging 

(fMRI) studies, some of which also involve cohorts of AUD patients (De Santis et al., 2019, 

2020). Unfortunately, as for the other genetically selected rat lines, females msP rats have 

been rarely used in experiments. Thus, what we know about this rat line comes mostly 

from males. To start filling this gap, this review reports original data that show different 

behavioral responses to alcohol in male and female msP rats.

3. Genetically selected Marchigian Sardinian alcohol-preferring rats: a 

rodent model to study the neurobiology of alcohol use disorder

MsP rats were originally derived from Wistar rats. They have been selectively bred for 

high alcohol preference and consumption at the University of Camerino (Marche, Italy) for 

more than 80 generations, beginning from the 13th generation of sP rats that were originally 

developed at the University of Cagliari (Sardinia, Italy; (Colombo et al., 2006). The first 

publication on msP rats appeared in 1991 (Ciccocioppo et al., 2006). Since then, more than 

80 studies have explored behavior, genetics, neurobiology, and responses to pharmacological 

manipulations in this rat line (see the key studies in Table 1).

3.1. Genetics of msP rats

Over the years, several studies have investigated genetic factors that are responsible for the 

high alcohol drinking phenotype in msP rats. For example, an extensive genetic mapping 

of the msP line was performed using microarrays and gene sequencing (Ciccocioppo, 2013; 

Ciccocioppo et al., 2006; Hansson et al., 2006, 2007). The results of these studies showed 

that several genes that encode aldehyde dehydrogenase (ADH) isoforms are altered in 

msP rats compared with unselected Wistar controls (Ciccocioppo et al., 2006). The Aldh2 
gene was downregulated, and Aldh1a1, Aldh1a4, Aldh3a2, and Aldh5a1 were upregulated. 

Furthermore, the msP line exhibited overactivity of the corticotropin-releasing factor (CRF) 

system in different brain regions, driven by two single-nucleotide polymorphisms (SNPs) 

at CRF1 receptor locus (Ayanwuyi et al., 2013; Cippitelli et al., 2015; Hansson et al., 

2006; Logrip et al., 2018). As a consequence of this overexpression, msP rats exhibited a 
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high anxious-like phenotype, were sensitive to stress, and had depression-like symptoms 

that were all improved by alcohol drinking (Ciccocioppo, 2013; Ciccocioppo et al., 2006). 

In msP rats, a few days of voluntary alcohol drinking attenuated the overexpression 

of CRF1 receptors in various brain areas, suggesting the possibility that these animals 

drink to alleviate negative symptoms that are associated with an overactive stress system 

(Hansson et al., 2007). Pharmacological studies provided direct support for this hypothesis. 

In fact, the blockade of CRF1 receptors by antalarmin reduced alcohol self-administration 

in msP rats but not in unselected Wistar controls (Hansson et al., 2006). The same 

phenomenon was reported following treatment with nociceptin receptor (NOP) agonists, 

which acted as functional CRF1 receptor antagonists in reduced drinking in msP rats but 

not in Wistar controls (Economidou et al., 2008; Ubaldi et al., 2016; Witkin et al., 2014). 

Interestingly, Wistar rats that were chronically exposed to intoxicating doses of alcohol 

through intermittent vapor exposure exhibited neuroadaptive changes in the CRF system that 

resembled its innate dysregulation in msP rats. At the behavioral level, this genetic trait 

was associated with higher anxiety-like behavior, greater sensitivity to stress, and greater 

sensitivity to CRF1 receptor antagonists (Ciccocioppo et al., 2009; Gehlert et al., 2007; 

Herman et al., 2016; Kirson et al., 2018; Natividad et al., 2017; Sommer et al., 2008). At 

the cellular level, the dysregulation of γ-aminobutyric acid (GABA)ergic and glutamatergic 

synapses in the central nucleus of the amygdala (CeA) and greater sensitivity to CRF/CRF1 

and cannabinoid CB1 receptor compounds was reported in msP rats compared with Wistar 

controls, supporting the role of these systems in the anxiety-like and excessive drinking 

phenotypes (Herman et al., 2016; Kirson et al., 2018; Natividad et al., 2017). Notably, 

CRF1 receptor gene polymorphisms have also been identified in humans. Importantly, these 

polymorphisms appear to be linked to AUD (Quadros et al., 2016). Indeed, they correlate 

with the lifetime prevalence of drunkenness, high levels of alcohol drinking, and binge 

drinking episodes (Chen et al., 2010; Treutlein et al., 2006). Altogether, these findings 

indicate that humans and msP rats, at least to some extent, share common genetic factors 

that predispose them to AUD.

Differences between msP and Wistar rats have been detected at the level of expression of 

genes that are linked to glutamatergic and GABAergic transmission (Ciccocioppo et al., 

2006). For example, alterations of the gene that encodes the metabotropic glutamate receptor 

(Grm3) and the solute carrier family 6 (Slc6a1) gene that encodes the GBA transporter have 

been linked to alcohol sensitivity in mice (Hu et al., 2004).

Other genes of interest that were found to be differentially expressed in msP rats encode 

the opioid receptor μ1 (Oprm1) gene, opioid receptor-like (Oprl-1; referred to as the NOP 

receptor) gene, and neuropeptide Y receptor 5 gene, which have all been linked to alcohol 

abuse (Ciccocioppo et al., 2000, 2006; Heilig and Thorsell, 2002; Schroeder et al., 2005; 

Thorsell et al., 1999). Specifically, msP rats exhibited higher expression of nociceptin/

orphanin FQ (N/OFQ) and NOP receptor mRNA in numerous brain regions compared with 

their Wistar counterparts, accompanied by a significant increase in NOP receptor binding in 

the CeA, the bed nucleus of the stria terminalis (BNST), the ventral tegmental area (VTA), 

and several cortical structures (Economidou et al., 2008). Notably, Wistar rats that were 

exposed to chronic alcohol exhibited neuroadaptive changes in the N/OFQ-NOP system that 

resembled innate dysregulation that is detected in msP rats. These observations indicate 
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an association between innate upregulation of the N/OFQ-NOP system and high alcohol 

preference. Supporting this possibility, NOP receptor blockade with selective antagonists 

markedly reduced alcohol intake in msP rats (Borruto et al., 2020). This effect, however, 

also extended to unselected lines of rats and mice (Brunori et al., 2019; Rorick-Kehn et 

al., 2016). In summary, consistent with the complex polygenic nature of AUD, genetic data 

indicate that the selection of msP rats has been accompanied by alterations of several genes 

that affect the pharmacokinetic and pharmacodynamic properties of alcohol.

3.2. Behavioral characterization of msP rats

If exposed to a standard home-cage two-bottle choice (2BC; 10%, v/v, alcohol vs. water) 

regimen with continuous access for 24 h/day, msP rats drink approximately 7–8 g/kg of 

alcohol daily (Ciccocioppo et al., 1999, 2006). Drinking occurs mostly during the dark 

phase of the light/dark cycle, during which they consume around 80% of their daily 

alcohol. Drinking is organized into bouts. The largest bout occurs within the first hour 

of the dark phase. The second large bout occurs in the middle of the dark phase, and a 

third bout usually occurs immediately before the new light phase begins. These drinking 

bouts produce blood alcohol levels (BALs) around 70–80 mg/dl but can peak over 100 

mg/dl to produce pharmacologically meaningful effects (Ciccocioppo et al., 2006). If 

subjected to operant alcohol self-administration, msP rats exhibit robust lever-responding 

for alcohol that is acquired spontaneously and much faster than unselected Wistar controls 

(Ayanwuyi et al., 2013; Cannella et al., 2016; Domi et al., 2019). Moreover, compared 

with Wistar rats, if subjected to a progressive-ratio (PR) schedule of reinforcement, msP 

rats reach a significantly higher breakpoint for alcohol, suggesting stronger motivation for 

alcohol (Ciccocioppo et al., 2006; Domi et al., 2019). In msP rats, the intragastric (IG) 

administration of 0.7–1.5 g/kg alcohol produces the expression of significant conditioned 

place preference (CPP; (Ciccocioppo et al., 1999a,b,c). In Wistar rats, the administration of 

these doses of alcohol leads to conditioned aversive responses (Fidler et al., 2004).

In addition to a high alcohol drinking phenotype compared with Wistar controls, msP rats 

have a higher propensity to relapse when exposed to stimuli that predict alcohol availability 

or in response to stress (Ayanwuyi et al., 2013; Cannella et al., 2016; Ciccocioppo, 2013; 

Ciccocioppo et al., 2004, 2014; Cippitelli et al., 2008; Fotio et al., 2020; Stopponi et al., 

2013).

Environmental contexts, such as alcohol-paired cues, are well known to be determining 

factors that can trigger relapse in alcoholic patients (Cooney et al., 1997; Martin-Fardon 

and Weiss, 2013). Likewise, msP rats that are trained to self-administer 10% alcohol in the 

presence of discriminative cues, following a withdrawal period during which lever pressing 

is extinguished, resume a marked level of responding when re-exposed to alcohol cues 

in the absence of the primary reinforcer (Ciccocioppo, 2013; Ciccocioppo et al., 2006). 

Similar results have also been reported in heterogeneous Wistar rats (Augier et al., 2016; 

Bachteler et al., 2005). However, the magnitude and persistence of the reinstating effect 

of alcohol-associated cues is much higher in msP rats than in heterogeneous Wistar rats 

(Ciccocioppo et al., 2006). A similar phenomenon has also been shown in other lines of 
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genetically selected alcohol-preferring rats, such as P and sP rats (Ayanwuyi et al., 2013; 

Ciccocioppo, 2013; Koob et al., 2005; Vengeliene et al., 2003).

The msP rat line is also characterized by high sensitivity to stress, which may contribute 

to their excessive alcohol drinking phenotype (Hansson et al., 2006). For example, in a 

self-administration study with an implemented extinction-reinstatement paradigm, stress 

that was induced by intermittent footshock reinstated the alcohol-paired response in both 

msP and Wistar rats (Hansson et al., 2006). However, msP rats had the highest level of 

reinstatement after a 0.3 mA electric shock, whereas the same response in Wistar rats was 

achieved at a current intensity between 0.6 and 1.0 mA. At this current intensity, msP rats 

exhibited marked freezing behavior, thus demonstrating higher sensitivity to footshock stress 

compared with their Wistar counterparts. The high stress sensitivity in msP rats was also 

revealed in other behavioral paradigms, including the forced swimming test, elevated plus 

maze, open field test under unfamiliar conditions, and the defensive and marble burying 

tests (Ayanwuyi et al., 2013; Cippitelli et al., 2015; Natividad et al., 2017; Stopponi et 

al., 2018). Biochemical and electro-physiological data indicate that the hyper-anxious, high 

stress-sensitivity phenotype of msP rats depends on the dysregulation of endocannabinoid 

signaling in the CeA that is triggered by their innate hyperactivity of the CRF/CRF1 receptor 

system (Natividad et al., 2017; Stopponi et al., 2018). Notably, anxiety- and depressive-like 

symptoms and relatively poor stress coping ability in msP rats are attenuated by voluntary 

alcohol consumption and repeated intragastric alcohol administration (Ciccocioppo et al., 

1999a,b,c; Domi et al., 2019). Altogether, these findings reflect the results of several clinical 

studies that showed that a large subpopulation of alcoholic patients is characterized by a low 

ability to engage in adequate stress-coping responses, and alcohol is consumed to ameliorate 

negative affective symptoms that are associated with anxiety and depression (Koob and Le 

Moal, 2005).

Following abstinence episodes, AUD patients usually report a greater urge to drink that 

normally terminates in relapse, followed by severe alcohol intoxication episodes (Boening 

et al., 2001; McBride et al., 2002; Vengeliene et al., 2005). Resembling humans, rodents 

that are trained to chronically drink alcohol and subjected to periods of forced abstinence 

consume higher amounts of alcohol when re-exposed to it. This phenomenon is known 

as the alcohol deprivation effect (ADE), which has been described in both genetically 

selected alcohol-preferring rats and in unselected heterogeneous rats. Specifically, msP rats 

that were exposed to chronic alcohol exhibited a robust ADE when they were returned to 

alcohol after a forced abstinent period of 10 days (Perfumi et al., 2005). However, similar to 

unselected rodent lines, the increase in drinking in msP rats is transient and usually returns 

to baseline levels after a couple of days (Holter and Spanagel, 1999; Vengeliene et al., 

2014). Genetically selected alcohol-preferring rats do not appear to differ from unselected 

heterogeneous stock rats in this regard.

One of the major criticisms of using alcohol-preferring rats, and animal models of AUD 

in general, is that they only minimally incorporate the diagnostic criteria of the DSM-IV 

and DSM-5, which are mostly based on interviews and self-report questionnaires that assess 

the quantity and frequency of drinking and perceived consequences. Another common 

critique of these models is that only a small proportion of human alcohol users develop 
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AUD. Laboratory animal experiments, including those that utilize genetically selected rats, 

are usually performed on the entire subject population without considering individual 

variability. In an attempt to address these important critiques, we recently developed a 

model to explore interindividual differences in the propensity to shift from controlled to 

compulsive alcohol intake between msP rats and unselected Wistar controls. This model was 

originally developed by Deroche-Gamonet and Piazza for cocaine and has been used for 

psychostimulants in different laboratories (Belin et al., 2011; Deroche-Gamonet and Piazza, 

2004; Spanagel, 2017). This model was named the “0/3crit model of addiction,” based on 

the DSM-IV diagnostic criteria for addiction (American Psychiatric Association, 2000). It 

consists of a multidimensional experimental approach that seeks to identify subpopulations 

of rats that possess vulnerability (3crit) and resilience (0crit) to drug addiction-like behaviors 

by measuring three traits: (1) inability to refrain from drug seeking, (2) high motivation for 

the drug, and (3) maintenance of drug use despite negative consequences. By comparing 

msP and unselected Wistar rats, we adapted this experimental model to characterize their 

alcohol-addiction phenotype based on the 0/3 crit model (Domi et al., 2019). The results 

showed significant interindividual variability among both msP and Wistar rats. Only a subset 

of subjects (~13%) were positive for all three AUD criteria that were tested. Interestingly, 

the number of msP rats that could be classified as 3crit was three-times higher than Wistar 

rats (9.5% vs. 3.17%). Conversely, the 0crit group was enriched of Wistar rats. These 

findings are consistent with human data that show that only a proportion of subjects with 

a chronic alcohol drinking habit actually develop AUD, with genetic factors accounting for 

approximately 50% of this progression (Wagner and Anthony, 2002). A secondary finding 

of the study was that the amount of alcohol that was consumed positively correlated with 

the expression of anxiety-like behavior in msP rats but not in Wistar rats. This observation 

further supports the hypothesis that this alcohol-preferring rat line resembles a specific 

subgroup of AUD patients, in which drinking is motivated by tension-relief purposes. Future 

studies should assess the predictive validity of this model in pharmacological studies. The 

development of this model may represent an important advancement in the field because one 

of the most frequently debated issues in the alcohol research community is whether existing 

preclinical models effectively mimic AUD patients.

3.3. Sex-related behavioral differences in msP rats

Studies of sex differences in substance use disorders are a largely neglected area of research 

that is receiving growing attention (Becker and Chartoff, 2019; Becker et al., 2017; Perry et 

al., 2013). Historical data indicate that the rate of AUD is greater in men than in women. 

However, this gap is progressively reducing (White et al., 2015). In recent years, the rate of 

AUD in women has increased by 84%, relative to a 35% increase in men (Grant et al., 2017). 

Much evidence indicates significant sex differences in the reasons for initiating alcohol use 

and for the trajectory of AUD (Peltier et al., 2019; Schulte et al., 2009). More frequently 

than men, women initiate alcohol consumption as a coping strategy to attenuate negative 

affective states (e.g., anxiety, depression, stress, and feelings of isolation). In men, drinking 

is often initiated for social reasons, especially in young people who are trying to be accepted 

by groups (Buchmann et al., 2010; Buckner et al., 2006; Crutzen et al., 2013; Oscar-Berman 

et al., 2014; Peltier et al., 2019).
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Sex differences in the trajectory of AUD have also been documented in humans and to some 

extent have been replicated in laboratory animals. For example, women have a common 

tendency to experience a shift from recreational alcohol use to compulsive drinking more 

rapidly than men. Female rats are more prone to escalate alcohol consumption than males 

(Becker et al., 2012, 2017; Perry et al., 2013). Moreover, stress plays an important role in 

all phases of AUD, but its consequences are more pronounced in females than in males. 

Women are more likely to relapse in response to stressful events (Greenfield et al., 2007; 

Hudson and Stamp, 2011; Hyman et al., 2008; Sinha et al., 2006; Walitzer and Dearing, 

2006). Moreover, females escalate their drug use more rapidly than males (Anglin et al., 

1987; Becker et al., 2017; Bobzean et al., 2014). After a prolonged period of alcohol 

consumption, women have a higher risk of developing physical pathologies, such as breast 

cancer, cardiovascular problems, and liver inflammation, than men (Ashley et al., 1977; 

Smith-Warner et al., 1998; Urbano-Marquez et al., 1995).

Clinical research on AUD currently lacks a sufficient number of gender-related studies, but 

even more problematic is the situation in preclinical science. In fact, especially in rodents, 

most studies have been performed only in males. This has resulted in the generation of 

incomplete data to guide clinical trials (Landis et al., 2012; Zucker and Beery, 2010).

A few years ago, NIH issued a new series of guidelines to emphasize the need to study 

both males and females also at the preclinical level (Clayton and Collins, 2014; Collins 

and Tabak, 2014; Fattore and Melis, 2016b). In response to these recommendations, 

preclinical researchers in the addiction field made substantial efforts to include both sexes 

in their investigations (for review, see (Becker and Koob, 2016; Fattore and Melis, 2016a). 

However, the gap of knowledge in studies of sex differences remains large, and the research 

community should further commit to fill it (Lee, 2018; Sanchis-Segura and Becker, 2016). 

For this reason, in our laboratory, we recently began a research program to investigate 

sex differences in response to alcohol in msP rats and heterogeneous Wistar controls and 

evaluate alcohol-related behaviors in both males and females. Below we report the results 

of a series of experiments in which adult males and females of both strains were compared 

for voluntary alcohol drinking and the effects of alcohol on anxiety- and depressive-like 

responses (for details see Supplementary Materials).

The first series of experiments used the 2BC procedure (choice between water and 10% 

alcohol). Singly housed male and female msP and Wistar rats were given continuous (24 

h/day) access to 10% alcohol and water under free-choice condition. The first phase of the 

experiment consisted of an acclimation period that continued until baseline drinking was 

stable. Parallel groups with access to water only were used as controls. At this point, we 

monitored voluntary fluid consumption at 2, 8, and 24 h by recording the volume of intake 

from graduated cylinders as previously described (Borruto et al., 2020). Under baseline 

condition, the level of drinking in Wistar rats was very low, and we could not distinguish 

any difference between males and females. Conversely, msP rats consumed a high volume 

of alcohol, and female msP rats took significantly higher amounts of alcohol compared with 

male msP rats (Fig. 1A–C), whereas preference for alcohol was very high and did not differ 

between sexes (Fig. 1D). Overall, these findings are consistent with the results of studies in 

other rat strains, in which higher alcohol consumption was reported in females than in males 
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(Cailhol and Mormede, 2001; Li et al., 2019); for review, see (Becker and Koob, 2016; 

Hilderbrand and Lasek, 2018).

In earlier experiments, compared with Wistar rats, we repeatedly observed that msP rats 

exhibited higher levels of anxiety- and depressive-like symptoms that were attenuated by 

alcohol drinking. These behaviors have never been systematically explored in female msP 

rats. Here, we report data from the elevated plus maze, forced swim test and footshock 

stress response in male and female msP and Wistar rats following exposure to 2BC 10% 

alcohol drinking or water only. The results showed that both naive male and female msP rats 

exhibited higher anxiety-like behavior compared with Wistar rats (Fig. 2A and B). However, 

alcohol drinking reduced anxiety-like behavior in males (Fig. 2A) but not in females (Fig 

2B) in the elevated plus maze test. When the rats were tested in the forced swim test, we 

found that both male and female msP rats exhibited significantly longer immobility time (a 

measure of depression) compared with their Wistar counterparts. Alcohol drinking reduced 

immobility time in msP rats of both sexes (Fig. 3A and B). Lastly, msP rats of both sexes 

showed higher freezing in response to foot-shock stress compared to unselected Wistar 

rats. Alcohol consumption attenuated the freezing time both in male and female msP rats 

(Fig. 4A and B). These latter results expand our earlier findings in male msP rats showing 

their higher sensitivity to foot-shock stress induced freezing compared to Wistar controls 

(Cippitelli et al., 2015; Hansson et al., 2006). Most important, as previously demonstrated, 

these differences are not due to a different pain/sensitivity threshold of these two rat lines 

(Cippitelli et al., 2015; Hansson et al., 2006). Based on these findings, we hypothesize 

that male and female msP rats are both characterized by traits that confer negative mood 

conditions that co-segregated with alcohol drinking during genetic selection. However, 

the motivation for alcohol in males is probably linked to its ability to attenuate anxiety. 

In female rats, alcohol drinking appears to be linked to its antidepressant (and possibly 

anti-stress) properties. Although speculative, this hypothesis is consistent with human data 

that show that psychiatric comorbidity is different between male and female AUD patients. 

For example, women alcohol abusers are more likely than men who abuse substances to 

be diagnosed with post-traumatic stress disorder (Cottier et al., 1992; Kessler et al., 1995). 

Numerous studies have shown an association between AUD in women and a history of 

child maltreatment (Anda et al., 2002; Dinwiddie et al., 2000; Fergusson et al., 1996; 

Wilsnack et al., 1997) and physical and sexual assault in adulthood (Kilpatrick et al., 1997, 

2003). Further studies are needed to better characterize the impact of sex differences on 

alcohol abuse-related behaviors of msP rats. On the other hand, these preliminary findings 

corroborate the observation that alcohol-related sex differences present in AUD patient 

can be detected also in msP rats, which support the translational value of this type of 

investigation.

3.4. Limits and caveats in msP rats

Genetically selected alcohol-preferring rats have been successfully used to explore various 

aspects of AUD that are impossible to study in humans or unselected rodent lines. On the 

other hand, alcoholism is a heterogeneous disorder to which several genetic, environmental 

and personality factors can contribute (Cloninger, 1987; Cloninger et al., 1981; Heilig 

et al., 2011). Therefore, the complexity of this disease would be hardly represented by 
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a single animal model. For instance, the msP line, in addition to showing an innate 

preference for alcohol, is characterized by high-stress sensitivity and proclivity to negative 

affect, resembling a specific subpopulation of AUD patients that drink to self-medicate 

from negative mood and stress-relieving purposes. Hence, it is conceivable that msP rats 

more closely mick this cohort of individuals rather than other AUD subpopulations. If 

so, the generalization of the findings obtained in msP rats to AUD patients other than 

those that drink for self-medication and tension relieving purposes may be a mistake. 

Often, pharmacological experiments demonstrated that the use of this rat line is associated 

with good predictive validity. For example, acamprosate and naltrexone, two medications 

approved for AUD, are also effective in reducing the motivation for alcohol in msP rats 

(Bachteler et al., 2005; Perfumi et al., 2003). Whereas the 5-HT2 receptor antagonist 

ritanserin that is not efficacious in humans failed to attenuate drinking also in msP rats 

(Johnson et al., 1996; Panocka et al., 1993). However, in other circumstances, the validity of 

the msP model appeared questionable. The most striking example is that of CRF1 receptor 

antagonists. In fact, genetic, pharmacological and, molecular data in msP rats converged 

to suggest the therapeutic potential of this class of molecules (Bachteler et al., 2005; 

Panocka et al., 1993; Perfumi et al., 2005). However, when tested in AUD patients they 

systematically failed (Kwako et al., 2015; Schwandt et al., 2016).

In msP rats the neurochemical effects of alcohol have never been investigated and the only 

paper published so far demonstrated that following an amphetamine challenge, msP rats 

revealed a higher peak in extracellular dopamine levels in the NAc shell compared to the 

Wistar counterpart (Bifone et al., 2019). In the absence of these data, it is hard to fully 

clarify the neurochemical mechanisms subserving the high motivation for alcohol of msP 

rats. In the past, few neurochemical studies have been carried out in the sP line from 

which the msPs have been derived (Fadda et al., 1999; Richter et al., 2000). Starting three 

decades ago, msP rats have been re-derived from sP progenitors and we are now at the 91st 

generation of separate breeding. It is conceivable that during such a long period of separate 

selection significant genetic drift might have occurred making msP and sP rats different 

at both genotypic and phenotypic levels (Crabbe et al., 2010). Hence, any generalization 

between msP and sP rats should be taken cautiously.

Clinical studies demonstrated that alcohol abuse during adolescence represents a critical 

risk factor in the development of alcoholism in adulthood (Amodeo et al., 2017; Bates and 

Labouvie, 1997; Gilpin et al., 2012; Spear, 2018). In msP rats, spontaneous preference 

for alcohol appears very early in life making this animal line ideal to investigate the 

consequences of adolescent drinking. Systematic studies to investigate this phenomenon 

have not been conducted yet, but considering its importance future efforts should be 

dedicated to the exploration of this research area.

4. Neuroimaging studies: structural and functional MRI in msP rats

In clinical research, fMRI techniques are widely used to investigate structural and functional 

brain properties in healthy and pathological states (i.e., AUD). Several developments in the 

field have allowed the possibility of performing fMRI also in rodents (Bifone and Gozzi, 

2012; Gozzi et al., 2011; Zahr and Pfefferbaum, 2017). This technological advancement 
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allows preclinical researchers to generate data that can be directly translated to humans, thus 

providing a unique possibility to explore the face and construct validity of an animal model. 

Over the years, we have conducted a few fMRI experiments in msP rats, some of them 

directly comparing this rat line with AUD patients (De Santis et al., 2019, 2020).

The first fMRI study in alcohol-naïve msP rats performed basal cerebral blood volume 

(bCBV) mapping followed by voxel-based morphometry (VBM). We observed a reduction 

of gray matter (GM) volume in different thalamic and cortical regions in these animals 

compared with Wistar controls. Particularly striking was the reduction of bCBV, a marker 

of resting brain function, in cortical regions and the striatum (Gozzi et al., 2013). Consistent 

with these data, people with a high risk for alcohol abuse and AUD patients during 

the withdrawal phase exhibited lower metabolism in striatal regions and thalamo-cortical 

circuits (Kareken et al., 2004; Vollstadt-Klein et al., 2010). Moreover, loss of the GM 

signal in cortical regions in msP rats was compatible with their innate tendency to exhibit 

depressive- and anxiety-like symptoms. In fact, lower GM volume in the rostro-dorsal 

cingulate, which was reminiscent of msP rats, was also observed in patients who suffered 

from depression and anxiety (Spampinato et al., 2009; van Tol et al., 2010). Overall, these 

data suggest that some of the morphological and functional features that are observed in 

msP rats resemble characteristics of AUD patients. A tempting hypothesis is that these 

characteristics that are present before alcohol exposure may predispose individuals to AUD.

In addition to this innate condition, chronic alcohol consumption is well known to lead 

to numerous functional, neuro-morphological, and neuro-metabolic deficits in alcoholic 

patients (Buhler and Mann, 2011). For example, several studies reported lower GM and 

white matter volumes in heavy drinkers (Buhler and Mann, 2011; Demirakca et al., 2011; 

Fein et al., 2002; Mechtcheriakov et al., 2007; Pfefferbaum et al., 1995; Rando et al., 2011). 

These abnormalities are particularly pronounced in the frontal lobes, but conspicuous brain 

atrophy has also been reported in limbic areas and the cerebellum (Fein et al., 2006; Makris 

et al., 2008). In a recent translational study that used a diffusion tensor imaging (DTI) 

approach, we observed similar microstructural changes in white matter in AUD patients and 

msP rats following a period of voluntary alcohol drinking (De Santis et al., 2019). These 

changes continued to progress over the first 2–6 weeks of abstinence in both humans and 

msP rats, suggesting an underlying process that continues to evolve, even after alcohol 

cessation. In a subsequent imaging study, we found that chronic alcohol consumption 

produced a widespread increase in mean diffusivity (MD) in GM in both alcohol-preferring 

rats and alcoholic patients, which persisted into early abstinence (De Santis et al., 2020). We 

found that these alterations were associated with a marked decrease in extracellular space 

tortuosity that was linked to an increase in microglial reactivity in msP rats. A mathematical 

elaboration that was applied to the results of these imaging experiments indicated that such 

changes in MD can facilitate the extra synaptic release and extracellular propagation of 

neurotransmitters like dopamine. This may contribute to an increase in the rewarding effects 

of alcohol and the motivation for alcohol that is a common feature in chronic drinkers and 

genetically selected alcohol-preferring rats.

One socially and scientifically debated question is whether the predisposition to alcohol 

dependence confers vulnerability to addiction to other substances of abuse. To test 
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this hypothesis, we combined functional brain imaging, neurochemistry, and behavioral 

techniques in a group of msP rats and evaluated their response to psychostimulants (Bifone 

et al., 2019). The results revealed that msP rats that were challenged with an intravenous 

injection of D-amphetamine exhibited a higher level of activation of regions of the extended 

amygdala, detected by fMRI, compared with Wistar controls. This higher activation 

was associated with an increase in the extracellular release of dopamine in the nucleus 

accumbens shell and a higher propensity to escalate operant cocaine self-administration 

(Bifone et al., 2019). Altogether, these results support the hypothesis that there are some 

common genetic traits that predispose individuals to the development of substance use 

disorders, independent of the drug used. Considering the importance of this observation, it 

will be important to conduct further studies to confirm this initial observation.

5. Concluding remarks

Alcohol use disorder is one of the major burdens of disease at global level. Despite its 

impact on society, however, few Food and Drug Administration- or European Medicines 

Agency-approved pharmacotherapeutic options are available for its treatment. These include 

disulfiram, naltrexone, and acamprosate and in Europe also nalmefene. Moreover, clinical 

experience has demonstrated that their efficacy is limited to only certain subgroups of 

patients (Heilig and Egli, 2006). The successful development of these medications provides 

a proof-of-concept that supports the feasibility of drug development programs for AUD. 

This optimism, however, is tempered by numerous failures with several drugs that showed 

efficacy in laboratory animals but not in humans. The most striking negative experience 

involves CRF1 receptor antagonists. In fact, a wealth of preclinical data that were generated 

over 30 years demonstrated remarkable efficacy of this class of molecules in reducing 

excessive drinking and relapse to alcohol seeking and preventing negative symptoms that are 

associated with alcohol withdrawal (Zorrilla et al., 2013).

Genetic and behavioral studies in msP rats have consistently supported the potential of CRF1 

receptors as a promising treatment target for AUD. For instance, msP rats overexpress CRF1 

receptors in the brain, triggered by two SNPs in the promoter region of the respective gene 

(Ayanwuyi et al., 2013; Cippitelli et al., 2015; Hansson et al., 2006; Logrip et al., 2018). 

Similar evidence was obtained in human genetic studies that showed that CRF1 receptor 

gene polymorphisms are associated with binge drinking in AUD patients (Chen et al., 2010; 

Treutlein et al., 2006). Gene variations at the Crh1R locus was also reported in a Caucasian 

population with a diagnosis of AUD (Chen et al., 2010; Treutlein et al., 2006). Data suggest 

that these mutations conferred to msP rats higher sensitivity to the pharmacological blockade 

of CRF1 receptors. For example, CRF1 receptor antagonists are more effective in attenuating 

alcohol drinking, stress-induced relapse, and anxiety that is associated with alcohol 

abstinence in this rat line than in Wistar controls (Ciccocioppo, 2013; Ciccocioppo et al., 

2006). This negative experience raises the general question of whether animal models of 

AUD, more specifically genetically selected alcohol-preferring rats, have adequate predictive 

validity. Importantly, AUD is a heterogeneous disorder to which multiple genetic factors, 

environmental conditions, and cultural experiences can contribute. It is unlikely, therefore, 

that a single animal model (e.g., genetically selected alcohol-preferring rats) can mimic all 

these complexities. More reasonably, animal models are useful for studying specific aspects 
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of AUD. For instance, msP rats may mimic conditions under which drinking is triggered by 

the necessity to self-medicate a negative affective state. To overcome these limitations, we 

believe that preclinical research should refine its approach to study AUD and other complex 

psychiatric pathologies. Preclinical experiments should incorporate key elements that have 

emerged from human studies, including individual vulnerability. In fact, among alcohol 

users, only a small proportion of individuals develop AUD over time. It is unlikely that this 

condition can be captured in preclinical studies in which experimental subjects are tested 

together as a homogeneous group without distinguishing them based on their individual 

response to alcohol. To overcome this limitation, we recently proposed the use of the 0/3crit 

model to study AUD based on DMS-5 criteria, including individual animals’ propensity to 

exhibit (1) an inability to refrain from drug seeking, (2) high motivation for alcohol, and (3) 

the maintenance of drug use despite negative consequences.

Moreover, it is imperative to integrate preclinical research with experiments that explore 

sex differences in the response to alcohol and related pharmacological treatments. In fact, 

human studies have very clearly documented that men and women may initiate drinking for 

completely different reasons and may respond differently to alcohol and AUD medications 

(Buchmann et al., 2010; Buckner et al., 2006; Crutzen et al., 2013; Oscar-Berman et al., 

2014; Peltier et al., 2019). Furthermore, not all individuals with AUD are the same. This 

disorder is a very heterogeneous condition and associated with multiple endophenotypes. 

A valid animal model should not be proposed as a phenocopy of AUD in general. 

Rather, it should simulate specific endophenotypic characteristics that resemble distinct 

subpopulations of patients. If such distinctions are not considered, then such preclinical 

models would not be endowed with sufficient predictive, face, or construct validity. Finally, 

future studies should expand the use of in vivo brain imaging in laboratory animals because 

these techniques allow direct comparisons between the results from animal models and 

humans.

Over the years, preclinical research on AUD has advanced substantially, and the use of 

alcohol-preferring rats has made important contributions to this effort. However, there is still 

much room for improvement to reduce the risks of failure when translating from preclinical 

studies to the human condition.
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

2BC two-bottle choice

5-HT2A serotonin 5-hydroxytryptamine-2A
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AA Alko Alcohol-preferring rat line

ADE alcohol deprivation effect

ADH aldehyde dehydrogenase

AUD alcohol use disorder

ANA Alko Nonalcohol-preferring rat line

BAL: blood alcohol level

bCBV basal cerebral blood volume

BNST bed nucleus of the stria terminalis

CeA central nucleus of the amygdala

CPP conditioned place preference

CRF corticotropin-releasing factor

CRF1 corticotropin-releasing factor 1 receptor

DTI diffusion tensor imaging

DSM Diagnostic and Statistical Manual of Mental Disorders

GABA γ-aminobutyric acid

GM gray matter

HAD High Alcohol Drinking rat line

IG intragastric

MD mean diffusivity

LAD Low Alcohol Drinking rat line

MRI magnetic resonance imaging

msP Marchigian Sardinian alcohol-preferring rat line

NIH National institutes of Health

N/OFQ nociceptin/orphanin FQ

NOP nociception/orphanin FQ receptor

NP Alcohol Non-preferring rat line

OPRM-1 opioid receptor mu 1

OPRL-1 opioid-related nociceptin receptor 1

P alcohol-preferring rat line
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PR progressive ratio

sNP Sardinian alcohol non-preferring rat line

SNP single nucleotide polymorphism

sP Sardinian alcohol-preferring rat line

UChA Universidad de Chile low alcohol-drinking rat line

UChB Universidad de Chile “Bebidores” high alcohol-drinking rat line

VTA ventral tegmental area

WHO World Health Organization
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Fig. 1. 
Voluntary 10% alcohol intake in male msP (n = 14/group) and Wistar (n = 12/group) rats 

and female msP (n = 10/group) and Wistar (n = 12/group) rats at (A) 2 h (B) 8 h, and (C) 24 

h. Alcohol intake is expressed as g/kg to reduce the influence of differences in body weight. 

Alcohol preference is expressed as the mean percentage ± SEM of the last 3 days/24 h of 

alcohol intake over water (D). The data are expressed as mean ± SEM. ###p < 0.001, ##p < 

0.01, #p < 0.05, difference between msP and Wistar; ***p < 0.001, **p < 0.01, *p < 0.05, 

difference between males and females (three-way ANOVA followed by Newman-Keuls post 
hoc test).
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Fig. 2. 
Anxiety-like behavior in (A–B) male msP (n = 14/group) and Wistar (n = 12/group) rats 

and (C–D) female msP (n = 10/group) and Wistar (n = 12/group) rats in the elevated plus 

maze. The data are expressed as the mean percentage ±SEM of open arm time and open arm 

entries. ###p < 0.001, ##p < 0.01, difference between msP and Wistar; **p < 0.01, *p < 0.05, 

difference between alcohol and water (two-way ANOVA followed by Newman-Keuls post 
hoc test).
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Fig. 3. 
Depressive-like behavior in (A) male msP (n = 14/group) and Wistar (n = 12/group) rats and 

(B) female msP (n = 10/group) and Wistar (n = 12/group) rats in the forced swim test. The 

data are expressed as mean ± SEM. ###p < 0.001, ##p < 0.01, difference between msP and 

Wistar; ***p < 0.001, **p < 0.01, difference between alcohol and water (two-way ANOVA 

followed by Newman-Keuls post hoc test).
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Fig. 4. 
Foot-shock induced freezing in (A) male msP (n = 10/group) and Wistar (n = 10/group) rats 

and (B) female msP (n = 10/group) and Wistar (n = 10/group) rats. The data are expressed 

as mean ± SEM of the total time spent in freezing during 7 consecutive 1-min blocks. ###p 
< 0.001, #p < 0.05, difference between msP and Wistar; **p < 0.01, *p < 0.05, difference 

between alcohol and water (two-way ANOVA followed by Newman-Keuls post hoc test).
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Table 1

Summary of the key genetic, behavioral and neuroimaging studies on msP rats.

Type of study Result Reference

Genetic msP rats show innate upregulation of CRF1-R expression and density in multiple 
corticolimbic regions.

Hansson et al. (2006)

Genetic Voluntary alcohol consumption produces down-regulation of Crhr1 transcript levels in 
multiple corticolimbic regions.

Hansson et al., 2007

Genetic Genetic polymorphism in the CRF1-R promoter region is associated to an increased 
sensitivity to the effects of the pharmacological blockade of CRFI-R.

Ayanwuyi et al., 2013

Genetic 1 Polymorphism in the CRF1-R gene plays a role in shaping the high anxious phenotype 
of msP rats.

Cippitelli et al. (2015)

Genetic msP rats show innate upregulation of N/OFQ and NOP mRNA expression in multiple 
corticolimbic regions.

Economidou et al., 2008

Behavior Access to alcohol reduce the anxious and depressive phenotype of msP rats. Ciccocioppo et al., 1999

Behavior Alcohol induces conditioned place preference in msP rats. Ciccocioppo et al., 1999

Behavior msP rats are highly motivated to lever press for alcohol and show high level of seeking 
behavior in response to stress and environmental cues.

Ciccocioppo et al., 2004; 
Cippitelli et al., 2008

Behavior msP rats exhibit a robust ADE when they are returned to alcohol after a forced abstinent 
period.

Perfumi et al., 2005

Behavior Characterization of alcohol-addiction phenotype in msP rats based on the 0/3 crit model. Domi et al. (2019)

Neuroimaging Innate reduction of gray matter volume in different thalamic and cortical regions in msP 
rats.

Gozzi et al. (2013)

Neuroimaging Microstructural changes in white matter after voluntary alcohol drinking associated to a 
decreased extracellular space tortuosity.

De Santis et al., 2019; De Santis 
et al., 2020

Neuroimaging Amphetamine challenge induces strong functional responses in the extended amygdala 
of msP rats.

Bifone et al. (2019)
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