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Abstract

The cell division cycle is the generational period of cellular growth and propagation. Cell cycle 

progression needs to be highly regulated to preserve genomic fidelity while increasing cell 

number. In multicellular organisms, the cell cycle must also coordinate with cell fate specification 

during development and tissue homeostasis. Altered cell cycle dynamics play a central role 

also in a number of pathophysiological processes. Thus, extensive effort has been made to 

define the biochemical machineries that execute the cell cycle and their regulation, as well as 

implementing more sensitive and accurate cell cycle measurements. Here, we review the available 

techniques for cell cycle analysis, revisiting the assumptions behind conventional population-based 

measurements and discussing new tools to better address cell cycle heterogeneity in the single-cell 

era. We weigh the strengths, weaknesses, and trade-offs of methods designed to measure temporal 

aspects of the cell cycle. Finally, we discuss emerging techniques for capturing cell cycle speed at 

single-cell resolution in live animals.
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Eukaryotic cells progress through sequential molecular events to complete a round of the 

mitotic cell cycle: gap phase 1 (G1), DNA synthesis (S), gap phase 2 (G2), and mitosis (M), 

with interphase comprising all cell cycle phases but mitosis [1,2]. Cells can exit the cell 

cycle after mitosis and enter into G0 [3], a reversible state of cell cycle arrest referred to as 

quiescence. Cell cycle arrest at other phases is typically symptomatic of stress or excessive 

damage to DNA or various cellular machineries [4], although it can also be the result of 

active regulation, exemplified by G2 quiescence in adult neural stem cells [5]. Cells that 

are metabolically active but cannot divide, due to shortened telomeres and/or accumulated 

DNA damage, are termed senescent [6], while postmitotic cells are those that have exited 

the cell cycle upon terminal differentiation, such as neurons [7]. Of note, these noncycling 

state are distinct: Senescent cells cannot re-enter the cell cycle [6], while postmitotic cells 
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can [8], demonstrating that cell identity specification suppresses replicative capacity rather 

than causing its permanent loss.

Measuring the cell cycle can include probing many aspects: whether or not a cell is cycling 

or whether it retains the potential to cycle; which cell cycle phase a cell is in, or whether 

it has progressed beyond a given point of interest, such as a checkpoint or the completion 

of DNA replication; the dwell-time in a particular phase; the number of mitoses completed 

by a cellular lineage in a certain timeframe; or the total duration of the cell cycle. Any 

of these parameters could be used to describe populations or individual cells. Features 

with a time component can be deduced retrospectively after completion of a given cell 

cycle-related process, or in real time while it is taking place, focusing on a single time 

point or through continuous sampling. We review existing and emerging techniques for 

measuring the cell cycle along with their relative benefits, limitations, and trade-offs. Like 

paints on a palette, these techniques offer multiple choices for portraying cell cycle states 

either in quick, minimal strokes, or in laborious, exquisite detail. While these techniques are 

sometimes interchangeable options providing similar results, more often one is clearly the 

only appropriate choice to fulfill a given need. Proper choice of complementary techniques 

should paint the most accurate and vivid picture of this dynamic biological process.

Biochemical definition of the eukaryotic cell cycle machinery: a historical 

perspective

Cell cycle progression is fueled by a series of orderly protein phosphorylation, degradation, 

and new expression events, a conserved theme extending from yeast to humans. Yeast 

genetic screens identified major cell cycle regulators, such as cell division cycle 2 (CDC2), 

which was found to be required for G2/M and G1/S transitions [9]. Further work revealed 

CDC2 to be a kinase, whose activity is controlled by other cell cycle regulators, including by 

WEE1-mediated phosphorylation and inactivation in G2 phase [9]. Its cell cycle promoting 

activity depends on the concentration of its cyclin binding partners, the levels of which 

rise and fall throughout the cell cycle. Identical modes of regulation by CDC2 homologs 

were demonstrated in frogs and other vertebrates, notably humans, whose CDC2 homolog is 

named cyclin-dependent kinase 1 (CDK1) [9]. Classical biochemical delineation of the cell 

cycle benefitted from several unique features of amphibian eggs: They can be harvested 

relatively easily, manipulated ex vivo, contain large quantities of cytoplasm, and their 

maturation through the mitotic cell cycle can be conveniently controlled [10]. Dynamical 

modeling synthesized the actions and interactions of individual cell cycle molecular players 

into an elegant paradigm of a biological oscillator, propelled forward by threshold-sensitive 

positive-feedback switches and continuous delayed negative feedback regulation [11,12]. 

CDK1 in G2, for example, positively regulates the anaphase-promoting complex (APC), the 

E3 ubiquitin ligase that drives transition into mitosis via proteolytic destruction of various 

cell cycle regulators, including CDK1 itself [12]. When CDK1 expression is activated again 

in late G1, its phosphorylation targets include transcriptional repressors that shut down G1 

gene expression to drive S-phase commitment [13].
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Cell cycle as a major source of cellular heterogeneity unveiled in the single-

cell era

Cell cycle progression is regulated by mitogens and cell cycle inhibitors that collectively 

govern when, whether, and how frequently division takes place. Transformed cells often 

break loose from these constraints via gainof-function mutations in mitogenic regulators 

like components of growth factor signaling networks, or loss-of-function mutations in the 

cell cycle’s braking system, including CDK inhibitors and DNA damage response factors 

[14,15]. As cancer involves overproliferation, the cell cycle has been a major target of 

anticancer drugs [14]. Not surprisingly, however, cell cycle-targeting drugs often suffer 

limited specificity and/or frequent drug resistance [16].

Pre-existing cell cycle heterogeneity at the time of treatment is one determinant of outcome. 

Drugs aimed to kill proliferative cells may spare quiescent cancer stem cells, leaving 

them to re-seed the cancer after therapy [17]. Stimulating the proliferation of cancer stem 

cells increased their vulnerability toward cell cycle chemotherapy in animal models of 

acute myeloid leukemia [18]. However, in order to fully understand what defenses and/or 

vulnerabilities define cancer stem cells in nonhematopoietic malignancies, methods for 

identifying them are needed. Universal markers for cancer stem cells across multiple tissues 

remain elusive, leading to the use of cell cycle behavior as an identifying feature [19]. 

Since chemoresistance is believed to be enriched among slow- or noncycling cells, sensitive 

sorting methods based on cell cycle kinetics are promising.

The complex- and context-dependent effects of cell cycle inhibitors [20], targeting CDK4/6 

and others, continue to be uncovered, adding to the list of novel, cell cycle-independent 

functions of cyclins and CDKs [21,22]. Moving into the age of personalized medicine, high-

throughput drug screening of individual patient samples coupled with omics analyses can 

reveal links between cancer genotype and sensitivity/resistance to specific drugs, including 

cell cycle modulators [23]. The question then becomes not why, but how to refine the search 

to pinpoint susceptibilities that might occur only in specific cells at specific times. This is a 

problem requiring tools for dissecting cell cycle heterogeneity.

Synchronization strategies for dissecting cell cycle control

Chemical synchronization

Since most mammalian cells divide asynchronously, forcing them to accumulate in a 

particular cell cycle phase can be advantageous for assays requiring large quantities of 

sample. There are many chemical synchronization protocols targeting different phases [24]. 

For example, the cholesterol synthesis inhibitor lovastatin arrests cells in G1 [25]; the 

DNA polymerase inhibitor aphidicolin halts S-phase progression [26], and the microtubule 

polymerization inhibitor nocodazole disrupts the mitotic spindle to block cells in M-phase 

[27]. The efficiency of synchronization varies by drug, and the dose/duration of the chemical 

block must be optimized for every cell type. Increasing dose/duration can improve purity by 

reducing the number of cells that escape the block, at the expense of viability. It is widely 

acknowledged that even temporary cell cycle arrest could be cytotoxic, resulting in altered 
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cellular behavior such as increased apoptosis. This concern is especially relevant for studies 

of cell cycle in the context of rare fate transitions, where minor perturbations to cell growth 

and viability may have an outsized impact on fate outcome.

Drug-free synchronization

The cell cycle can be synchronized without the use of chemicals. Commonly used 

methods include serum/growth factor starvation [26,28], contact inhibition [28], mitotic 

shake-off [29], and size-based elutriation [30,31]. Serum starvation and contact inhibition 

cause cells to arrest in G0, as cell cycle entry requires nutrient and space availability 

[26,28]. However, like druginduced arrest, synchronization via starvation is not 100% 

efficient and can introduce stress artifacts [26]. Serum starvation and contact inhibition are 

ineffective for many cancer cell lines, whose proliferation is less sensitive to metabolic 

and crowding-mediated arrest [25]. Mitotic shake-off is a procedure that can increase 

purity of cell cycle synchronization while salvaging viability. Since adherent cultured cells 

temporarily lose most contact with their substrate during mitosis/cytokinesis, they can be 

freed through mechanical agitation and then collected in the supernatant. Mitotic shake-off 

is typically done in combination with mitosis-arresting drugs, but can also be performed on 

asynchronous cells [29]. The yield from the latter method would likely be lower by 1–2 

orders of magnitude, given that M-phase cells are a minor fraction of asynchronous cell 

populations. Centrifugal elutriation fractionates cells based on their size, which in principle 

correlates with cell cycle progression [32]. Therefore, this method is only applicable to cell 

populations that are sufficiently homogeneous in size [30].

In silico synchronization

Single-cell data acquired from physically asynchronous samples can be synchronized during 

data analysis. In silico synchronization can be used in multiparameter assays such as flow 

cytometry and microscopy: Cell cycle phase is determined and ordered sequentially based 

on cell cycle phase markers, and then, other experimentally measured features are analyzed 

as a function of cell cycle phase. The number of parameters can be increased to thousands 

in single-cell mRNA sequencing (scRNA-seq), followed by bioinformatics processing to 

reconstruct cell cycle phase from gene expression data [33].

Assigning cell cycle phase in genomic analysis can reduce noise, as differences in cell 

cycle and related genes often dominate scRNA-seq data. It is not uncommon to first discard 

annotated cell cycle genes whose oscillations would otherwise overwhelm and mask ‘true’ 

biological differences. However, the cell cycle can be so interconnected with cellular states 

that even genes not strictly classified as ‘cell cycle’ nevertheless correlate with at least one 

cell cycle gene [34]. Simply throwing away cell cycle genes may not be optimal when the 

annotated gene lists do not sufficiently account for the cell cycle-driven heterogeneity, or 

when cell cycle genes are important beyond their immediate role in cell cycle progression. 

Therefore, bioinformatics workflows involving a priori cell cycle phase assignment could be 

advantageous [34].
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Methods to determine cell cycle phases

Probes and labels

The presence of cycling activity can be determined by DNA-binding dyes on the basis 

of ploidy, since cells double their genomic content during S-phase [35,36]. Fluorescent 

analysis of a stained population of cells produces a DNA histogram: Diploid cells (2N) in 

G0/G1 have half the amount of DNA as G2 cells (4N), while S-phase cells in the process 

of genome replication have an intermediate DNA amount. 4’,6-diamidino-2-phenylindole 

(DAPI) and propidium iodide (PI) are commonly used to stain fixed cells, while other 

DNA dyes such as the Hoechst and DRAQ families are suitable for live-cell analysis [37]. 

RNA-binding dyes such as pyronin Y (PY) can further separate 2N cells into G1 or G0, 

since low transcriptional activity is part of the metabolic dormancy associated with G0 [35]. 

The mitotic chromosome-dispersing protein Ki-67 [38] is another marker of actively cycling 

cells, as are the family of replication licensing proteins, Mcm2–7 [39].

Cells actively engaged in DNA replication can be identified using thymidine analogs, 

which are incorporated into nascent DNA during the labeling period [35]. This family of 

probes share a similar mechanism of action, but their labeling/detection protocols carry 

distinct advantages and disadvantages [40]. Halogenated thymidine nucleosides like BrdU, 

CldU, and IdU are detected by immunostaining following fixation, permeabilization, and 

DNA denaturation. Despite the multiple steps in the staining protocol, these molecules, 

particularly BrdU, largely replaced tritiated thymidine (H3-thymidine) in common use 

since antibody labeling circumvents the need for radioisotopes. An alkylated thymidine 

nucleoside, EdU, can be detected by copper-catalyzed ‘click’ chemistry [41], which has 

the advantages of superior labeling sensitivity and minimal disruption to the DNA staining 

signal as no DNA denaturation is required [40,41].

Phosphorylated histone H3 (pH3), present from late G2 through telophase [42], can be 

recognized by specific antibodies [35,42] and is used as a marker of M-phase cells. The 

frequency of mitotic cells in an immunocytochemical assay is known as the mitotic index 

[43] and is used to compare proliferative rates between populations or pathological states.

Accurate cell cycle profiling requires the exclusion of dead/dying cells from the analysis, 

as they do not conform to cell cycle-regulated differences in nucleotide metabolism and 

chromosome configuration. This can be accomplished using stains that cross the leaky 

membranes of dead/dying cells to permanently and nonspecifically bind proteins, thereby 

discriminating live/dead cells in a manner that can withstand fixation [44]. DNA dyes such 

as 7-AAD and PI can similarly identify dead/dying cells in unfixed samples [45]. Other 

common apoptosis markers include Annexin V and terminal deoxynucleotidyl transferase 

(TdT) dUTP nick-end labeling (TUNEL) positivity [45].

Contrasting the detection of cell cycle phases, universal identifiers of cellular senescence are 

lacking. Commonly accepted senescence markers include increased β-galactosidase or the 

cell cycle inhibitors p16Ink4A and p21 [46]. Additionally, the International Cell Senescence 

Association (ICSA) has recently published a standardized workflow for detecting cellular 
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senescence and evaluating subcategories of senescence-associated phenotypes, such as high 

extracellular secretion, extensive DNA damage, and oxidative stress [46].

A host of well-characterized cell cycle genes uniquely expressed within specific cell cycle 

phases provides endogenous targets for antibody-based classification [35,47]. Because these 

are mostly found in the nucleus, such staining assays require fixation and permeabilization. 

Common methods for cell cycle phase determination are summarized in Table 1.

Live cell cycle reporters

Fluorescent protein tags circumvent the need for fixation and allow key moments during the 

cell cycle to be identified on the basis of morphology [48–50], subcellular localization [50–

52], and/or intensity. Examples of morphological probes include fluorescent proteintagged 

histones, which report mitotic progression based on characteristic chromatin condensation 

and alignment [48]. Fluorescently tagged PCNA coalesces into replication foci during S-

phase [49]. Tagging proteins that undergo cell cycle-regulated nuclear translocation, such as 

human DNA helicase B [50] and cyclin B1 [51], yields nuclear localized fluorescence in 

specific cell cycle phases. The FUCCI family of reporters harnesses the proteolytic nature of 

the cell cycle machinery, such that the expression of each fluorescent probe is restricted to 

a specific cell cycle phase [53,54]. The original FUCCI is a two-color system with distinct 

fluorescent proteins fused to CDT1 and GEMININ, marking G0/G1 and S/G2, respectively 

[53]. A clear benefit of discriminating cell cycle phases by fluorescence intensity is that it 

allows cell separation by fluorescence activated cell sorting (FACS). A more recent version 

adds a third tagged protein, SLBP, to distinguish S-phase from G2, and a fourth reporter 

fused to histone H1.0 to identify early M-phase cells based on chromatin condensation 

in microscopy-based assays [54]. As the original CDT1 reporter signal was found to 

persist beyond S-phase entry, an alternative reporter, PIP-FUCCI, was developed to improve 

temporal precision [55]. This system uses a replicationcoupled degron that is sensitive to the 

presence of DNA-bound PCNA to restrict a fluorescent protein from being expressed during 

S-phase [55]. Some cell cycle reporters, such as fluorescently tagged CDT1 [56] and PCNA 

[57], show signal accumulation over time within the reported phase, facilitating cell cycle 

phase subdivision into early vs. late stages based on signal intensity when transgene copy 

number/genomic integration is controlled. As long as there are enough visually identifiable 

features demarcating cell cycle phase progression, these reporters can be used singly [57] or 

combinatorially [50,54,58] in time-lapse microscopy to quantify cell cycle phase duration at 

the single-cell level. The approaches highlighted above, and other commonly used cell cycle 

markers, are summarized in Table 1.

Classification by artificial intelligence

To reduce the number of fluorescent probes or to study cells in their native, undisturbed 

form, label-free techniques to infer cell cycle phases from asynchronous populations have 

been developed [59,60]. Advances in high-speed optical capture and digitization technology 

combined with postacquisition reconstruction based on deep learning allow high-throughput 

measurement of many cellular features—including those associated with the cell cycle—

from microscopy [61–64] and image flow cytometry [60,65,66]. Artificial intelligence (AI) 
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is a powerful tool for unlocking hidden quantitative features from complex optical data. The 

next decade will likely embrace AI as the workflows become more user-friendly.

Assessing cell cycle dynamics

While there are many ways to directly evaluate cell cycle phase, dynamical features such 

as cell cycle duration—the time interval between corresponding phases of consecutive cell 

cycles—can be more difficult to determine when time-lapse microscopy is prohibited. The 

length of this interval, also referred to as cell cycle speed, is increasingly recognized to 

be significant for many cell fate decisions [67–73]. When cells can be imaged and tracked 

longitudinally, cell cycle speed is most easily measured based on the interval between 

two consecutive mitoses, as cell division is the most morphologically recognizable event 

in the cell cycle. A related but distinct metric is the duration of specific phases. A range 

of experimental techniques offer varying degrees of sensitivity and accuracy, with some 

affording single-cell resolution.

One of the oldest and most basic approaches for evaluating cell cycle duration is to 

look for changes in the overall population size. Counting the number of cells over a 

time course measures the rate of a population’s expansion, or population doubling time, 

which is sum of proliferation and death. However, while population-level behaviors may 

reflect underlying differences in cellular dynamics, population readouts alone cannot reveal 

what the differences are nor which cells are affected. For example, when a population 

shows mild increase after a particular treatment, it could come from modest cell cycle 

acceleration in a large number of cells; dramatic acceleration in a small number of 

cells; dramatic acceleration in a large number of cells with nearly equivalent increase in 

apoptosis; or anything in between. Importantly—especially for clinically relevant problems 

like cancer drug efficacy—multiple different responses could be occurring at the same 

time in distinct cellular subpopulations. With this in mind, we will discuss common and 

emerging techniques for the analysis of cell cycle dynamics. Their relative advantages and 

disadvantages are discussed below and summarized in Table 2.

Inferring cell cycle progression from snapshot data: the ergodicity assumption

Cell cycle phase markers such as those listed in Table 1 give a binary answer (Yes/No): 

Is this cell in X phase? In synchronized cells, phase markers indicate the efficiency of 

synchronization; followed through a time course, they reflect cell cycle progression into or 

out of a particular phase. In asynchronous cells, cell cycle phase markers are often used to 

compare the proliferation kinetics. This approach rests on the ergodic principle as applied 

to cell cycle, which assumes that within asynchronous populations, the fraction of cells in a 

given phase at a single timepoint equals the proportion of time a single cell spends in that 

phase relative to the total cell cycle duration [74,75] (Figure 1). Therefore, cell cycle phase 

lengthening or shortening are inferred by differences in the frequency of cells in a particular 

phase.

DNA content histograms are classically used in this way, with a change in the relative 

size of the 2N peak (encompassing cells in G0/G1) interpreted as altered dwell time in 

G0/G1 relative to S/G2/M. Since slow cellular turnover is most often associated with a long 
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G0/G1 dwell time, DNA histograms with prominent 2N peaks and few > 2N cells are taken 

as evidence of a slow or mostly dormant cell cycle. Other common labels using similar 

principles are S- and M-phasespecific markers such as BrdU and pH3. Although the length 

of any cell cycle phase can vary—particularly in response to DNA damage [76]—variation 

in total cell cycle time predominantly results from variable G0/G1 [77] and/or G2 phase 

length. This can be a handy simplification when transit times through mitosis and S-phase 

are comparatively constant, allowing experimentally observed differences in M- or S-phase 

labeling frequency at the populational level to indicate differences in overall cell cycle 

time. M-phase in particular is considered invariable in length [78], although biologically 

intriguing exceptions do exist. For example, in the developing mouse neocortex, prolonged 

mitosis in radial glia is associated with divergent fate commitment [79].

Caution must be used when inferring cell cycle rate differences from a single S-phase label 

(BrdU or similar), since the rate of DNA replication (and consequently the duration needed 

to complete S-phase) can change concomitantly with fate specification [70,80]. Indeed, the 

overall cell cycle accelerates by S-phase shortening during erythroid terminal differentiation 

[70] and neocortical neural progenitor differentiation [80]. In these circumstances, data 

from a single S-phase label would be misleading because a shortened S-phase would 

reduce the fraction of BrdU+ cells without implying a longer cell cycle [81]. A useful 

parameter in diagnosing this possibility is the median BrdU intensity among the S-phase 

cells. BrdU median fluorescent intensity, or MFI, reflects the amount of BrdU incorporation 

and hence the rate of DNA synthesis during the pulse period [70]. A higher MFI suggests 

faster progression through S-phase. In fact, one method exploiting the superior detection 

sensitivity of EdU [40] derives the length of S-phase based on the shortest labeling time 

required to achieve maximum cellular EdU intensity, which is expected to occur in cells 

exposed to the label throughout the entirety of DNA replication [82]. A potential caveat of 

this approach is that the results might be biased toward cells with the shortest S-phase.

Cumulative labeling with a single probe [83] or sequential labeling [84] with multiple 

thymidine analogs calculates the average (mean) length of S-phase as well as the mean 

overall cell cycle time. In the sequential thymidine assay, cells are pulsed consecutively with 

two nucleosides just before fixation. The two nucleosides, such as EdU and BrdU, can be 

detectible separately. With the time interval between the addition of the first and the second 

label known, S-phase duration and overall cell cycle length are calculated from the fraction 

of cells which incorporated one or both of the labels [84]. This assay can be used to quantify 

mean cell cycle length in cultured cells as well as live animals [70,85]. As with all readouts 

that report a population average, the sequential thymidine assay is more accurate for samples 

with relatively homogeneous cycling kinetics.

While methods that invoke the ergodic principle can be time-saving and informative, the 

underlying assumptions should be validated. The accuracy of the readout also depends on 

homogeneous cell cycle dynamics. As cell cycle heterogeneity is prevalent [86], it is critical 

to recognize that the fraction of cells found within a specific cell cycle phase reflects the 

average population kinetics, but not necessarily individual cells within that population [75]. 

On the other hand, one reason such methods are in widespread use is that they allow 

glimpses of cell cycle dynamics when only a single, fixed timepoint is available. This most 
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notably applies to primary cells/tissues derived from humans, which are simultaneously the 

most clinically relevant and also the least accessible and experimentally tractable.

Label-chase approaches

Cell cycle dynamics measured using any of the abovedescribed techniques reflect a 

population average. Other approaches are needed to unmask cell cycle speed heterogeneity, 

especially when cells with distinct proliferative behaviors are to be isolated by cell sorting. 

Label retention assays exploit the dilutional nature of cell divisions to estimate how many 

mitoses a cell experienced since being marked with a fluorescent label. Labels can be in the 

form of chemical dyes [87] or experimentally expressed fluorescent molecules [88–90]. The 

salient requirement is that it cannot be acquired anew but can only be lost through successive 

rounds of cell division. The degree of weakening in cellular fluorescent intensity reflects 

the number of divisions undergone during the chase period, creating an opportunity for cell 

sorting by FACS.

Fluorescent chemical dyes are well suited to experimental systems with relatively 

synchronous divisions and homogeneous cell size, such as activated lymphocytes [91]. 

However, many cell types do not form well-resolved dye intensity peaks due to their 

inherent heterogeneity at the time of labeling [92]. Furthermore, the dyes have a certain 

level of cytotoxicity [93], which must be considered if the goal is to sort live cells for 

continued functional analyses. Adherent cells must be enzymatically dissociated into single-

cell suspensions before labeling, which can introduce additional artifacts. The optimal length 

of the chase period is dictated by the target cells’ typical cycling rate. It is important to note 

that the dye dilution assay is a historical measurement based on the number of divisions 

over the chase period, not necessarily the cell cycle speed at the time of measuring. Finally, 

the sensitivity of the dye dilution assay could be limited in populations where differences in 

cycling rate are subtle [94].

Similar sensitivity limitations apply to the equivalent in vivo technique, which uses 

transgenic H2B-GFP under the control of an inducible promoter to label chromatin. For 

example, the Tet-Off H2B-GFP system excels at identifying very slow- or nondividing cells, 

such as dormant tissue stem cells [88,89], which retain bright GFP signal months after 

transgene expression is switched off. Conversely, short chase periods (24–48 h) are required 

to capture the fastest cells before the label falls below the detection limit in most cells. 

Because they are compatible with FACS, label retention assays offer the distinct advantage 

of enabling downstream functional comparisons between populations with different cycling 

kinetics—an essential tool for dissecting the role of proliferation rate in cell fate decision 

making.

Capturing cell cycle dynamics through live-cell imaging

The most direct way to measure cell cycle speed is to capture consecutive mitoses using 

time-lapse microscopy. Embryonic cell cycle dynamics have been captured in this manner 

for a variety of species [95–99], including human embryos with direct applications for 

reproductive medicine [100]. In vitro fertilization (IVF) clinics have used time-lapse 

imaging to select, among the laboratory-generated early embryos, which are the most likely 
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to implant and develop. Cell cycle length in the first four embryonic divisions was found 

to be a critical predictor of successful development [100]. The narrow cell division timing 

differences between embryos which are unlikely to gestate compared to those that may one 

day walk prove yet again that cell cycle length is fundamentally important and needs to be 

critically regulated.

Technological advances in light microscopy have greatly improved our ability to 

capture single-cell behavior in thick specimens without overt phototoxicity. Light-sheet 

microscopy is a popular technique for embryo live imaging owing to its excellent spatial 

and temporal resolution with less photodamage than confocal microscopy [101,102]. 

Multiphoton microscopy allows high-resolution intravital live-cell imaging [103] in dense, 

three-dimensional tissues such as mouse hair follicles [104], intestine [105], and brain [106]. 

Surgically implanted optical windows or probes allow repeated imaging of the same location 

[107], although the duration of a single imaging session is limited by the need to restrain and 

sedate animals. Tracking cycling behavior of single cells in vivo is therefore limited to cells 

that divide slowly enough to be captured with sparse time intervals, but fast enough to take 

place within a maximum of 40 h under the most carefully controlled anesthesia [108]. The 

advantages of time-lapse microscopy are single-cell precision and ground-truth accuracy, 

yet the dynamical heterogeneity revealed by this method is retrospective. When physical 

segregation of cells with distinct cycling rates is necessary for comparative downstream 

analysis, microscopes equipped with robotic picking devices [109] can be used to pluck cells 

of interest after their identification by time-lapse imaging.

A predictive modeling tool harnessing freely available single-cell time course data provides 

another alternative: the virtual experiment [110]. Unique among the tools discussed so far, 

the Cell Cycle Browser [110] provides users with the experimental workflow to explore 

potential relationships between common cell cycle parameters and/or regulatory proteins. 

Modeling and simulation tools allow users to generate predictions about the consequences of 

introducing perturbations.

High-throughput image analysis is often labor-intensive, computationally expensive, and 

requires customized solutions [64,111]. Developing computational tools to partially or fully 

automate quantitative data extraction from micrographs is its own discipline. In the age of 

AI, automated software tools for image processing and analysis [64,112–115], including cell 

tracking [116], are becoming more versatile. Fully automated cell tracking is a laudable 

goal, but for behaviors occurring on timescales of days to weeks (such as sequential cell 

cycles), even small errors can lead to invalid data [111]. For this reason, ironically, the 

recent innovation in automated cell tracking has been to improve user manual control to 

correct cell tracking errors [111]. The AI-based image analysis workflows, including those 

for longitudinal cell tracking and quantitative feature analysis, will become more widely 

adopted with improved user interfaces [117].

Resolving live cell cycle speed with a single snapshot: a reporter that captures the 
heterogeneous landscape of cell proliferation in vivo

The fundamental importance of proliferation control in development, regeneration, and 

disease necessitates the measurement of cell cycle speed besides describing the specific 
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cell cycle phases. Cell cycle speed has been challenging to determine in dynamic and 

heterogeneous systems where cells transition asynchronously through complex fate choices, 

especially in vivo. A novel reporter has been developed which combines the ease of snapshot 

data acquisition with time-resolved single-cell cycling dynamics [118]. The reporter, which 

consists of a color-changing fluorescent timer (FT) protein [119] fused onto a core histone, 

reports live cell cycle speed in a ratiometric readout [118] (Figure 2). The reporter takes 

advantage of the distinct half-life of the two FT fluorescent species [119] and their different 

susceptibility to dilution by cell division [120]. The long-lived species (red) accumulates 

steadily in slow-dividing cells, but less so in fast-dividing ones, whereas the blue species is 

too short-lived for its concentration to be affected by cell cycle length. The blue/red ratio 

is therefore related to cell cycle length, with shorter (faster) cell cycles exhibiting a high 

blue/red ratio (Figure 2). The H2B-FT reporter ranks cells based on their proliferation rate 

in a single snapshot measurement, making it appealing for use in live animals as long as the 

blue/red fluorescence can be determined from microscopy or flow cytometry, with the latter 

providing the means also for live cell sorting. The resolution of the current H2B-FT reporter 

is better-suited for faster-cycling mammalian cells; quantitative estimates of cell cycle length 

below ~ 30 h per cycle can be generated. Its resolution in slower-dividing cells becomes 

limited. In this respect, it is the opposite of the Tet-Off-H2B-GFP label retention reporter, in 

which the extremely slow or nondividing cells remain visible after several months of chase 

[88,89].

Conclusion and future outlook

The power of unpacking cellular heterogeneity is ever more appreciated as single-cell 

technologies improve and evolve, revealing a dominance of cell cycle in driving cellular 

heterogeneity. Whether and how such heterogeneity dictates biology is still being 

investigated, but it is likely profound and mechanistically coupled to cell cycle dynamics 

[68]. Given the importance of cell cycle dynamics in various biological contexts, including 

cancer, innovative techniques continue to be developed to provide ever more accurate and 

better-resolved cell cycle information.

No single approach is without trade-offs. Understanding the limitations and assumptions 

underlying each method not only provides helpful guidelines in choosing the appropriate 

assay(s) for the question at hand, but also directs their further refinement. For instance, the 

H2B-FT reporter’s accuracy in quantifying cell cycle length [118] would likely be improved 

by pre-assigning cell cycle phases with a G1 or S/G2 reporter, given that some inherent 

noise emerges from the evolution of the blue/red ratio with time across a single cell cycle. 

Furthermore, a mutational variant of the FT with slower blue-to-red color change kinetics 

[119] is likely to extend its resolution range to slower-dividing cells. Snapshot ratiometric 

values derived for single cells have been used to report changes in cellular identity by the 

RNA velocity method [121]. As cell identity changes more readily in rapidly dividing cells 

[72,94,122,123], combining both ratiometric methods could offer unique insights into the 

regulation of cell fate by cell cycle dynamics. For microscopy-based methods, the ability 

to capture dividing cellular lineages in freely moving animals rather than those under 

prolonged sedation would be advantageous. Adapting the existing wearable technology 

for continuous, multiday intravital imaging could be anticipated [124]. New imaging or 
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detection modalities would also require unprecedented ability to capture, process, analyze, 

and share the high-dimensional data, for which computational algorithms and artificial 

intelligence are expected to become more flexible, reliable, and accessible [113,117]. It is 

through the complimentary application of multiple techniques that the many facets of the 

dynamic cell cycle can be understood.

Abbreviations

AI artificial intelligence

BrdU Bromodeoxyuridine/5-bromo-2’-deoxyuridine

EdU 5-ethynyl-2’-deoxyuridine

FACS fluorescence activated cell sorting

FT fluorescent timer

FUCCI Fluorescent Ubiquitination-based Cell Cycle Indicator

H2B histone H2B

IVF in vitro fertilization

MFI median fluorescent intensity

pH3 Phosphorylated Histone H3

scRNA-seq single-cell mRNA sequencing
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Fig. 1. 
Interpreting dynamics from cell cycle phase distribution with ergodic assumptions. (A) 

Pie charts showing the percentage of cells identified in each phase of the cell cycle at a 

single moment in time in two populations, P and Q. When P and Q’s individual cellular 

constituents, p and q, cycle asynchronously with homogenous kinetics, the cell cycle phase 

distribution of P and Q reflects the relative duration of each phase within the total interval of 

a single cell cycle. (B) If P and Q have equivalent doubling times, then differences in p and 

q’s transit time through each phase can be imputed from differences in population fractions 

as in (A). (C) Alternatively, if the duration of a particular phase (e.g., S) is known to be 

equivalent in P and Q, then (A) infers differences in the total cell cycle length of p and q.
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Fig. 2. 
H2B-FT reports live cell cycle speed heterogeneity in snapshot measurements. (A) H2B 

tagged with a color-changing fluorescent timer (FT) protein reports cell cycle speed 

heterogeneity due to the divergent half-lives of the nascent (blue) form as compared to the 

mature (red) form. While mitosis halves cellular levels of both the blue and red species, the 

red form’s greater stability allows it to accumulate while the short-lived blue form cannot, 

making red levels sensitive to modulation by cell division frequency. Faster-cycling cells 

are therefore distinguishable from slower- or nondividing cells by their higher intranuclear 

blue/red fluorescence ratio. (B) Cells with distinct proliferation rates can be identified in a 

two-color fluorescence assay, such as flow cytometry.
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Table 1.

Common cell cycle markers.

Category Common markers or reagents

DNA-binding dyes 4′,6-diamidino-2-phenylindole (DAPI), Propidium Iodide (PI), 7-Aminoactinomycin D (7-AAD), Hoechst, 
DRAQ5™

Proliferation vs. quiescence Ki67, Mcm2-7, Pyronin Y, p27K

Dead/apoptotic markers 7-AAD, PI, Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL), Annexin V, 
LIVE/DEAD™ stains

Senescence markers p21, p16Ink4A, Senescence-Associated β-Galactosidase (SAβG)

Nascent DNA labels BrdU, IdU, CldU, EdU, 3H-Thymidine

G1 phase CDT1, HDHB (nuclear)

S-phase SLBP; Formation of PCNA foci; Geminin (present through S-G2)

G2 phase Cyclin B1 (cytoplasmic); Geminin

M-phase Phosphorylated Histone H3 (pH3); Cyclin B1 (nuclear); Condensed chromatin as detected by DNA-binding dyes 
or core histone antibodies
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