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Summary

Background—Statins remain one of the most prescribed medications worldwide. While 

effective in decreasing atherosclerotic cardiovascular disease risk, statin use is associated with 

adverse effects for a subset of patients, including disrupted metabolic control and increased risk of 

type II diabetes.

Methods—We investigated the potential role of the gut microbiome in modifying patient 

responses to statin therapy across two independent cohorts (Discovery N=1848, Validation 

N=991). Microbiome composition was assessed in these cohorts using stool 16S rRNA amplicon 

and shotgun metagenomic sequencing, respectively. Microbiome associations with markers of 
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statin on-target and adverse effects were tested via a covariate-adjusted interaction analysis 

framework, utilizing blood metabolomics, clinical laboratory tests, genomics, and demographics 

data.

Findings—The hydrolyzed substrate for 3-hydroxy-3-methylglutarate-CoA (HMG-CoA) 

reductase, HMG, emerged as a promising marker for statin on-target effects in cross-sectional 

cohorts. Plasma HMG levels reflected both statin therapy intensity and known genetic markers for 

variable statin responses. Through exploring gut microbiome associations between blood-derived 

measures of statin effectiveness and adverse metabolic effects of statins, we find that heterogeneity 

in statin responses was consistently associated with variation in the gut microbiome across 

two independent cohorts. A Bacteroides-enriched and diversity-depleted gut microbiome was 

associated with more intense statin responses, both in terms of on-target and adverse effects.

Conclusions—With further study and refinement, gut microbiome monitoring may help inform 

precision statin treatment.

eTOC blurb

Prior work has indicated that stain therapy impacts gut microbiome composition and that gut 

bacteria can metabolize statins, but the clinical implications of these interactions remain unknown. 

Wilmanski et al. identify robust associations between microbiome composition and on-target and 

adverse responses to statins, which could prove useful in drug personalization.

Graphical Abstract
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Introduction:

Between 25% and 30% of older adults across the United States and Europe take statins 

regularly for the purpose of treating or preventing atherosclerotic cardiovascular disease 

(ACVD), making statins one of the most commonly prescribed medications in the developed 

world 1,2. While statins have proven to be highly effective in decreasing ACVD-associated 

mortality, considerable heterogeneity exists in terms of efficacy (i.e. lowering low density 

lipoprotein (LDL) cholesterol) 3. Importantly, although LDL cholesterol is not the only 

factor contributing to ACVD progression 4, the extent to which statins decrease LDL 

cholesterol is directly proportional to their effectiveness in decreasing cardiovascular events 
3. Furthermore, statin use can give rise to a number of adverse effects in a subset of 

patients, including myopathy, disrupted glucose control, and increased risk of developing 

type II diabetes (T2D) 5–9. Several guidelines exist for which at-risk populations should 

be prescribed statins and at what intensity 10. However, despite considerable progress in 

identifying pharmacological 11 and genetic factors 12 contributing to heterogeneity in statin 

response, personalized approaches to statin therapy remain limited. Many times, treatment 

decisions are made through trial and error between the clinician and patient to obtain 

an optimal tolerable dose 13. Avoiding this trial-and- error phase through individualized 

analysis of genetic, physiological, and health parameters has the potential to improve 

drug tolerance, adherence, and long-term health benefits, as well as guide complementary 

therapies aimed at mitigating adverse effects of statin therapy.

A number of studies have recently demonstrated a link between the gut microbiome and 

statin use 14,15, as well as between the gut microbiome and ASCVD risk 16. Similar to 

other prescription medications, statins are readily metabolized by gut bacteria into secondary 

compounds 17,18. This indicates that the gut microbiome may impact statin bioavailability 

or potency to its host, contributing to the interindividual variability in LDL response seen 

among statin users 19. Additionally, biochemical modification of statins by gut bacteria 

could potentially contribute to adverse effects of the drug 20. Independent of statins, the gut 

microbiome has a well characterized role in contributing to host metabolic health through 

regulating insulin sensitivity, blood glucose, and inflammation, hence sharing considerable 

overlap with the adverse effects of statin therapy 21,22.

Statin intake has also been implicated in shifting gut microbiome composition, where 

primarily obese individuals taking statins were less likely to be classified into a putative 

gut microbiome compositional state, or ‘enterotype’, defined by high relative abundance 

of Bacteroides and a depletion of short-chain fatty acid (SCFA) producing Firmicutes taxa 
23.However, contradictory findings in animal models have also been reported, where a 

statin intervention decreased abundance of SCFA-producing taxa and, consequently, the gut 

ecosystem’s capacity to produce butyrate 24.

Given the numerous documented interactions between the gut microbiome and statins, and 

the established effect of the gut microbiome on metabolic health, we sought to explore 

the potential role of the gut microbiome in modifying the effect of statins on inhibiting 

their target enzyme 3-hydroxy-3-methylglutarate-CoA (HMG-CoA) reductase, as well as 

influencing the adverse effects of statins on metabolic health parameters. We analyzed data 
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from over 1840 deeply-phenotyped individuals with extensive medication histories, clinical 

laboratory tests, plasma metabolomics, whole genome and stool 16S rRNA gene amplicon 

sequencing data. We found that the hydrolyzed product of HMG-CoA (i.e., HMG) may 

serve as a novel blood-derived marker of statin response. We further show that heterogeneity 

in statin on-target effects and metabolic disruption could be explained by variation in the 

composition of the gut microbiome. We replicated our findings in an independent European 

cohort consisting of individuals recruited to capture the full spectrum of cardiometabolic 

disease progression. Overall, our results suggest that, with further study and refinement, 

the taxonomic and/or functional composition of the gut microbiome may be used to inform 

personalized statin therapies.

Results:

Cohort

The study population is presented in Fig. 1A and Table S1 (see also Methods). Briefly, 

a total of 1848 American adults were included in the present analysis. Individuals in 

this cohort were self-enrolled in a now closed scientific wellness company (Arivale, Inc), 

had available plasma metabolomics and clinical laboratory data, and provided detailed 

information on prescription medication use. Of these 1848 Arivale participants, 244 

were confidently identified as statin users, of which 97 provided detailed information 

on both dosage and type of statin prescribed. Demographics information was either 

collected through online questionnaires or one-on-one interviews with health coaches. In 

addition, we validated our main findings in a subset of an independent European cohort 

(n=688), consisting of individuals at various stages of cardiometabolic disease progression 

(Metacardis study)25, which collected stool shotgun metagenomics sequencing for gut 

microbiome analyses with paired medication use data, clinical laboratory test data, and 

serum metabolomics (see Methods).

Plasma HMG is a marker of statin use and on-target effects

The mechanism of action of statins is to inhibit the rate-limiting enzyme of de novo 
cholesterol synthesis, HMG-CoA reductase 26. Thus, we first sought to explore whether 

elevated plasma levels of the hydrolyzed substrate for this enzyme, HMG (measured in 

our broad untargeted metabolomics panel), could serve as a reliable marker of statin use 

(Fig. 1B). Plasma HMG levels were significantly higher in statin users than in non-users, 

consistent with our initial hypothesis and the drug’s well-established mechanism of action 

(Fig. 1C, generalized linear models (GLM) adjusted for sex, age, and BMI). HMG levels 

further showed a negative correlation with blood LDL-cholesterol across two independent 

clinical laboratory test vendors, but exclusively in statin users, indicating that plasma HMG 

may not only reflect statin use but also the extent to which statins inhibit their target enzyme 

(Fig. 1C).

The negative association between HMG and LDL-cholesterol, observed exclusively in statin 

users, indicates that this compound may serve as a proxy for statin efficacy. However, it 

is also possible HMG simply reflects patient adherence, where individuals who take the 

drug as prescribed have higher HMG and lower LDL-cholesterol than those who do not. 

Wilmanski et al. Page 4

Med (N Y). Author manuscript; available in PMC 2023 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To further evaluate the reliability of HMG as a marker for statin on-target effects, we 

explored its correspondence to variable doses of statins prescribed in a subset of statin users 

where this information was available (n=97). Different statins (atorvastatin, simvastatin, etc.) 

exhibit different potencies and are often prescribed at variable doses. In order to synchronize 

medical practices in terms of statin therapy, the American Heart Association (AHA) released 

guidelines for adjusting statin doses across all types of statins, which cluster into one of 

three intensity categories (low, moderate, and high) aimed at achieving desired decreases in 

LDL-cholesterol of <30%, 30–49%, ≥50%, respectively 10. Based on these AHA guidelines, 

a daily 40mg dose of rosuvastatin would place a patient in the high intensity category, 

while the same dose of fluvastatin would place a patient in the low intensity group. Hence, 

we re-classified participants into their respective therapy intensity groups based on the 

AHA guidelines (Fig. 1A) and evaluated the associations between therapy intensity, plasma 

HMG, and blood LDL-cholesterol levels. Therapy intensity showed a positive dose response 

relationship with HMG, independent of sex, age, and BMI (GLM adj. β(95% CI):0.15(0.12–

0.17), P=1.1e-22)). Consistently, an inverse relationship was observed between therapy 

intensity and blood LDL-cholesterol, adjusted for the same covariates as well as for clinical 

laboratory test vendor (Fig. 1D, adj. β(95% CI):−15(−18 - −12), P=6.7e-20).

Previous large-scale pharmacogenomic studies of statin users have identified a number 

of single nucleotide polymorphisms (SNPs) predisposing patients to variable responses to 

statin therapy. To evaluate if plasma HMG captures known genetic variability in statin 

response, we tested associations between HMG and 9 SNPs most strongly associated with 

statin-mediated decrease in LDL-cholesterol in previous studies 12, using GLMs with a 

statin-by-genetic variant interaction term while adjusting for sex, age, BMI and genetic 

ancestry (see Methods). Of the 9 SNPs tested, 2 SNPs in close linkage disequilibrium 

(rs445925 and rs7412 mapping to the APOC1 and APOE genes, respectively, r > 0.80 in 

Caucasians) showed significant associations with HMG, that were dependent on statin intake 

(i.e., the effect was only present in statin users, FDR<0.05), in the directions consistent with 

the previously described associations of the same variants with statin response (Fig. S1, 

Table S2). Interestingly, running the same analysis with LDL-cholesterol instead of plasma 

HMG as an outcome variable (both measured from the same blood draw) did not reveal 

the same statin-dependent interactions (Table S2). In the case of both rs445925 and rs7412, 

carrying at least one copy of the minor allele was associated with a decrease in LDL-

cholesterol across statin users and non-users alike, hence providing no additional insight into 

statin-mediated effects when measured cross-sectionally (Fig. S1). Together, our combined 

analyses of statin use, statin therapy intensity and genetic variants known to modify statin 

response indicate that HMG may provide additional insight into statin on-target effects, not 

captured by a snapshot measurement of LDL-cholesterol in a cross-sectional study.

Statin use is associated with subtle shifts in the gut microbiome

Given the previously established associations between the gut microbiome and statin use, 

we next investigated whether statin intake is associated with changes in gut microbiome 

composition. Consistent with previous research, statin use showed a significant association 

with interindividual variability in gut microbiome composition, using the Bray-Curtis 

dissimilarity metric (PERMANOVA models adjusted for microbiome vendor, sex, age, and 
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BMI) (Fig. 2A, Fig. S1). We further tested the association between statin use and measures 

of gut α-diversity. We calculated observed Amplicon Sequence Variants (ASVs), a measure 

of species richness reflecting the number of unique taxa in the ecosystem, and Shannon 

diversity, a correlated measure that captures both richness and evenness in the abundances 

of taxa present. Statin intake was associated with a significant, but modest, decrease in 

one of the two α-diversity metrics calculated (linear regression models predicting Shannon 

diversity adjusted for the same covariates as PERMANOVA, adj. β(95% CI):−0.095 (−0.16 - 

−0.028), P=0.0051) (Fig. 2B). When looking at specific statin therapy intensity for a subset 

of participants where this information was available, there was no monotonic dose-response 

relationship between gut α-diversity, with only individuals receiving moderate intensity 

statin therapy demonstrating a significant decrease in measures of gut α-diversity relative to 

non-users (Fig. 2C, Fig. S1).

Gut microbiome α- and β-diversity correlate with markers of statin efficacy

Next, we investigated whether gut microbiome β-diversity may explain interindividual 

heterogeneity in response to statin therapy. Using HMG as a proxy for statin inhibition 

of its target enzyme, we modeled correspondence between statin on-target effects and 

interindividual variability in gut microbiome β-diversity using PERMANOVA and including 

a statin-by-HMG interaction term. The interaction terms had permutation-based P-values 
of 0.0070 (R2=0.0017) and 0.0013 (R2=0.0032) for Bray-Curtis and Weighted Unifrac 

metrics, respectively, which remained significant after adjusting for microbiome vendor, 

BMI, sex, and age (Fig. 2A, Fig. S1). These results indicate that HMG associations 

with gut microbiome composition are dependent on statin intake, similar to the HMG-

SNP associations reported earlier (Fig. S1). Very similar patterns were observed for gut 

α-diversity, where, once again, the association between our proxy for statin efficacy, HMG, 

and gut α-diversity was dependent on statin intake (Fig. 2D). Plotting the association 

between gut α-diversity and HMG stratified by statin use revealed that, among statin users, 

higher α-diversity corresponded to lower plasma HMG levels, indicating decreased on-target 

effects of the drug in individuals with more diverse microbiomes (Fig. 2D). The negative 

association between HMG and α-diversity in statin users was also orthogonal to genetic 

variants predisposing individuals to variable statin responses. Running a stepwise forward 

regression model predicting HMG levels using the 9 SNPs previously associated with statin 

response explained an additional 3.2% of variance in HMG, on top of age (i.e., the base 

model). Including observed ASVs as a measure of gut α-diversity in the model, in addition 

to age and the chosen SNPs, increased the percent variance explained by an additional 3.9% 

(complete model R2=0.185).

To further exclude the possibility that individuals with higher α-diversity are generally 

healthier and simply prescribed less potent statin therapies to begin with, thus leading to 

lower levels of HMG, we further adjusted our models for dosage intensity in the subset 

of participants with microbiome data where this information was available (n=75). In 

this smaller group of individuals, associations between gut α-diversity and HMG were 

not impacted by correcting for statin intensity (Fig. 2E & Fig. S2). Similar results were 

observed when investigating statin dependent associations between LDL-cholesterol and gut 

α-diversity, although to a weaker extent (OLS models predicting LDL-cholesterol adjusted 
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for clinical laboratory and microbiome vendors, sex, age, and BMI, Fig. S2). A weaker 

interaction effect with LDL cholesterol is to be expected, given the cross-sectional nature of 

our study and our inability to capture the percent decrease in LDL-cholesterol from baseline 

following the initiation of statin treatment, one of the most common and direct measures of 

statin effectiveness 3,19.

As another measure of gut microbiome correspondence to statin response, we tested the 

association between measures of gut α-diversity and the likelihood of having reached 

pre-defined target LDL-cholesterol levels for statin users (<70mg/dL and <100mg/dL). 

These are clinically relevant targets, as clinicians are recommended to adjust dosage and 

type of statin prescribed to reach these particular levels of LDL-cholesterol depending on 

the presence of specific ASCVD risk factors in their patients 27. Both Shannon diversity 

and Observed ASVs showed negative associations with likelihood of having reached target 

LDL-levels among statin users (Multivariable logistic regression adjusted for clinical lab 

vendor, sex, age, BMI, and T2D status [a common criteria, in combination with one or more 

CVD risk factors, where more aggressive LDL-lowering therapy is pursued]: Odds Ratios 

(OR) ranging from 0.60–0.69, Table 1). Together, these results indicate that gut microbiome 

composition is able to explain a significant proportion of variability in statin on-target effects 

in a generally healthy community-dwelling population.

Statin-associated changes in on-target and adverse effects are dependent on gut 
microbiome compositional states

Prior work on the gut microbiome and statins has relied on clustering individuals into 

microbiome-based compositional states called ‘enterotypes’ 28,29. A recent study revealed 

that statin intake among obese individuals was associated with lower prevalence of the 

Bacteroides 2 (Bac.2) enterotype, which is generally considered to be less healthy than 

other broad enterotype groupings common to cohorts in the United States and Europe 
23. To evaluate the extent to which these coarse ecological groupings might help explain 

interindividual variation in statin on-target and adverse effects, we stratified our cohort 

into enterotypes. Using a previously established method for enterotype identification, 

Dirichlet multinomial mixture (DMM) modeling 30, the participants in the Arivale cohort 

separated optimally into four groups, according to the Bayesian Information Criterion (BIC), 

consistent with some, but not all, previous human gut microbiome studies (Bacteroides 
1 (Bac.1), Bac.2, Ruminococcaceae (Rum.), and Prevotella (Prev.) clusters) 23,29–31 (Fig. 

3A, Fig. S2). The four enterotypes identified showed very similar characteristics to those 

described previously in European cohorts, with two Bacteroides-dominated enterotypes 

(Bac.1 and Bac.2), with the Bac.2 enterotype being further characterized by decreased 

α-diversity and a depletion of SCFA-producing commensals like Faecalibacterium and 

Subdoligranulum (Fig. 3B, Fig. S2). The Rum. enterotype was enriched for taxa primarily 

from the Firmicutes phylum, as well as Akkermansia (Fig. S2, Table S2), consistent with 

previous findings 28. The Prev. enterotype was the smallest in size and characterized by high 

relative abundance of the Prevotella genus (Fig. 3D, Data S1).

We first attempted to replicate previous findings 23 documenting an observed lower 

prevalence of the Bac.2 enterotype in obese individuals taking statins. Consistent with 
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previous results, obesity itself was associated with a higher likelihood of being assigned to 

the Bac.2 enterotype (Multivariable logistic regression adjusted for microbiome vendor, sex, 

and age, OR(95%CI): 1.8 (1.4–2.3), P=5.0e-5). However, contrary to the original findings, 

we actually observed a higher prevalence of the Bac.2 enterotype among statin users 

compared to non- users, particularly among obese individuals (Fig. 3E). This association 

among obese individuals was further confirmed using multivariable logistic regression 

adjusting for sex, age, and microbiome vendor (OR(95%CI): 2.1 (1.2–3.7), P=0.013, 

n=462).

We next set out to explore whether an individual’s enterotype was associated with their 

response to statin therapy. Focusing on statin on-target effects, we observed a significant 

enterotype-by-statin interaction when predicting plasma HMG levels (analysis of covariance 

(ANCOVA) adjusted for microbiome vendor, clinical lab vendor, sex, age, and BMI, 

P=0.034). Stratifying the cohort by enterotypes and comparing statin users to non-users 

revealed that the Bac.2 enterotype displayed the greatest increase in HMG with statin 

use (37% mean increase), followed by the Bac.1 (24%) and Rum. enterotypes (18%). 

Interestingly, individuals with a Prev. enterotype showed no significant increase in HMG 

while on statins, although our sample size for this particular enterotype was small and thus 

this result needs to be interpreted with caution (Fig. 3F). Similar results were obtained when 

evaluating statin-by-enterotype interaction effects on LDL-cholesterol levels (ANCOVA 

adjusted for same covariates as HMG models, P=0.0032), with statin users within the Bac.2 
enterotype demonstrating the lowest LDL-cholesterol levels (- 33%) relative to non-users 

within the same enterotype (Fig. S3). Statin users who were assigned the Bac.2 enterotype 

were also two to four-times more likely to have reached common LDL-cholesterol target 

levels for statin-users at higher risk for ASCVD (Table 1). Collectively, these results suggest 

that microbiome enterotypes may potentially reflect the extent to which statins inhibit 

HMG-CoA reductase and reduce LDL-cholesterol levels across individuals.

Statin use has previously been associated with disrupted glucose control and increased 

risk of developing T2D in a subset of patients 6,8,32. Given the known role of the 

gut microbiome in contributing to metabolic homeostasis, and the variable metabolic 

profiles previously observed across different microbiome enterotypes 23,33, we investigated 

whether enterotypes may modify the association between statin use and markers of insulin 

resistance. Focusing initially on Homeostatic Model Assessment for Insulin Resistance 

(HOMA-IR) 34,35, we tested for an enterotype-by-statin interaction effect while adjusting for 

microbiome vendor, clinical lab vendor, sex, age, BMI, LDL-cholesterol, and plasma HMG 

using ANCOVA. Individuals showed variable responses to statin therapy based on their 

microbiome enterotype, with Bac.2 individuals on statins demonstrating the highest levels 

of HOMA-IR relative to non-statin users, while Rum. individuals showed no significant 

difference in HOMA-IR between statin users and non-users (Interaction term P=0.0495, Fig. 

3G, Table 2). It is worth noting that in the subset of participants where dosage intensity 

information was available, all three intensities (low, moderate, high) were associated with 

comparable measures of HOMA-IR, suggesting that differences in therapy intensity are 

likely not the main driver behind the observed statin-enterotype interaction (Fig. S2).
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We next expanded our analysis into additional markers of metabolic health, including fasting 

insulin and blood glucose, as well as glycated hemoglobin A1c (HbA1c). There was a 

significant enterotype-by-statin interaction across all tested metabolic parameters, which 

remained significant after adjusting for covariates across all markers other than insulin 

(Table 1, Fig. S3). As individuals with T2D are often recommended to take statins, we 

further adjusted all models for T2D status in participants where this information was 

available (N=1691, T2D n=66), which did not change the significance of enterotype-by-

statin interaction effects observed (Table 2). Because a subset of individuals on statins 

is often concurrently treated with glucose-controlling medication, we further adjusted 

ANCOVA models for metformin use (the most commonly reported glucose-controlling drug 

in our cohort; Fig.S3), which did not drastically change the significance of the enterotype-

by-statin interaction effects observed (Table 2). Collectively, these results provide strong 

preliminary evidence that gut microbiome composition may modify how statins influence 

off-target physiology, particularly glucose homeostasis.

Statin-microbiome interactions are confirmed in an independent cohort

To evaluate the robustness of the microbiome associations with markers of statin on-target 

and adverse effects reported in the Arivale cohort, we attempted to validate our main 

results in an independent European cohort of adults recruited to capture various stages of 

the cardiometabolic disease spectrum (the MetaCardis cohort, see Methods) 25. Consistent 

with our original findings, serum HMG was markedly increased in MetaCardis individuals 

on statins compared to non-statin users (Fig.4A), further pointing to its utility as a readily-

available biomarker of statin efficacy. Using metagenomics species (MGS) count calculated 

by the authors of the original study as a measure of gut α-diversity, we observed a 

significant MGS count-by-statin interaction effect when predicting serum HMG levels, 

consistent with our original results (covariate adjusted ANCOVA, P=0.035) (Fig. 4B–C). 

Similar to the individuals in the Arivale cohort, MetaCardis participants with higher gut 

alpha-diversity demonstrated lower levels of serum HMG compared to individuals with 

low alpha-diversity, with this relationship being present exclusively in statin users, This 

interaction was independent of sex, age, BMI, nationality of the participant and microbial 

load, the latter being a covariate we were not able to adjust for in our discovery cohort 

study. This sheds some light on potential mechanisms underlying the observed associations, 

where the primary driver of the observed phenomenon is likely not the difference in the total 

number of microbes present in the ecosystem, but rather the differences in the taxonomic 

and functional composition of the gut microbiome.

Given that the MetaCardis study collected stool shotgun metagenomics sequencing data to 

characterize the gut microbiome, we next explored possible functional characteristics of 

the gut metagenome associated with markers of statin efficacy. To this end, we tested for 

associations between microbiome functions (gut metabolic modules (GMMs) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) modules) calculated in the original study, 

and serum HMG, specifically in statin-users, adjusted for age, sex, BMI, and participant 

nationality utilizing a beta-binomial regression approach (corncob) 36. A total of 5 modules 

remained significantly associated with serum HMG among statin users after multiple-

hypothesis correction (Bonferroni P<0.05), including a negative association between HMG 
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and a mucin degradation module (MF0103; Data S2). These functional associations are 

still preliminary, and will require further validation across additional cohorts to assess their 

robustness. Once validated, these functional hits could provide useful targets for mechanistic 

studies in vitro or in non-human animal models.

We next evaluated the statin-dependent associations between gut microbiome enterotypes 

and measures of statin on-target effects (serum HMG) and adverse effects (Hba1c, the sole 

marker of glucose homeostasis available in the validation dataset). MetaCardis participants 

separated into four enterotype groups, similar in taxonomic composition to the Arivale 

dataset, and consistent with previous studies on the same study population (Fig. S4). Once 

again, we attempted to replicate previous associations between statin use and the likelihood 

of having a Bac.2 enterotype. Consistent with previously reported findings by Veira-Silva 

et al., individuals with ischemic heart disease within the MetaCardis cohort demonstrated 

a lower likelihood of having a Bac.2 enterotype while on statins (OR(95%CI):0.4 (0.2–

0.9),n=303,p=0.022, models adjusted for sex and age). However, non-IHD (i.e., the 

remainder of the cohort) obese individuals from the MetaCardis cohort demonstrated a trend 

more consistent with what was observed in the Arivale dataset (i.e., higher odds of Bac.2 
enterotype with statin use, adj. OR(95%CI): 1.9(0.8–4.8), P=0.16), indicating the need to 

further refine the context and identify subpopulations where statin-enterotype associations 

are most consistent (Fig.S4).

We next proceeded to validate our main findings of statin-dependent associations between 

gut microbiome enterotypes and markers of statin on-target and adverse effects. There 

was a significant enterotype-by-statin interaction when modelling serum HMG, independent 

of age, sex, BMI, nationality, and microbial load, with results strikingly similar to those 

originally obtained in the Arivale cohort (P=0.035, Fig.3D, Fig.4D). Similarly, HbA1c 

levels were significantly higher in statin users versus non-users across both the Bac.1 and 

Bac.2 enterotypes, while this increase was absent in the Rum. enterotype. This once again 

suggests that the risk of metabolic adverse effects may be modulated by an individual’s gut 

microbiome compositional state. However, the P-value for the interaction term did not reach 

statistical significance (covariate-adjusted interaction term P=0.195) in the validation cohort, 

partially due to the smaller sample size compared to the Arivale dataset (Arivale N=1512, 

MetaCardis N=688) (Fig. S4). Because Bac.1 and Bac.2 enterotypes are both enriched for 

the genus Bacteroides and show similar associations with HbA1c based on statin use, we 

further examined the association between this marker of glycemia and rarefied (i.e., even 

subsampling of counts without replacement across samples) Bacteroides abundance counts 

adjusted for total microbial cell count, calculated by the authors of the original MetaCardis 

study25. Consistent with the enterotype analysis, we found significant associations between 

Bacteroides abundance and markers of statin on-target efficacy and metabolic health 

parameters in statin users, which were entirely absent in non-users (Fig.4E). Collectively, 

these results show a high degree of consistency across geographically distinct populations 

and different gut microbiome sequencing methods (16S rRNA amplicon sequencing in 

the Arivale cohort versus shotgun metagenomic sequencing in the MetaCardis cohort), 

converging on strong evidence for the potential clinical applicability of the reported findings.

Wilmanski et al. Page 10

Med (N Y). Author manuscript; available in PMC 2023 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion:

There is considerable heterogeneity in response to statin therapy among individuals, both 

in terms of on-target effects (lowering LDL-cholesterol) and likelihood of experiencing 

unwanted adverse effects 3,8,32. Herein, we report that variation in gut microbiome 

taxonomic composition can explain interindividual variability in statin responses. The main 

findings of our analyses are as follows: 1) HMG measured in plasma is a potential biomarker 

of both statin use and statin on-target effects, which also reflects known genetic variability 

in statin responses; 2) Gut α-diversity negatively correlates with HMG exclusively in 

statin users, independent of dose intensity and genetic predisposition, indicating a more 

diverse microbiome may interfere with statin on-target effects; 3) Enterotype analysis 

further confirms similar patterns of microbiome modification of statin response, with the 

Bacteroides dominant, α-diversity-depleted Bac.2 enterotype showing the highest plasma 

HMG and lowest LDL-cholesterol levels among statin users; and 4) Of the four enterotypes 

identified, individuals with the Bac.2 followed by Bac.1 enterotypes experience greatest 

disruption to glucose control with statin use, while the Firmicutes rich Rum. enterotype 

appears most protective, indicating variable risk of statin- mediated adverse metabolic 

effects based on gut microbiome composition. Our results are further strengthened by the 

strong agreement between data coming from independent American and European cohorts. 

Collectively, our findings indicate that the gut microbiome may influence statin activity 

within the human host. With further refinement, knowledge of these effects may inform 

statin therapy guidelines and help personalize ASCVD treatment.

To the best of our knowledge, measuring HMG in large observational studies for the purpose 

of exploring statin-mediated effects has not been previously proposed. The conversion of 

HMG-CoA to HMG is dependent on the hydrolysis of the thioester bond linking HMG 

to its Coenzyme-A moiety, which has been previously shown to be facilitated by at 

least one known thioesterase (peroxisomal acyl-CoA thioesterase 2) 37. Relatively little 

is known about the accumulation of HMG with statin therapy and the pathways involved, 

which warrants further research. Nevertheless, there are several advantages for including 

HMG along with LDL-cholesterol measurements when evaluating statin effects. For one, 

given the limitations of a cross-sectional study design like ours, HMG may provide more 

time-invariant insight into statin efficacy, as opposed to LDL-cholesterol, which would 

require knowledge of pre-statin cholesterol levels to calculate the percent decrease in LDL 

over time 3. This seemed to be the case in our genetics analysis, where cross-sectional 

measurements of plasma HMG were able to capture previously reported genetic variability 

in statin response while LDL-cholesterol measurements from the same blood draw were less 

sensitive.

An intriguing finding in the present analysis was an absence of statin-associated metabolic 

disruption in individuals with a Rum. enterotype (Fig. 3G, Fig. S4). Statin use in this group 

was still associated with increased plasma HMG and decreased LDL-cholesterol levels (Fig. 

3F, Fig. S3), indicating that patients with this microbiome composition type may benefit 

from statin therapy without an increased risk of unwanted metabolic complications. There 

are several possible explanations for this observation. For example, the Rum. enterotype 

is enriched in the genus Akkermansia, as well as several butyrate-producing taxa, which 
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are known to positively impact host metabolism through multiple mechanisms (Data S1, 

Fig. S2) 28,38, potentially serving as a buffer against statin off-target effects on glucose 

homeostasis. In addition, statins and other prescription drugs have been previously shown 

to be most readily metabolized by species within the Bacteroides genus, of which the 

Rum. enterotype is most depleted. The lower degree of drug metabolism by Firmicutes 

taxa comprising the Rum. enterotype may therefore be potentially protective from statin 

off-target effects. Consistently, both Bacteroides rich Bac.1 and Bac.2 enterotypes showed 

greatest increases in markers of insulin resistance with statin use.

Statin use in individuals with a Bacteroides-dominated gut microbiome was associated 

with the strongest on-target effects (i.e. high plasma HMG and low LDL-cholesterol 

levels) but also greatest metabolic disruption (Fig. 3F–G, Fig. S3, Fig.4E, Fig.S4). This 

is consistent with previous observational studies that have identified an association between 

the magnitude of decrease in LDL-cholesterol with statin use and risk of developing T2D 

(i.e. the greater the percent decrease in LDL-cholesterol with statin therapy, the higher the 

risk of new onset T2D) 7,39. One possible mechanism behind the reported association is 

the previously mentioned ability of Bacteroides species to metabolize prescription drugs, 

including statins 17. Bacteroides dominance within both the Bac.1 and Bac.2 enterotypes 

may modify drug activity, impacting both potency and potential adverse effects. Paired with 

depletion of several major butyrate-producing taxa within the Bac.2 enterotype (Fig. 3D, 

Fig. S1, Data S1), this bacterial composition may put patients at particularly high risk of 

metabolic complications. If this were indeed the case, individuals with a Bac.2 enterotype 

could benefit most from lower intensity therapy, which might still achieve the desired 

percent decrease in LDL-cholesterol while mitigating potential metabolic disruptions. 

Complementary pro- and prebiotic interventions could also be potentially pursued in 

these individuals. However, further experimental work is needed to fully elucidate the 

microbiome-statin interactions that may be driving the reported associations. In addition, 

the adoption of microbiome sequencing data to inform therapy personalization will further 

require effective dissemination of this information to clinicians to inform their decisions, a 

likely challenge in the years to come.

While our present investigation identified very similar enterotype structure to a previous 

study on statin use and the gut microbiome by Veiera-Silva et al. 23, our analysis 

also showed conflicting results in terms of prevalence of the putatively dysbiotic Bac.2 
enterotype among obese statin users (Fig. 3E, Fig.S4). One possible explanation for this 

discrepancy is that in the original study individuals were primarily prescribed Simvastatin 

(48% of statin users), which is a lower intensity HMG-CoA reductase inhibitor than the 

most commonly prescribed Atorvastatin in our cohort (53% of all statin users). However, 

further analysis of the MetaCardis cohort shows instances where Veiera-Silva et al.’s 

findings are confirmed (i.e., in individuals with IHD) and instances where they are not 

(i.e., in non-IHD obese individuals; consistent with results reported herein from the Arivale 

cohort), suggesting the dependence of these associations on heart disease and other factors 

may require further investigation. In any case, while the prior study 23 focused on how 

statins might influence the composition of the microbiome, our study focused on how 

the composition of the microbiome impacts the on- and off-target effects of statins in the 

host. Our analyses indicate that statins may have a detectable, but very weak effect on 
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the composition of the gut microbiome, while the gut microbiome appears to have a more 

sizable impact on host responses to statin treatment.

Growing evidence suggests a bidirectional interaction between prescription medication use 

and the gut microbiome, which may inform drug treatment for hundreds of millions of 

people worldwide. Here we present a proof-of-concept study on how gut microbiome 

composition may be used to stratify patients to inform statin therapy. As our understanding 

of microbe-drug interactions deepens, gut microbiome modification and monitoring hold 

promise for informing pharmacological treatment optimization.

Limitations of study:

While our analysis shows several promising and potentially translational associations 

between the ecology of the human gut microbiome and host statin responses, it is not 

without limitations. A major limitation of the study is its cross-sectional design. Although 

the rich multi-omics data collected from Arivale and MetaCardis participants allows us 

to adjust our statistical models for a number of potential confounders, we are unable to 

capture the percent change in LDL-cholesterol and markers of insulin resistance since statin 

initiation. Furthermore, our cohorts consist of predominantly Caucasian (>80%) individuals 

from the west coast of the U.S. and Western Europe, which limits the broader applicability 

of our findings to other populations. This is particularly important to note given prior 

reports of variable statin responses based on race and ethnicity 40. Finally, although we 

reference prior work where certain gut bacterial taxa have been directly implicated in 

metabolizing statins, we are unable to point to a specific mechanism responsible for the 

observed associations. We hope this work inspires future experimental and clinical studies to 

build towards a more mechanistic understanding of the reported phenomenon.

STAR Methods

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents 

should be directed to and will be fulfilled by the lead contact, Sean Gibbons 

(sgibbons@isbscience.org).

Data and code availability

• Plasma HMG and clinical laboratory tests, along with demographics and statin 

information on Arivale participants included in this study, are available in Data 

S3. 16S amplicon sequencing data from the Arivale data set, in the form of 

FASTQ files, has been uploaded to the Sequence Read Archive (SRA) with the 

following accession numbers: PRJNA826530, PRJNA826648.

• Qualified researchers can further access the full Arivale deidentified dataset 

supporting the findings in this study for research purposes through signing 

a Data Use Agreement (DUA). Inquiries to access the data can be made at 

data-access@isbscience.org and will be responded to within 7 business days. 

Data from the MetaCardis cohort used for validation of our results is freely 

available to download from the original study under the following link: https://
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www.nature.com/articles/s41591–022-01688–4#data-availability (supplementary 

tables 9–14).

• Code used for data analysis has been deposited in GitHub (https://github.com/

PriceLab/Statins_microbiome_project). It is also available on Figshare under the 

following DOI: 10.6084/m9.figshare.19579234.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

Materials availability

• This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study Participants—Procedures for the Arivale cohort study were run under the Western 

Institutional Review Board (WIRB) with Institutional Review Board (IRB) study number 

20170658 at the Institute for Systems Biology and 1178906 at Arivale. The research was 

performed entirely using deidentified and aggregated data of individuals who had signed a 

research authorization allowing the use of their anonymized data in research. Per current 

U.S. regulations for use of deidentified data, informed consent was not required. The 

Arivale cohort consists of adults who self-enrolled in a now closed lifestyle intervention 

program (Arivale, Inc. 2015–2019) 41–44. To be eligible to join the program, participants 

had to be over 18 years of age, not pregnant, and a resident of any U.S. state except New 

York. The participants analyzed in this study are the 92% of Arivale participants who 

agreed to research use as of 19 June 2018 and enrolled in the program between July 2015 

and March 2018. The lifestyle intervention was designed to improve a number of key 

outcomes based on longitudinal profiling of clinical biomarkers and individualized coaching 

by registered nurses and dietitians. For the present study, only individuals who filled out 

medication questionnaires, and/or reported their prescription medication information directly 

to their coach during a 1-on-1 session, were included. Participants further had to have 

available fasting plasma metabolomics and clinical laboratory test data (N=1848). Only 

baseline measurements and corresponding medication doses at the start of the program 

were considered, i.e. before any lifestyle interventions were recommended. Of the 1848 

participants originally included, after excluding individuals who reported taking antibiotics 

in that last 3 months, 1512 had available stool 16S rRNA gene sequencing data. Similar 

to the larger Arivale population, the majority of participants of this study were residents of 

Washington and California when in the program. Although the cohort tends to be leaner than 

the general U.S. population (prevalence of obesity is 31% relative to the national prevalence 

of 42%45), it is representative of the populations in the states where the majority of the 

participants were located. The cohort is further predominantly female (63%) and is skewed 

towards Caucasians (81%). Additional demographic information on the cohort age, BMI and 

other measures is provided in Table S1. Participants information on sex, age, medication use, 

and race was self-reported. Information on socioeconomic status was not collected.

Primary findings from our study were further validated in a European cohort which included 

1241 individuals across the spectrum of cardiometabolic disease progression (MetaCardis 
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cohort)25. Briefly, the MetaCardis project recruited adults from Denmark, France and 

Germany with increasing stages of ischemic heart disease (IHD), including 275 healthy 

controls (HC) matched based on demographics, 222 untreated metabolically matched 

controls (UMMC), 372 metabolically matched controls (MMC) and 372 individuals with 

IHD. Most of the individuals in the study had paired medication history, stool shotgun 

metagenomics sequencing data, serum metabolomics, and a subset of clinical laboratory 

tests. Because the overwhelming majority of IHD patients reported taking statins or other 

lipid lowering drugs (~87%), we validated our results specifically in the combined HC, 

MMC, and UMMC groups (N=688 with the necessary data available in supplementary 

tables 9–14 of the original study), excluding IHD patients, to discern the primary statin-

microbiome interactions of interest from other potential drug interactions and demographic/

lifestyle factors that are enriched in IHD patients and cannot be easily adjusted for in 

statistical models. Further validation was also performed using strictly MMC and UMMC 

groups, where participants were matched based on sex, age, BMI, and metabolic syndrome 

features to IHD patients, with UMMC being further not treated with any lipid lowering 

medication (Fig.S4). Analysis was performed using the processed dataset available in the 

supplementary tables (9–14) of the original study (see Data Availability statement).

METHOD DETAILS

Microbiome Analysis—Stool samples in the Arivale cohort were collected using kits 

developed by two microbiome vendors (DNAGenotek or Second Genome), and processed 

as described previously 42,46. Briefly, stool sample collection kits with proprietary chemical 

DNA stabilizers to maintain DNA integrity at ambient temperatures were shipped directly 

to participants’ homes and then shipped back to the vendors. Gut microbiome sequencing 

data in the form of FASTQ files were then obtained from the vendors on the basis of either 

the 300-bp paired-end MiSeq profiling of the 16S V3 + V4 region (DNAgenotek) or 250-bp 

paired-end MiSeq profiling of the 16S V4 region (Second Genome). Downstream analysis 

was performed using a denoise workflow from mbtools (https://github.com/gibbons-lab/

mbtools) that wraps functions from DADA2. DADA2 47 error models were first trained 

separately for each sequencing run and subsequently used to obtain amplicon sequence 

variants (ASVs) for each sample. Next, chimera removal was performed using the de novo 
DADA2 algorithm, which removed ~17% of all reads. Taxonomy assignment was performed 

using the RDP classifier with the SILVA database (version 132). In summary, 99% of the 

reads could be classified to the family level, 89% to the genus level and 32% to the species 

level. Sequence variants were aligned to each other using DECIPHER 48 and multiple 

sequence alignment was trimmed by removing each position that consisted of more than 

50% gaps. The resulting core alignment was then used to reconstruct a phylogenetic tree 

using FastTree 49. Downstream gut microbiome analysis was conducted using the Phyloseq 
Package in R 50. Gut microbiome samples were first rarefied to an even sampling depth 

of 25596 reads, corresponding to the minimum number of reads per sample in the dataset. 

Bray- Curtis 51 and Weighted UniFrac 52 dissimilarity matrices were calculated at the genus-

level using the Phyloseq package. α-diversity measures were calculated at the ASV-level 

using the Phyloseq Package.
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Clinical Laboratory Tests—Blood draws for all assays were performed by trained 

phlebotomists at LabCorp (n=1309) or Quest (n=553) service centers, and assaying was 

performed in CLIA-certified laboratory facilities by the vendors. Blood samples for clinical 

laboratory tests were obtained at the same time as the metabolomics blood draw, and only 

the baseline sample prior to any lifestyle coaching intervention was considered. Prior to the 

blood draw, Arivale participants were advised to avoid alcohol, vigorous exercise, aspartame 

and monosodium glutamate for 24 hours, and to begin fasting 12 hours in advance.

Plasma Metabolomics—Plasma HMG was measured as part of the metabolomics data 

generated by Metabolon, Inc.( North Carolina, USA), on the same blood draws as clinical 

laboratory tests, and has been described previously 42. Briefly, EDTA-plasma samples were 

thawed on ice, after which a recovery standard was added to each sample for quality 

control. Aqueous methanol extraction was performed to remove the protein fraction while 

retaining the maximum amount of small molecular weight compounds in the sample. 

Sample extract was next aliquoted into five separate fractions, one for each of the four 

methods used for metabolite quantification, as well as one aliquot as a potential backup. 

Excess organic solvent was removed from the aliquoted samples by placing the samples on 

a TurboVap® (Zymark). Aliquoted sample extracts were stored overnight under nitrogen 

before analysis. All samples were run on the Waters ACQUITY ultra-performance liquid 

chromatography (UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate mass 

spectrometer interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap 

mass analyzer operated at 35,000 mass resolution. The four aliquoted sample extracts were 

dried then reconstituted in solvents compatible with each of the four methods used for 

downstream metabolite quantification. To ensure injection and chromatographic consistency, 

each solvent further contained a series of standards at fixed concentrations. Two of the four 

aliquots were analyzed using acidic positive ion conditions chromatographically optimized 

for either more hydrophobic (solvent consisting of water, methanol, acetonitrile, 0.05% 

perfluoropentanoic acid (PFPA) and 0.01% formic acid (FA)) or hydrophilic compounds 

(water and methanol, containing 0.05% PFPA and 0.1% FA). Both of these aliquots were 

eluted using a C18 column (Waters UPLC BEH C18–2.1×100 mm, 1.7 μm). Elution for 

aliquot 3 was performed using a dedicated C18 column in solvent containing methanol and 

water under basic negative ion optimized conditions, with 6.5mM Ammonium Bicarbonate 

at pH 8. The fourth and final aliquot was analyzed via negative ionization following 

elution from a HILIC column (Waters UPLC BEH Amide 2.1×150 mm, 1.7 μm) using a 

gradient consisting of water and acetonitrile with 10mM Ammonium Formate, pH 10.8. 

Mass spectrometry (MS) analysis was performed using dynamic exclusion and alternating 

between MS and data-dependent MSn scans. The scan range varied slightly between the 

four methods used, and covered 70–1000 m/z. Process blanks and EDTA-plasma technical 

replicates were run intermittently throughout the study run-days to account for potential 

run and day variability. A biochemical library of over 3300 purified standards based on 

chromatographic properties and mass spectra was used for identification of known chemical 

entities. Raw metabolomics data was next normalized as described previously 41,42. Values 

were median scaled within each batch, such that the median value for each metabolite was 

1. To adjust for possible batch effects, further normalization across batches was performed 

by dividing the median-scaled value of each metabolite by the corresponding average value 
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for the same metabolite in technical control samples processed in the same batch. The same 

technical control samples were used to ensure the comparability of abundance estimates 

obtained across batches.

Genetics Analysis—Participant DNA was extracted from whole blood and, following 

quality control and purification, as needed, underwent 150 PE whole genome sequencing 

(WGS) using Illumina’s HiSeq X at 30x coverage as described previously 53. Variant 

calling was performed by the vendor using the pipeline that follows GATK’s Best 

Practices, using Haplotype Caller and hg19 build as the reference genome. A total of 

1747 participants (~94% of the present cohort) had available WGS data and were used in 

the present analysis. Following extensive quality control and assurance, genetic ancestry 

was calculated as principal components (PCs) using a set of ~100,000 ancestry-informative 

SNP markers as described previously 54. SNPs chosen for testing associations with HMG 

were based on prior studies investigating genetic predisposition to statin efficacy defined 

as percent decrease in LDL-cholesterol from baseline, and included the following variants: 

rs10455872, rs2199936, rs2900478, rs4420638, rs445925, rs5908, rs646776, rs7412, and 

rs8014194 12.

QUANTIFICATION AND STATISTICAL ANALYSIS

Depending on the statistical approach, analysis was conducted using either R (v 3.6) or 

Python (v 3.7). Of the 1848 participants included in our study, 73 had missing data on sex 

and age, 66 on BMI, 81 on HMG and 6 on LDL-cholesterol. These missing values were 

imputed using plasma metabolomics data and the K nearest neighbor algorithm implemented 

through the sklearn.impute module in Python.

Metabolomic & Clinical marker analysis—The associations of plasma HMG levels 

with LDL-cholesterol, statin intensity, and measures of gut α-diversity were all tested using 

Generalized Linear Models (GLM) with a Gamma distribution and a log-link function 

within the statsmodels module in Python, with HMG as the dependent variable. OLS 

regression (Python) was used whenever LDL-cholesterol or measures of gut α-diversity 

were the dependent variables. Testing for associations between variables and interindividual 

variability in gut microbiome composition was conducted using permutational multivariate 

analysis of variance (PERMANOVA) through the Adonis package in R using both the 

genus-level Bray-Curtis and Weighted UniFrac dissimilarity matrices. The number of 

permutations to obtain P-values was set to 3000.

For assessing dose-response relationships between HMG/LDL-cholesterol and dosage 

intensity (Fig. 1D), dosage was recoded into an ordinal variable (0(none/no statins), 1(low), 

2(moderate), 3(high)), and the significance of the β-coefficient for that variable from 

covariate adjusted models predicting either HMG (GLM adjusted for sex, age, and BMI) 

or LDL-cholesterol (OLS adjusted for sex, age, BMI, and clinical lab vendor) was reported. 

Wherever associations were visualized using box plots or scatter plots, the residuals (values 

adjusted for covariates from either GLM or OLS models) were plotted instead of the original 

values. For comparing the differences in prevalence of the four enterotypes among statin 

users and non-users, the χ2 test was performed using the chisq.test function in R. When 
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evaluating the association between obesity and Bac.2 enterotype, as well as statin use and 

Bac.2 enterotype among obese participants, multivariable logistic regression models were 

generated through the statsmodels module in Python with Bac.2 membership (versus all 

other enterotypes) as the dependent variable.

When testing for significant enterotype-by-statin interactions, HMG and metabolic 

parameters (blood glucose, blood insulin, HOMA-IR, and HbA1c) were log transformed 

prior to fitting the models. Analysis of Variance (ANOVA) or covariance (ANCOVA) models 

were then used to test for significant interactions using the statsmodels module in Python. If 

a significant interaction was present, post-hoc comparisons were performed between statin 

users and non-users within each enterotype on the covariate adjusted values (residuals) using 

two-sample t-tests, with Bonferroni corrected P<0.05 considered statistically significant.

Genetics Analysis—To model the association between SNPs and HMG in statin users, 

individuals homozygous and heterozygous for the minor allele were grouped together. 

Statistical analysis was performed on each SNP individually using GLM with a Gamma 

distribution and a log-link function within the statsmodels module in Python, with HMG 

as the dependent variable and a statin-by-SNP interaction term. The interaction term tests 

for a significant association between HMG and statin use, that is modified by the SNP 

of interest (i.e. the effect of statins on HMG are variable based on the genetic variant). 

Models were further adjusted for sex, age, BMI and the first 7 ancestry PCs. Ordinary Least 

Square (OLS) regression models with the same covariates and interaction term were also 

run with LDL-cholesterol as the dependent variable. Type-1 error was controlled using the 

Benjamini-Hochberg method (FDR<0.05).

Enterotype Analysis—Enterotype analysis was performed using Dirichlet Multinomial 

Mixture (DMM) modeling on the rarefied genus-level count data, which utilizes a 

combination of dirichlet multinomial mixtures and Expectation Maximization 30. For 

selecting the optimal number of DMM groups in our cohort (i.e. enterotypes), we used 

the Bayesian information criterion (BIC).

However, BIC as a model penalization metric is not without limitations and tends 

to err on the side of underfitting (i.e. estimating a smaller number of clusters). The 

Laplace approximation for model penalization 30, on the other hand, did not identify 

an optimal number of clusters in this particular dataset (out to a maximal number of 

eight clusters tested), indicating limited statistical evidence for a small number of coarse-

grained compositional states within our cohort (Fig. S2). Nevertheless, the main enterotype 

groupings tend to be relatively consistent from study-to-study in large U.S. and European 

populations, even if the statistical evidence for such states is somewhat limited 29. Given 

that the four BIC-identified enterotypes in our cohort show strikingly similar taxonomic 

signatures to those identified in prior work on statins 23, we moved forward with an analysis 

of these compositional states and how they relate to statin response.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• HMG in blood identified as a potential cross-sectional biomarker for statin 

responses

• Gut microbiome alpha-diversity negatively associated with on-target statin 

responses

• Bacteroides-enriched individuals at higher risk of statin-induced metabolic 

disruption

• Firmicutes-dominant individuals at lower risk of statin-induced metabolic 

disruption
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Context and Significance

Despite the undeniable cholesterol lowering benefits of statin therapy, considerable 

heterogeneity exists in individual responses to the same treatment. Human gut bacteria 

are known to metabolize statins in vitro, but there is limited information on how 

microbiome composition may contribute to statin on-target and/or adverse effects. 

Here, the authors identify a novel blood-based biomarker for monitoring statin effects 

in two large, independent human cohorts. They identify gut microbiome features 

robustly associated with variable statin responses, both in terms of on-target (cholesterol 

lowering) and adverse (insulin resistance) effects. Furthermore, these microbiome-statin 

associations are independent of human genetic variation associated with statin response 

variability. These results support the potential clinical utility of monitoring the gut 

microbiome for optimizing drug therapy.
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Figure 1. Plasma HMG correlates with statin use and statin-associated LDL-response.
A) Frequency of statin use, type of statin taken, and number of participants with available 

data for each ‘omics for each participant included in the present analysis. B) Diagram of 

de novo cholesterol synthesis pathway, with HMG and the rate-limiting enzyme inhibited 

by statins highlighted. C) Scatterplots of LDL-cholesterol and plasma HMG in statin non-

users (blue) and users (red) separately, across two different clinical laboratory test vendors 

used in the cohort. The lines shown are the y~x regression lines, and the shaded regions 

are 95% confidence intervals for the slope of each line. Below each scatter plot is the 

Spearman correlation coefficient and corresponding p-value. Adj. β(95%CI) corresponds to 

the β-coefficient for LDL cholesterol from GLMs predicting plasma HMG, adjusted for 

sex, age, and BMI. Also shown to the right of each scatter plot are kernel density plots for 

plasma HMG in statin users and non- users. The black lines indicate the mean of each group, 

and the p-value corresponds to the effect size of the difference between statin users and 

non-users from GLMs adjusted for the same covariates as above. D) Relationship between 

statin intensity therapy and plasma HMG as well LDL cholesterol levels for the subset of 

participants in the cohort who had available dosage intensity data (n=97) combined across 

both clinical lab test vendors. The lines shown are the y~x regression lines, and the shaded 

regions are 95% confidence intervals for the slope of each line. P-value corresponds to the 

dose-response relationship between therapy intensity and either plasma HMG (top box plot) 

or LDL cholesterol (bottom box plot). Values on the y-axis are analyte levels (residuals) 
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adjusted for covariates (sex, age, BMI and clinical lab test vendor). Box plots represent the 

interquartile range (25th to 75th percentile, IQR), with the middle line denoting the median; 

whiskers span 1.5 × IQR, points beyond this range are shown individually.
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Figure 2. Gut microbiome composition is associated with markers of statin efficacy.
A) Proportion of variance explained by statin use, plasma HMG levels, and a statin-by-HMG 

interaction term from unadjusted PERMANOVA models or models adjusted for sex, age, 

BMI, and microbiome vendor using the Weighted UniFrac genus-level dissimilarity matrix. 

Grey area corresponds to the cumulative R-squared of variables added to the model prior 

to the variable indicated on the x-axis, while the colored areas of the bars represent the 

additional variance explained by that variable. B) Measures of gut α-diversity in statin users 

compared to non-users. The β-coefficient, 95%CI and p-value shown is derived from OLS 

models predicting each of the α-diversity measures adjusted for microbiome vendor, sex, 

age, and BMI. Values on the y-axis are diversity measures adjusted for these covariates 

(residuals). C) Measures of Observed ASVs in statin users and non-users with known 

therapy intensity (low, moderate, high). P-values shown correspond to β-coefficients from 

OLS models predicting Observed ASVs comparing each intensity group to the no statin 

control group, adjusted for the same covariates as in B). D) Plasma HMG levels among 

statin users and non-users across tertiles of gut α-diversity. Interaction P corresponds to the 

statin-by-α-diversity interaction term p-value from GLM predicting plasma HMG adjusted 

for the same covariates as in B) and C). Values on the y-axis are diversity measures adjusted 

for these covariates (residuals). Box plots represent the interquartile range (25th to 75th 

percentile, IQR), with the middle line denoting the median; whiskers span 1.5 × IQR, points 

beyond this range are shown individually. E) Scatter plots of Observed ASVs (x-axis) and 
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covariate adjusted plasma HMG levels (residuals) (y-axis) in statin users with known dosage 

therapy intensity as well as statin non-users. Levels were adjusted for the same covariates as 

in B), as well as dosage intensity.
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Figure 3. Statin associations with markers of efficacy and metabolic adverse effects are 
microbiome-dependent.
A) Principle Coordinate Analysis (PCoA) plot of the genus-level Bray-Curtis Dissimilarity 

matrix color-coded by enterotypes. B-D) Relative abundance of Bacteroides (B), Prevotella 
(C), and Faecalibacterium (D) genera across the four enterotypes identified in the cohort. E) 
Proportion of each enterotype in statin users and non-users across the whole cohort (left) 

and stratified by obesity (right). F) Plasma HMG levels among statin users and non-users 

stratified by enterotype. Interaction P corresponds to the statin*enterotype interaction term 

p-value from unadjusted ANOVA models, while the cov. Adj. interaction P corresponds 

to the statin-by-enterotype interaction term p-value from covariate adjusted ANCOVA 

models. Plasma HMG levels shown on the y-axis are values adjusted for the same 

covariates (residuals). G) HOMA-IR measures among statin users and non-users stratified 

by enterotype. Interaction P corresponds to the statin-by-enterotype interaction term p-value 

from unadjusted ANOVA models, while the cov. Adj. interaction P corresponds to the 

statin-by-enterotype interaction term p-value from ANCOVA models adjusted for covariates. 

P-values above the box plots in F) and correspond to tests of significance between statin 

non-users and statin users within each enterotype using two-samples t-test. Differences with 

Bonferroni corrected P<0.05 were considered statistically significant and are highlighted 

in red. Box plots represent the interquartile range (25th to 75th percentile, IQR), with the 
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middle line denoting the median; whiskers span 1.5 × IQR, points beyond this range are 

shown individually.
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Figure 4. Statin-HMG associations and statin-dependent microbiome associations are replicated 
in a validation cohort.
A) Serum HMG levels in statin users versus non-users in a subset of the MetaCardis 

cohort. P-value is derived from a linear regression model adjusted for sex, age, BMI, and 

participant nationality. HMG values plotted on the y-axis are adjusted for these covariates 

(residuals). B) Serum HMG levels among statin users and non-users across tertiles of gut 

α-diversity, assessed using metagenomics species count per sample. “Cov. Adj. Interaction 

P” corresponds to the statin-by-α-diversity interaction term p-value from linear models 

predicting serum HMG, adjusted for the same covariates as in A), as well as for microbial 

load. C) Percent variance explained by the base model (same covariates as in B)), and full 

model, where the MGS count measure of alpha-diversity is included. Additional variance 

explained in serum HMG by MGS count, on top of the base model containing covariates, 

is shown in red. D) Serum HMG levels among statin users and non-users stratified by 

enterotype. “Cov. Adj. interaction P” corresponds to the statin-by-enterotype interaction 

term P-value from covariate adjusted ANCOVA models (same covariates as in B). E) 
Associations between Bacteroides genus counts and markers of glycemic control (HbA1c) 

and statin effectiveness (HMG) in statin users and non-users. Bacteroides counts have been 

obtained after rarefaction and adjusting for microbial cell count, as described in the original 

study by Fromentin et al. 25. Box plots represent the interquartile range (25th to 75th 
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percentile, IQR), with the middle line denoting the median; whiskers span 1.5 × IQR, points 

beyond this range are shown individually.
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Table 1.
Gut microbiome measures correlate with having reached LDL-cholesterol target levels 
among statin users.

Odds Ratios (OR) for each gut microbiome measure from logistic regression models predicting having 

achieved either <100 mg/dL or <70 mg/dL target LDL-cholesterol level among statin users. The Bac.2 

enterotype was compared against all other enterotypes. Measures of α-diversity were scaled and centered prior 

to analysis for easier comparison of effect sizes. Models were adjusted for clinical laboratory and microbiome 

vendors, age, sex and BMI. Further adjustment for T2D status was done in participants where this information 

was available (n=174). Significant OR (P<0.05) are bolded.

<100 mg/dL (n cases=132, 
N total=197)

<100 mg/dL (n cases=132, 
N total=197)

<70 mg/dL (n cases=44, N 
total=197)

<70 mg/dL (n cases=44, N 
total=197)

Cov. adj. OR(95%CI) Cov. & T2D adj. 
OR(95%CI) Cov. adj. OR(95%CI) Cov. & T2D adj. 

OR(95%CI)

Shannon 
diversity 0.69 (0.49–0.97) 0.72 (0.50–1.03) 0.67 (0.48–0.95) 0.60 (0.41–0.87)

Observed 
ASVs 0.67 (0.47–0.95) 0.67 (0.45–0.98) 0.66 (0.45–0.95) 0.62 (0.40–0.96)

Bac.2 
enterotype 2.19 (1.04–4.60) 2.11 (0.95–4.66) 3.61 (1.68–7.77) 4.33 (1.83–10.25)
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Table 2.
Gut microbiome enterotypes modify the association between statin use and markers of 
glucose homeostasis.

Percentage in the first four columns corresponds to the percent median increase in each marker between 

statin users and non-users within each enterotype. P-values in these columns correspond to t-tests comparing 

covariate adjusted values between statin users and non-users. Values shown are raw p-values, and those that 

remained significant after correcting for type-1-error (Bonferroni P<0.05) are bolded. The last three columns 

in the table show the F- and P-values for the statin-by-enterotype interaction term from ANOVA (unadjusted) 

and ANCOVA (covariate adjusted) models predicting each of the specified markers of glucose homeostasis. 

Covariate adjusted models were adjusted for microbiome vendor, clinical lab vendor, sex, age, BMI, LDL 

cholesterol and plasma HMG. Second to last column corresponds to models adjusted for the same covariates 

as well as T2D status (yes/no, N=1385, T2D n=64), while the last column corresponds to models adjusted 

for the same covariates as well as metformin use. P-values<0.05 are bolded. Abbreviations: HOMA-IR: 

Homeostatic Model Assessment for Insulin Resistance; HbA1c: Glycated Hemoglobin A1c.

Bac.1 Rum. Bac.2 Prev. Unadjusted 
model N=1512

Covariate 
adj. model 

N=1512

Covariate 
and diabetes 
adj. model 

N=1385

Covariate and 
Metformin 
adj. model 

N=1512

HOMA-
IR

73%, 
P=7.2e-07

21% 
P=0.27

99% 
P=1.2e-04

29% 
P=0.33

F=4.5, 
P=0.0037 

F=2.6, 
P=0.0495 

F=2.6, 
P=0.049 

F=2.5, 
P=0.0595

Insulin 63% 
P=5.6e-06

19% 
P=0.17

89% 
P=9.1e-04

22% 
P=0.25 F=3.0, P=0.032 F=1.4, P=0.23 F=1.5, P=0.22 F=1.4, P=0.24

Glucose 6.6% 
P=9.7e-04

4.5% 
P=0.51

9.3% 
P=8.1e-04

7.6% 
P=0.84

F=6.4, 
P=0.00025 

F=4.4, 
P=0.0041 

F=3.9, 
P=0.0092 

F=3.9, 
P=0.0083 

HbA1c 5.6% 
P=2.0e-03

1.9% 
P=0.16

7.3% 
P=1.2e-04

1.8% 
P=0.57

F=8.1, 
P=2.3E-05 

F=6.3, 
P=0.00030 

F=3.4, 
P=0.017 

F=5.6, 
P=0.00086 
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Bacterial and virus strains

Biological samples

Stool and blood samples from the Arivale Cohort This paper

Chemicals, peptides, and recombinant proteins

Critical commercial assays

Deposited data

Stool 16S rRNA sequencing data This paper Sequence Read Archive (SRA) Accession numbers: 
PRJNA826530 PRJNA826648

Demographics, clinical, and metabolomics data This paper Data S3

Experimental models: Cell lines

Experimental models: Organisms/strains

Oligonucleotides

Recombinant DNA

Software and algorithms

DADA2 (version 1.20.0) Callahan et al. 2016 https://benjjneb.github.io/dada2/

DECIPHER (version 2.20.0) Wright 2015 http://www2.decipher.codes/AlignSequences.html

mbtools (version 0.38.0) This paper https://github.com/Gibbons-Lab/mbtools

FastTree (version 2.1.11) Price et al. 2010 http://www.microbesonlineorg/fasttree/

Phyloseq (version 1.30.0) McMurdie & Holmes 2013 https://joey711.github.io/phyloseq/

DirichletMultinomial (version 1.28.0) Holmes et al. 2012 https://microbiome.github.io/tutorials/DMM.html

vegan (version 2.5–7) Oksanen et al. 2020 https://cran.r-project.org/web/packages/vegan/index.html

RDP Wang et al. 2007 http://rdp.cme.msu.edu/classifier/classifier.jsp

Statsmodels (version 0.10.2) Skipper & Perktold 2010 https://www.statsmodels.org/stable/index.html#

Other

SILVA Database (version 132) Quast et al. 2013 https://www.arb-silva.de/

Metacardis Cohort dataset Fromentin et al. 2022 https://www.nature.com/articles/s41591–022-01688–
4#data-availability
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