
Disease-associated astrocytes in Alzheimer’s disease and aging

Naomi Habib1,2,#, Cristin McCabe2,*, Sedi Medina3,*, Miriam Varshavsky1,*, Daniel Kitsberg1, 
Raz Dvir-Szternfeld3, Gilad Green1, Danielle Dionne2, Lan Nguyen2, Jamie L. Marshall2, Fei 
Chen2, Feng Zhang2,4,5, Tommy Kaplan6, Aviv Regev2,7,#, Michal Schwartz2,3,#

1Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, 
Jerusalem, Israel

2Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, 
USA.

3Neurobiology Department, The Weizmann Institute, Rehovot, Israel

4Howard Hughes Medical Institute, McGovern Institute for Brain Research, Department of Brain 
and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

5Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, 
Massachusetts, USA

6School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 
Israel

7Howard Hughes Medical Institute, Koch Institute of Integrative Cancer Research, Department of 
Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Abstract

The role of non-neuronal cells in Alzheimer’s disease (AD) progression has not been fully 

elucidated. Using single-nucleus RNA-seq, we identified a population of disease associated 

astrocytes (DAAs) in an AD mouse model. The DAA population appeared at early disease stages 

and increased in abundance with age. We discovered that similar astrocytes appeared in aged 

wild-type mice and in aging human brains, suggesting their linkage to genetic and age-related 

factors.

Alzheimer’s disease (AD) is a highly heterogeneous disease, and the most frequent cause 

of cognitive decline. Recent findings have attributed a major role to non-neuronal cells in 
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disease onset and escalation (e.g. 1–3). However, fully elucidating their function has been 

challenging, due to the heterogeneity of cells and disease dynamics. Some of this cellular 

diversity has recently been characterized by single cell or nucleus RNA-seq, highlighting 

disease-related subsets of microglia in mouse and human brains1,4. However, astrocytes, 

which have a wide range of activation states5,6, with variable effects on disease onset and 

progression7, have been less characterized. In particular, massive gliosis has been observed 

upon AD initiation8, to which a negative effect has been attributed9. Thus, higher-resolution 

characterization of astrocytes and other non-neuronal cells could help identify novel cellular 

components of AD pathogenesis10.

We used single nucleus RNA-seq (sNuc-seq)11 to build a cellular-molecular map of the 

hippocampi of 7-month old mice of either WT or a transgenic model of AD (5xFAD)12 

(8 mice, 54,769 high-quality nuclei, Fig. 1a, Supplementary Table 1), using two different 

protocols to comprehensively capture nuclei across cell types (Extended Data Fig. 1a-c). 

We partitioned the cells into 23 clusters (Fig. 1b, Extended Data Fig. 1,2), revealing largely 

similar cellular landscapes in WT and AD, with differences in the proportions of several 

cell populations (p<0.01, Fig. 1c). There were major differences in astrocyte states in AD 

relative to WT (Fig. 1c), as well as prominent differences in AD microglia, the frequency 

of which increased along disease progression (relative to all other cells, Fig. 1c), including 

the disease associated microglia (DAM) population1 (Extended Data Fig. 2c). The frequency 

of pericyte/endothelial cells also increased in AD (p<0.01, Fig. 1c), while that of recently 

activated pyramidal neurons decreased (p<0.01, Fig. 1c, Extended Data Fig. 2d). Several 

rare stromal populations also decreased in frequency (p<0.01, Fig. 1c, Extended Data Fig. 

2e).

A continuous range of astrocyte profiles (Extended Data Fig. 3a-c), were aligned on a 

diffusion map along trajectories between three transcriptional states (Fig. 1d, Extended Data 

Fig. 3d). The cells were partitioned into six transcriptional sub-clusters (Fig. 1d,e, Extended 

Data Fig. 3a), and their proportions in the various states differed between AD and WT (Fig. 

1f, Extended Data Fig. 3e), with the appearance of a unique state observed only in AD. WT 

astrocytes spanned a trajectory between a homeostatic Gfap-low state (clusters 1 and 2) and 

a Gfap-high state (cluster 6), in line with previous observations13.

In AD, an additional novel astrocyte Gfap-high state was found, which we termed “Disease-

Associated Astrocytes” (DAAs, cluster 4, Fig. 1f). DAAs were observed in both male and 

female mice (Extended Data Fig. 4a-d), as well as in the cortex (in 7- and 10-month old AD 

mice, Extended Data Fig. 4e-i), showing that DAAs are not restricted to the hippocampus. 

The appearance of DAAs was accompanied by a significant decrease in the homeostatic, 

Gfap-low astrocyte population, relative to WT mice (p<0.01, Methods). Finally, cluster 5 (in 

WT and AD) reflected a transitional-like intermediate state between the Gfap-low state and 

Gfap-high states (cluster 6), while cluster 3, which significantly increased in frequency in 

AD (Fig. 1f), reflected a transitional-like intermediate state between the Gfap-low state and 

the DAA (cluster 4) (Fig. 1d,e).

The Gfap-high astrocyte population, observed in both WT and AD, and the DAA population, 

unique in AD, shared a significant number of up-regulated genes compared to Gfap-
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low astrocytes (hypergeometric p-value<10−100, Fig. 2a,b), with little down-regulation of 

genes (Fig. 2a, Extended Data Fig. 4j); yet, each state had distinct expression features 

(Supplementary Table 2). Both populations up-regulated genes involved in development and 

differentiation, metabolic pathways (lipid, cholesterol), response to toxic compounds, and 

inflammatory signaling (FDR<0.05, Fig. 2b, Extended Data Fig. 5, Supplementary Table 

3). Cells in clusters 3 and 5 upregulated a subset of the genes that were also upregulated 

in cluster 4 (DAAs) and cluster 6, respectively, supporting their definition as intermediate 

states (Fig. 2b, Extended Data Fig. 5). Notably, the Gfap-high astrocyte population, found 

in both AD and WT, specifically expressed markers of end-feet and blood vessels associated 

astrocytes, such as the Aqp414. DAAs expressed a unique set of genes, including genes 

involved in endocytosis, complement cascade and aging (FDR<0.05, Methods, Fig. 2a,b). 

Among the DAA-upregulated genes were Serpina3n, encoding a serine protease inhibitor 

linked to increased amyloid accumulation15, and Ctsb (Cathepsin B), encoding a lysosomal 

cysteine protease involved in proteolytic processing of amyloid precursor protein (APP)16 

(Fig. 1e, 2a, Extended Data Fig. 4j). Interestingly, DAAs (cluster 4) and the associated 

intermediate state cluster 3 cells also expressed Apoe and Clu17, along with other genes 

encoding proteins associated with amyloid metabolism and clearance17 (FDR<0.05, Fig. 2b, 

Extended Data Fig. 5).

To relate DAAs to previously described astrocyte profiles, we examined bulk RNA 

profiles5,6 and found that AD astrocytes had increased expression of pan-reactive and 

inflammation/A1 astrocyte signatures compared to WT, but did not show an increase in 

ischemia/A2 astrocyte signatures (Fig. 2c, Extended Data Fig. 6a-b). While most of the 

inflammation/A1 signature genes were found to be expressed by DAAs, some were found to 

be expressed by the other astrocyte populations (Fig. 2c, Extended Data Fig. 6c), indicating 

that previously reported bulk signatures5,6 captured a mixed population. Notably, there were 

18 shared genes (hypergeometric p-value<3*10−4, Fig. 2d) between the 239 DAA signature 

genes and 213 signature genes previously described for disease associate microglia (DAM1). 

These included the AD risk gene Apoe and the Ctsb, Ctsd and Ctsl genes, encoding proteins 

(Cathepsin B, D and L) implicated in AD pathogenesis16.

We verified the presence of DAAs at the protein level and characterized their spatial 

distribution by co-staining the hippocampus of WT and 5xFAD animals for the GFAP 

and DAA markers SERPINA3N and VIM (markers of reactive astrocytes6 and NSCs18, 

respectively, Fig. 2e,f). GFAP+SERPINA3N+VIM+ astrocytes were observed in 5xFAD but 

not WT mice, confirming our sNuc-Seq profiles, and were most highly concentrated in the 

subiculum, where disease is known to be most prominent12. While in WT mice VIM+ cells 

were found in the dentate gyrus, consistent with their known association with the neurogenic 

niche18, in AD, VIM+GFAP+ astrocytes were prevalent throughout the hippocampus and 

especially in the subiculum. SERPINA3N+ and VIM+ astrocytes were found adjacent to 

stained amyloid beta plaques (Fig. 2g,h, Extended Data Fig. 6d). Notably, SERPINA3N, a 

secreted protein, was also detected embedded in plaques (Fig. 2g,h, Extended Data Fig. 6d), 

and thus may be expressed by other cells within the diseased brain.

To determine how cells change along disease progression, we profiled cells by sNuc-seq 

from AD and WT mice at different ages (1.5–2, 4–5, 7–8, 10, 13–14 and 20 month old, 28 
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mice, 23,863 astrocytes nuclei, Fig. 3a). As reported1, microglia frequencies were higher in 

AD than WT brains at all time points tested, from 4 month, and increased with age (Fig. 

3b). Astrocytes mapped along the same continuous trajectories, spanning from Gfap-low to 

Gfap-high states in WT mice (aged 1.5–10 month) and young AD mice (1.5–2 month old, 

Fig. 3c, Extended Data Fig. 7). In AD, however, from 4 month of age, before manifestation 

of cognitive decline12, there was a consistent reduction in Gfap-low and a corresponding 

increase in DAAs (Fig. 3d). The results suggest that DAAs arise in the AD mouse model 

prior to cognitive decline and increase along disease progression.

Examining the diffusion map (Fig. 1d, 3c, Extended Data Fig. 7) suggested that Gfap-low 

astrocytes are the potential source population of both Gfap-high and DAAs (Fig. 3c). To 

explore this possibility, we devised a computational procedure to infer transitions between 

cell states. We constructed a cell-cell nearest neighbors graph, and found the optimal global 

assignment to match each AD astrocyte, at a given time point, to a nearest neighbor, termed 

an origin cell, chosen either among all AD astrocytes outside its cluster (Methods, Fig. 

3e), or among all astrocytes from the preceding measured time point (Fig. 3f, Methods). 

Calculating for each cluster the frequency of origin cells within all other clusters, revealed 

that the Gfap-low cells are the main origins for the cells within cluster 3, and that cells 

in clusters 3 and 5 are the main origins for the DAAs between consecutive time points 

(cluster 4, Fig. 3g). This is consistent with a model suggesting cluster 3 as an intermediate 

stage, and Gfap-low astrocytes as the major source of AD-specific cell states. Notably, these 

results were robust with respect to the source of origin cells (WT vs. AD), the measured 

time point, and the algorithm used (Extended Data Fig. 8). Next, we extracted the top genes 

that are most strongly associated with each transition between clusters across time points, 

by correlating genes with the average movement from the assigned origin cells to the true 

positions. These top significant genes reveal a set of unique DAA markers (Fig. 3h), which 

is consistent with our differential expression analysis (Fig. 2a, Supplementary Table 4), and 

define a set of genes that are activated or repressed during the transition from one state to the 

other.

Finally, we searched for evidence of DAA or DAA-like cells in aged brains of both 

WT mice and humans (Fig. 3c,d,i). In WT mice, DAA-like cells began to emerge at 

13–14 month and increased in abundance in 20-month old mice (up to 2%, Fig. 3d), 

suggesting that a similar phenotypic state switch also occurs in normal aging, in line with 

published results19. Moreover, comparing mouse astrocyte states to aging human astrocytes4 

(Methods), identified astrocyte populations similar to the three mouse states in aging post-

mortem human brains, including DAA-like cells that appeared at a higher frequency in 

individuals with AD (Fig. 3i, Extended Data Fig. 9), suggesting that our findings could be 

relevant to human physiology and disease.

Overall, using sNuc-Seq profiles from 34 WT and 5xFAD mice across ages we identified 

a population of disease-associated astrocytes (DAAs) that appeared early and increased 

with disease progression. The DAA-like population also appeared with aging in WT 

mice and was found in aging human brains. Consistent with previous reports regarding 

activation of astrocytes by amyloid plaques7,8, astrocytes expressing DAA markers were 

found adjacent to amyloid plaques in the hippocampus and in the subiculum, where disease 
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manifestations are severe12. The continuous expression spectrum between DAAs and the 

intermediate cluster 3 astrocytes suggests a dynamic activation process in AD. Moreover, 

the wide range of activities found in DAAs might reflect changes occurring along disease 

progression. These dynamics might begin with gliosis as an attempt to contain the damage 

by demarcating the accumulated misfolded proteins from the still-healthy neurons, and 

becomes destructive along disease progression, due to expression of an inflammatory and 

neurotoxic profile, including SerpinA3N, which might interfere with plaque degradation15. 

Notably, the dynamic astrocyte response probably involves environmental factors20 and a 

crosstalk between various cells present in the microenvironment, including microglia5,20. 

Intriguing, our analysis highlighted a shared signature of multiple genes upregulated in both 

DAAs and DAMs1 (relative to their respective homeostatic states), suggesting a general 

transcriptional program in response to the pathological state, shared across cell types under 

disease conditions. Taken together, the extent and nature of astrocyte alterations that we 

found, and the early stage at which these changes emerge, support their role, at least 

in part, at the initial stages of disease pathogenesis. Further studies are required to fully 

understand their role and to determine whether this novel astrocyte state is universal or 

amyloid-associated. Deciphering the different activities of DAAs, along disease progression, 

may suggest a novel therapeutic target, enhancing their beneficial effects, while dampening 

the negative properties of these cells, with the potential for disease modification.

Accession codes.

Raw and processed mouse sequencing data that support the findings of this study have 

been deposited in the Gene Expression Omnibus (GEO) database under accession number 

GSE143758 and also available at https://singlecell.broadinstitute.org/single_cell/study/

SCP302/mouse-alzheimers-and-disease-astrocytes. Code is available at: https://github.com/

naomihabiblab/5xFADs-NucSeq.

Methods

Experimental Design

Heterozygous 5XFAD transgenic mice12 (Tg6799; on a C57/BL6-SJL background) co-

overexpress mutant forms of human APP associated with familial AD, the Swedish mutation 

(K670N/M671L), the Florida mutation, (I716V), and the London mutation (V717I). The 

study included single nuclei RNA-seq (sNuc-seq) profiles of samples from WT and 5xFAD 

male mouse hippocampi across six different age groups: 1.5–2 (n=6 mice), 4–5 (n=4), 

7–8 (n=10, 12 samples), 10 (n=2), 13–14 (n=6), and 20 (n=2, WT only) month, as well 

as 5xFAD and WT 7 month old female mouse hippocampi (n=2), WT and 5xFAD male 

mouse prefrontal cortex (7 month, n=2, 10 month, n=2, same mice used for profiling the 

hippocampus) (see Supplementary Table 1). Throughout the study, WT controls in each 

experiment were non-transgenic littermates from the same mouse colony. Additional 5xFAD 

and WT 7-month old mice were used for immunohistochemistry validations.
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Animal care and tissue dissection

Animals were bred and maintained by the Animal Breeding Center of the Weizmann 

Institute of Science. Animal handling complied with the regulations formulated by the 

Institutional Animal Care and Use Committee (IACUC) of the Weizmann Institute of 

Science. Mice were anaesthetized by intraperitoneal injection of ketamine (100 mg/kg) and 

xylazine (10 mg/kg), and tissue dissection was performed immediately. Tissue was frozen 

after dissociation and kept in −80oC until further processing.

Nucleus isolation and single nucleus RNA-seq library preparation

Working on ice throughout, hippocampus tissue was transferred into a dounce homogenizer 

(Sigma Cat No: D8938) with 2mL of EZ Lysis Buffer (as in 11, Sigma-Aldrich: NUC101–

1KT) or NP40 Lysis Buffer (as in 21, 0.1% NP40, 10mM Tris, 146mM NaCl, 1mM CaCl2, 

21mM MgCl2, 40U/mL of RNAse inhibitor). Tissue was carefully dounced while on ice 

22 times with Pestle A followed by 22 times with Pestle B, then transferred to a 15mL 

conical tube. Next, 3mL of lysis buffer was added to the dounce homogenizer, to rinse 

residual nuclei, and the suspension was transferred to a 15mL tube at a final volume of 5mL. 

When using EZ, the lysis homogenate was incubated on ice for 5 mins, for NP40 buffer no 

incubation was done. The samples were centrifuged with a swinging bucket rotor at 500g 

for 5 mins at 4°C. Supernatant was removed and the pellet was resuspended in 100 μl of 

ice cold PBS (for EZ lysis) or Tris buffer (for NP40 lysis, 10mM Tris, 146mM NaCl, 1mM 

CaCl2, 21mM MgCl2), + 0.04% BSA (NEB B9000S) and 40U/mL of RNAse inhibitor. 40μ 

m FlowMi cell strainers were pre-wetted with 200μ l of ice cold PBS and the resuspended 

nuclei were gently filtered through the FlowMi into 1.5mL Eppendorf tubes. Nuclei were 

counted using the Nexcelom Cellometer Vision and a DAPI stain. DAPI was diluted to 

2.5μ g/μ l in PBS and 20μ l of the DAPI was pipette mixed with 20μ l of the filtered 

nucleus suspension, then 20μ l of the stained nuclei were pipetted into the Cellometer cell 

counting chamber (Nexcelom CHT4-SD100–002). Nuclei were counted using a custom 

program with dilution factor set to 2. Finally, 10,000 nuclei were used as input to 10X 

Genomics single-cell 3’ Gene Expression v2 assay (22 samples) or v3 assay (10 samples) 

(Supplementary Table 1).

Libraries were prepared following the manufacturer’s protocol. Briefly, single nuclei were 

partitioned into Gel Beads in Emulsion (GEMs) in the GemCode/Chromium instrument with 

cell lysis and barcoded reverse transcription of RNA, followed by amplification, shearing 

and 5′ adaptor and sample index attachment. cDNA was amplified for 12 cycles, and the 

resulting WTA measured by Qubit HS DNA (Thermo Fisher Scientific: Q32851) and quality 

assessed by BioAnalyzer (Agilent: 5067–4626). The WTA material was diluted to <8ng/μ l 

and processed through v2 or v3 library construction, according the manufacturer’s protocol. 

The resulting libraries were quantified again by Qubit and BioAnalyzer. Libraries were 

pooled and sequenced on 2 lanes of Illumina HiSeqX by the Broad Institute’s Genomics 

Platform (22 samples) or on 2 lanes of NextSeq 500 by the Hebrew University Genomics 

Platform (10 samples).
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Pre-processing of single nucleus RNA-seq data

De-multiplexing, alignment to the mm10 transcriptome and unique molecular identifier 

(UMI)-collapsing were performed using the Cellranger toolkit (version 2.1.1, chemistry V2, 

or version 3.0.2, chemistry V3) provided by 10X Genomics for chemistry Single Cell 3’, 

and run using cloud computing on the Terra platform (https://Terra.bio). Since nuclear RNA 

is expected to include roughly equal proportions of intronic and exonic reads, we built and 

aligned reads to genome references with pre-mRNA annotations, which account for both 

exons and introns. For every nucleus, we quantified the number of genes for which at least 

one read was mapped, and then excluded all nuclei with fewer than 400 detected genes. 

Genes that were detected in fewer than 10 nuclei were excluded. Expression values Ei,j for 

gene i in cell j were calculated by dividing UMI counts for gene i by the sum of the UMI 

counts in nucleus j, to normalize for differences in coverage, and then multiplying by 10,000 

to create TPM-like values, and finally computing log2(TP10K + 1) (using the NormalizeData 
function from the Seurat22 package version 2.3.4).

Identifying variable genes

Selection of variable genes was performed as previously described in Haber et al.(Haber et 

al. 2017) and adapted from Brennecke et al.23. Briefly, we fit a logistic regression to the 

nuclear detection fraction, using the total number of UMIs per nucleus as a predictor. Outlier 

genes expressed in a lower fraction of nuclei than expected were chosen as the variable 

genes, using a threshold of p-value of 0.05. In order to minimize batch effect, variable genes 

were found for each batch independently, and their intersection was then used as the variable 

genes for downstream analysis. We restricted the expression matrix to this subset of variable 

genes, which was used for batch correction and scaling. For the integrated analysis of the 

time course data, brain regions and sex comparisons, we used the integrated workflow of 

Seurat22 V3, including finding variable genes by using the function FindVariableFeatures 

(setting the selection method to vst and the number of features to 2000).

Batch correction and scaling data matrix

For the 7-month old mouse dataset, batch correction was done using ComBat (ComBat24 

function from the sva package in R) on the normalized data set. The batch-corrected data 

were scaled using the ScaleData function from the Seurat22 with default parameters (version 

2.3.4), yielding the relative expression of each gene by scaling and centering. The scaled 

data matrix was then used for dimensionality reduction and clustering. To rule out the 

possibility that the resulting clusters were driven by batch or other technical effects, we 

examined the distribution of samples within each cluster and the distribution of the number 

of genes detected across clusters (as a measure of nucleus quality). Overall, the nuclei 

separated into distinct point clouds in tSNE space that were not driven by batch; each 

cluster/cloud was an admixture of nuclei from all technical and biological replicates, with 

variable numbers of genes. Related to the number of genes, we note that there was a distinct 

biological difference in the number of transcripts (and expected RNA content) between 

neuronal and glial cells in the brain.
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Dimensionality reduction, clustering and visualization

We used the scaled expression matrix restricted to the variable genes for principal 

component analysis (PCA), using RunPCA method in Seurat (a wrapper for the irlba 

function), computing the top 50 PCs. After PCA, significant principal components (PCs) 

were identified using the elbow method, plotting the distribution of standard deviation of 

each PC (PCElbowPlot function in 22), choosing 25 PCs for analysis of all cells, 15 PCs 

for astrocytes (across all analysis, 7-month-old mice, time course astrocyte, female/male, 

brain regions, human data). Scores from only significant PCs were used as the input to 

downstream clustering, visualization by tSNE or UMAP26 and diffusion map modeling. 

Clustering the nuclei into transcriptionally similar clusters was done using a k-nearest 

neighbor (k-NN) graph, followed by the Louvain community detection algorithm25, using 

the top significant PCs as input to a graph-based clustering algorithm, as previously 

described11, with small modifications and improvements. Briefly, in the first step, we 

computed a k-nearest neighbor (k-NN) graph, connected each nucleus to its k-nearest 

neighbors (based on Euclidean distance), then used the k-NN graph as an input to the 

Louvain algorithm, which decomposes an input graph into communities. We used k=40 for 

clustering of each full dataset, with varying resolutions from 0.9 to 1.2. For the full dataset 

across all cell types, at the final stage, cells were hierarchically clustered and re-ordered 

(using BuildClusterTree method the Seurat package, given the same set of variable genes as 

input to the PCA analysis), providing the cluster ordering described throughout this study.

For visualization, the dimensionality of the datasets was further reduced using the same top 

PCs as input to t-Distributed Stochastic Neighbor Embedding (t-SNE, using the runTSNE 
methods which runs the Barnes-hut approximation of tSNE running the Rtsne function), 

or Uniform Manifold Approximation and Projection (UMAP26) dimensionality reduction 

technique (using the RunUMAP method which uses the umap-learn Python package). Cell 

populations were matched to cell types based on the expression of known marker genes 

and previously identified expression signatures11,27. Recently activated neuronal populations 

were identified based on expression of immediate early genes, such as Egr4.

Sub-clustering of astrocytes and diffusion map embedding

To identify subtypes of cells within the astrocyte populations, the same analyses described 

above were performed, but limited to all nuclei classified by their cluster identity as 

astrocytes. Astrocytes were identified by marker gene expression including high expression 

of Slc1a3, Gfap, Aldoc and Glul, and low/no expression of Rarres2 and Slc6a13. As shown 

in Extended Data Fig. 2, the expression of Slc1a3, Gfap, Rarres2 and Slc6a13 is sufficient 

to uniquely identify the clusters of astrocyte cells (excluding clusters of doublet cells). 

Specifically, for the 7 month hippocampus male mouse dataset, astrocyte clusters 1 and 2 

from Figure 1b were combined and used in all the downstream analysis.

To model continuous transitions in astrocyte states, we calculated the diffusion components 

for all astrocytes (applied on the 7-month-old dataset or on the combined time course 

datasets). The diffusion components were calculated using the cell embedding values in 

the top 15 principal components (PCs) (generated on either the scaled expression matrix 

restricted to the variable genes in the 7-month old mouse dataset or on the aligned 
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CCA subspace for the entire time course data), using the DiffusionMap function from 

the destiny28 package in R (with a k=30 and a local sigma). We then chose the top 

two diffusion components (DCs) for data visualization (other combinations of components 

revealed similar continuous trajectories, as shown in Extended Data Fig. 3d).

Doublet detection and removal

For doublet detection and elimination, we used the Scrublet29 method over a random subset 

of 30,000 nuclei to identify clusters of doublets. Scrublet identifies heterotypic doublets 

comprised of two different cell types by simulating doublets and building a nearest neighbor 

classifier. Scrublet was run with the following parameters: k=30 for the k-NN graph, 

doublet simulation rate of 0.3 and an expected doublet rate of 0.1. Nuclei receiving Scrublet 

scores over 0.25 were classified as doublets. We then clustered our data at high resolution 

(resolution parameter = 2.5), generating 39 clusters, and found multiple small clusters that 

had over 70% of nuclei classified as doublets, which we then excluded from downstream 

analysis. We validated that these clusters are “doublet clusters” based on a traditional 

inspection of expression patterns of cell type marker genes, showing that they co-express 

markers of at least two different cell types (the main markers we use in these inspections 

are shown in Extended Data Fig. 2). Notably, some clusters, such as the fibroblast cells, 

could have been misclassified as a doublet cluster based on the marker gene approach 

alone, since they express markers of several other cell types, demonstrating the importance 

of a computational approach that does not depend entirely on prior knowledge. In the 

downstream analysis of astrocytes, a second inspection for doublets was done using the 

traditional inspection of expression patterns of cell type marker genes. Specifically, this was 

done in the cortex and the female datasets before integration, removing small clusters highly 

expressing neuronal cell markers (such as Meg3).

Cell fraction estimations

The change in fraction of the different cell populations (clusters) was separately computed 

for each mouse/sample across all clusters, as the fraction of nuclei in each cluster, out 

of the total number of nuclei. To assess statistically significant changes in a fraction of 

a specific population, we first performed the Shapiro-Wilk test for normality (using the 

shapiro.test function in R), followed by paired t-test (for normally distributed populations) 

and an additional paired non-parametric Wilcoxon test (using t.test and wilcox.test functions 

in R). Results with p-value<0.01 were reported as significant.

Differential expression, pathway analysis, and scoring gene signatures

Differentially expressed signatures were calculated using a negative binomial test and 

controlled false-discovery rates (FDR) using the Benjamini-Hochberg procedure, to find 

genes that are upregulated within each cluster compared to the rest of the nuclei in the 

dataset or between pairs of clusters, including genes with less than FDR 1%. Genes were 

required to be expressed in at least 10% of nuclei in the given cluster, and at least 0.3-fold 

less in all other cells.
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Gene sets enrichment

The differential expression signatures were tested for enriched pathways and gene sets, 

using a hypergeometric test (function enrichment in the bc3net package in R), and corrected 

for multiple hypotheses by FDR. Results with FDR < 0.05 were reported as significantly 

enriched pathways. Gene sets and pathways were taken from the MSigDB/GSEA resource 

(combining data from Hallmark pathways, KEGG, Reactome, PID, Canonical Pathways 

and GO biological process)30. Gene signatures of reactive astrocytes were obtained from 

Zamanian et al.6 and Liddelow et al.5.

Scoring gene signatures across cells, was done by following a procedure adapted from 

Smillie et al.31. Briefly, we compute for every cell the log transformed geometric average 

of expression values of all genes in the signature was computed, using the scaled log 

normalized data matrix of UMI counts. To correct for highly expressed genes, the log-

transformed geometric mean of a random set of genes of with similar expression levels was 

then subtracted.

To compare intermediate (cluster 3), Gfap-high and DAA states, we identified genes 

upregulated in each of the three states vs. the homeostatic astrocytes (cluster 1) and 

performed pathway analysis as described above. We then combined the FDR q-values across 

the union of all enriched pathways, using a threshold of FDR<0.05. Enriched pathways with 

higher FDR values were marked as non-significant.

Disease associated microglia (DAM) microglia

The list of DAM up-regulated genes compared to the homeostatic microglia was taken from 

the literature (Supplementary table 2 in Keren-Shaul et al.1), and the DAM signature was 

defined as all genes with fold change greater than 1.2, and -log FDR > 3.3 resulting in 213 

genes. Genes were filtered to include only genes found to be detected in the sNuc-seq data 

(retaining a total of 152 genes). All cells in our dataset from WT and AD mice were scored 

for the DAM signature (as described above for scoring gene signatures), and the distribution 

of scores was compared. To identify overlaps in the DAA and DAM signatures, we used 

the differentially expressed genes in DAA (cluster 4) compared to the homeostatic state 

(cluster 1, following the procedure defined above for Differential expression). Display of 

gene-gene functional links within the shared DAM-DAA signature genes, were done using 

the STRING database32, setting edges to reflect the confidence of the prediction, based on 

the following categories: co-expression, databases, text mining and experiments.

Comparison across brain regions and sex by CCA integrated analysis

Comparison of astrocyte profiles across two groups (i.e. sex, in Extended Data Fig. 4a-

d, or brain regions, in Extended Data Fig. 4e-i), was done by integrated clustering of 

cells from the two groups (i.e. males and females or hippocampus and cortex samples), 

and annotating the de novo clusters by projecting the astrocyte clusters defined for the 

hippocampus of 7-month old male mice (from Fig. 1d). These annotated clusters were used 

to identify DAAs, homeostatic Gfap-low and Gfap-high astrocytes in female mice and in 

the cortex brain region, and to compare the relative abundance of astrocyte states between 

AD and WT mice across sex and brain regions. This was done by the following steps: 
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We first identified the astrocyte cells in each of the additional datasets: sNuc-seq profiles 

of cortex brain region or of female hippocampus region (Supplementary Table 1), were 

analyzed following the procedures for normalization, scaling and clustering described above 

in the section “Dimensionality reduction, clustering and visualization” (using Seurat V.3). 

Astrocyte clusters were identified by marker genes expression (as described above) and 

selected for further analysis.

To compare the astrocyte cell states across regions and sex, we combined the astrocyte 

cells (from female mice or male cortex) with sNuc-Seq profiles from four 7-month-old 

mouse hippocampi (Supplementary Table 1). Datasets were combined and batch corrected 

by anchor based joint canonical correlation analysis (CCA)22,33, Using Seurat V3, we first 

normalized each dataset separately (log-transform) and found variable genes (using the 

function, FindVariableFeatures, setting the parameters: selection.method to vst and nfeatures 

to 2000). We then searched for integration anchors, which are pairwise correspondences 

between individual cells, with the underlying assumption that cells originating from the 

same biological state will be matched (using the function FindIntegrationAnchors, over 

the first 20 dimensions). We integrated the data using this list of anchors (using the 

function IntegrateData). Following the data integration, the integrated expression matrix 

was analyzed by repeating the standard analysis steps on the integrated expression matrix: 

data scaling, PCA, clustering and 2-D tSNE embedding for visualization. The top 15 PCs 

were used for the clustering and tSNE embedding.

To annotate the clusters, we used a similar analysis, based on the CCA22,33 approach (using 

Seurat V3), to project the cluster IDs from the 7-month-old mouse dataset (IDs as in 

Figure 1d) to the integrated set. We set the 7-month-old male mouse clusters as a reference, 

and predicted the cluster identity of all other cells (of different sex or brain regions), 

using the functions FindTransferAnchors and TransferData (in Seurat V3). Each cluster in 

the integrated dataset was matched to one (or two) of the astrocyte states (homeostatic 

Gfap-low, Gfap-high, DAA state, intermediate-sate DAA and Gfap-high intermediate state) 

by a majority vote within all cells in the cluster, while ambiguous results were not matched 

with any state. Finally, the fraction of astrocytes across clusters/states was calculated for 

each mouse, comparing the relative frequencies of the DAA, homeostatic Gfap-low and 

Gfap-high clusters in matching pairs of WT and 5xFAD mice. The CCA integrated analysis 

was used to enable comparison of astrocyte states, while excluding technical batch effects 

(differences between 10x versions), sex-specific expression patterns, or regional biases (such 

as regional specific ambient RNA). It is of note that not all cells in the comparison matched 

the original dataset of 7-month old male mice hippocampi. For example, the homeostatic 

astrocytes split to separate clusters between the cortex and hippocampus brain regions, while 

the DAAs and Gfap-high cells clustered together across brain regions. Thus, when using the 

CCA approach, we were able to identify distinct expression profiles in astrocytes (across 

brain regions), and also to identify shared expression profiles, such as DAAs astrocytes in 

female 5xFAD mice and in the cortex of 5xFAD mice.

For comparison of expression profiles of clusters across region or sex, we used the top 

marker genes, identified for the 7-month male hippocampus mice (as in Fig. 1e), of the three 

major astrocyte states, DAAs, homeostatic Gfap-low and Gfap-high.
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Immunohistochemistry

Immunohistochemistry was performed on mouse brain sections. Mice were perfused 

with PBS prior to brain tissue fixation, followed by tissue processing to form 30μ 

m-thick floating sections. The following primary antibodies were used: rabbit anti-

GFAP (1:150; Dako #Z0334 #LOT 20056262), chicken anti-VIM (1:150; Abcam 

#24525, # LOT GR3216660–15), goat anti-serpinA3N (1:200; R&D systems #AF4709-

SP,# LOT CBKW0318051), mouse anti-Aβ 1–16 (1:150; Biolegend #803001 #LOT 

B247600). Secondary antibodies were Cy2/Cy3/Cy5 donkey anti- rabbit/chicken/goat/

mouse antibodies, respectively (1:150; Jackson ImmunoResearch). Staining with secondary 

antibody alone was used to rule out nonspecific staining. The following secondary 

antibodies were used: Cy2/Cy3/Cy5 donkey anti- rabbit/chicken/goat/mouse antibodies, 

respectively (1:150; Jackson ImmunoResearch. As reported in the Reporting Summary 

Document: 711–225-152, cy2 Donky anti Rabbit, lot 142845; 715–225-150, Cy2AffiniPure 

Donkey Anti-Mouse; lot 142843; 705–225-147, Cy2-AffiniPure Donkey Anti-Goat IgG; lot 

122781; 711–165-152, Cy3 Donkey anti Rabbit, lot 143202; 715–165-151, Cy3AffiniPure 

Donkey Anti-Mouse IgG, lot 143017; 705–165-147, Cy3 Donkey Anti-Goat, lot 143201; 

715–175-151, Cy5-AffiniPure Donkey Anti-Mouse IgG, lot 144119; 711–175-152, Cy5-

AffiniPure Donkey Anti-Rabbit IgG, lot 144221; 705–175-147, Cy5-AffiniPure Donkey 

AntiGoat, lot 134531;). For nuclear staining, Hoechst was used (1:4000; Invitrogen Probes) 

for 30s prior to sealing of the slides. Confocal microscopy was used for analysis (Zeiss, 

LSM880). Representative images were merged and optimized using ImageJ (Java.version: 

1.8.0_66).

Time course datasets pre-processing and integration

The time course dataset consisted of four datasets (or batches), a 7-month old mice dataset 

(including 4 5xFAD and WT mice from the dataset in Figs. 1 and 2 of samples prepared 

with EZ lysis buffer to match the conditions in the other time points), and three additional 

datasets from 5xFAD and WT mice ranging in age from 1.5 to 20-month old 5xFAD and 

WT mice (Supplementary Table 1). Each dataset in the time course was analyzed separately, 

repeating the analysis steps described for the 7-month-old mice. Clusters of astrocytes or 

microglia were selected from each batch for further analysis.

For microglia, the fraction of microglia cells was calculated for each sample out of the total 

number of cells, and compared across ages and conditions, matching pairs of littermates AD 

and WT mice that were processed at the same sequencing batch.

For astrocytes, data across all 4 batches were combined and batch corrected by anchor based 

joint CCA22,33, using Seurat V3, as described for Comparison across brain regions and 
sex by CCA integrated analysis. Following the data integration, the integrated expression 

matrix was analyzed by repeating the standard analysis steps on the integrated expression 

matrix: data scaling, PCA, clustering and 2-D tSNE embedding for visualization, as well as 

diffusion map modeling, using the top 15 PCs for clustering, tSNE and diffusion map steps). 

The diffusion map embedding of the time course dataset aligned cells along two continuous 

trajectories, a Gfap-low to Gfap-high trajectory and a homeostatic-DAAs trajectory (shown 

in Extended Data Fig. 7), which matched the trajectories found for the 7-month old mice 
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(Figure 1d). Notably, for consistency and clarity reasons, in Fig. 3 we show the embedding 

of the time-course datasets in the diffusion map of the 7-month old mice (as in Fig. 

1d, which was done as described in the section Dynamic modeling, k-nearest neighbors 
embedding and gene expression dynamics).

Dynamic modeling, k-nearest neighbors embedding and gene expression dynamics

To computationally model dynamic transitions between astrocyte cell states along disease 

progression, we assigned a unique “origin cell” for each astrocyte in AD. This was done 

using the Hungarian algorithm34 (munkres function in MATLAB) by globally optimizing 

the pairwise distances, in the PCA or CCA space, between all AD astrocyte cells and their 

matched neighbors, selected from all AD cells at the preceding time point or among all other 

AD cells outside its cluster. We predicted origin cells for both reference sets to capture the 

dynamics in astrocyte states along different stages of the disease as well as the continuous 

range of astrocytes within a given time point. The predictions of origin cells were used to: 

(1) map the trajectory of AD cells along disease stages in the diffusion space using force 

fields; (2) predict the source population of the DAAs by quantifying the transitions between 

clusters; (3) find putative genes underlying the transitions in astrocyte states. For assigning 

the “origin” cells, we searched for the optimal assignment of AD astrocytes, by globally 

minimizing the sum of pairwise Euclidean distances in the PCA/CCA space between all 

pairs of cells and their assigned origin cell. For each AD time point (or AD cluster), we 

searched for the globally optimal assignment between all AD cells at a given time point (or a 

given cluster) and all other AD cells at a preceding time point (or all other AD cells outside 

the cluster), which we termed “origin” cells.

We devised a new computational approach to identify the genes most strongly associated 

with the transitions in astrocyte states. To this end, we first computed the average trajectory 

(in the PCA/CCA space) of cells from each AD cluster to every other AD cluster (between 

time points or within a given time point). We then correlated the average trajectory with the 

PCA/CCA loading values of each gene to identify genes that are up or down regulated in the 

transition from one state to the other. Genes with significant Pearson correlation (FDR<1e-2) 

were marked as putative marker genes for each transition.

Importantly, diffusion map analysis of the time course data aligned the astrocytes along 

trajectories similar to the ones identified in the 7-month dataset, in which astrocytes traverse 

a homeostatic-to-Gfap-high trajectory and a homeostatic-to-DAA trajectory (as shown in 

Extended Data Fig. 7). However, for visualization and annotation purposes, we embedded 

the time course data into the diffusion map of the 7-month dataset (Fig. 1d) using a k-nearest 

neighbor approach. To embed each cell in the 7-month diffusion space, we first identified 

the k nearest nuclei within the CCA space (K=10), and calculated their relative Euclidean 

distances di. We then calculated the relative normalized weights for each of the k neighbors, 

as: wi α 1
di2

 such that ∑wi = 1, and calculated the estimated position Y i of that nucleus 

within the 7-month diffusion space as a weighted average Y i = ΣwiXi of the positions of 

the k neighboring nuclei (Xi). Similarly, we predicted the cluster IDs (as in Figure 1d) of 
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embedded cells using a weighted majority vote based on the cluster IDs of their k neighbors, 

using the same relative normalized weights as above.

Finally, we computed the relative trajectory of each nucleus from its “origin” cells (or 

embedded position Y i) to its position Yi in the diffusion space, and visualized this trajectory 

as a directed arrow using force fields (quiver function in MATLAB). To validate robustness, 

the same analysis was done comparing AD cells to all WT cells in the 7m dataset across all 

cells, or to all WT and AD cells outside the cluster, per each cluster.

Comparison to aging human astrocytes

The count matrix of sNuc-Seq data from human astrocytes was obtained from Mathys et al.4, 

using the published cluster annotations to select all astrocyte cells. To compare the human 

and the mouse astrocytes, mouse genes were first mapped to human genes, using annotations 

from the UCSC genome browser (for mouse mm10 genome). The human data were re-

analyzed following the steps described above for normalization, variable genes detection, 

scaling, clustering and visualization (using Seurat V3). Finally, cluster identity was assigned 

to the human clusters using the CCA approach (Seurat V3), with the data and cluster IDs of 

7-month old male mice (as in Fig. 1d, Supplementary Table 1) (following the steps detailed 

in the section Comparison across brain regions and sex by CCA integrated analysis). The 

cluster of human astrocytes with the highest identity to the mouse DAAs cluster, was termed 

DAA-like. The fraction of astrocytes assigned to each of the mouse clusters out of all 

astrocytes, was calculated for each individual, and split to show the distributions in healthy 

individuals and individuals with Alzheimer’s disease. For comparison of human and mouse 

expression signatures, we chose top marker genes from the mouse. Notably, while a single 

human cluster showed the highest similarity to the mouse DAAs, more than one human 

cluster could be associated with the mouse DAAs by the predicted cluster IDs and by the 

expression of marker genes (Extended Data Fig. 9, Fig. 3i), suggesting high diversity of 

astrocyte states in the human brain.

Reproducibility and blindness

Sample size, data exclusion and randomization: The main dataset consisted of 4 WT and 

4 transgenic 5xFAD mice, based on published results by us and other groups, showing 

high consistency in single nucleus RNA-seq libraries between mice, but due to technical 

variability it is recommended to have at least 3 animals per group. The time course data 

had additional 12 WT and 10 5xFAD animals across time points. Immunohistochemistry 

was repeated, for every set of antibodies, over n=4 AD and WT mice, with 4 brain slices 

per animal. No statistical methods were used to pre-determine sample sizes but our sample 

sizes are similar to those reported in previous publications3,11,21,27,35. Number of nuclei 

per animal was determined to enable detection of rare populations around 2% of all cells 

(calculated based on our previous data in the mouse brain11,21). No sample or animals 

were excluded from the analysis. As commonly done, nuclei libraries were filtered using 

previously established methods: nuclei with fewer than 400 detected genes were excluded 

from the analysis. Animals were assigned randomly to the various experimental batches 

according to their age, while matching transgenic Alzheimer’s model 5xFAD animals with 

WT non-transgenic litter-mate from the same mouse colony and age. Notably the clustering 
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analysis and specifically the identification of the different astrocyte populations, was done 

blindly to the animal strain, sex and age.

Statistics

Several statistical tests were used throughout this work, as mentioned in each relevant 

section. These tests can be divided to the following tasks: (1) Finding statistically significant 

changes in fraction of cellular populations between WT and 5xFAD mice: We first 

performed the Shapiro-Wilk test for normality. On normally distributed cellular populations 

we used the two-sided paired t-test and for non-normally distributed samples we used 

the paired non-parametric two-sided Wilcoxon test (matching mice by experimental batch 

and litter mate). In both cases, tests were applied to n=8 animals (10 samples), and 

cellular populations with p-value <0.01 were reported. The number of cells per population 

varied (as shown in Fig. 1 and Extended Data Fig. 1). (2) Identifying differentially 

expressed genes between clusters: Negative binomial test and controlled false-discovery 

rates (FDR) using the Benjamini-Hochberg procedure, between pairs of clusters. For Figure 

2a and Supplementary Table 2: n=8 animals, FDR<1%, and genes were required to be 

expressed in at least 10% of nuclei in the given cluster, and at least 0.3-fold less in all 

other cells, as routinely done. Data distribution was estimated to be negative binomial, 

though this assumption might not fit every gene. (3) Finding enriched pathways. Done by 

calculating the hypergeometric p-value and controlled false-discovery rates (FDR) using the 

Benjamini-Hochberg procedure (all gene-sets used are reported above). For Figure 2b and 

Supplementary Table 3: n=8 animals and a threshold of FDR<5%. (4) Testing for consistent 

changes in cell frequency across ages we used linear regression, computing a confidence 

interval per time point. Calculated with: n=12 5xFAD animals or n=16 WT animals across 

ages, for each astrocyte state (reporting the R value and p-value). (5) Identify the genes 

associated with the transitions in astrocyte states, we used our new procedure described 

above. Briefly, we find genes that are statistically significant (p-value controlled for false-

discovery rates (FDR) using the Benjamini-Hochberg procedure <0.001) correlated with 

the direction of average trajectory by computing the Pearson correlation coefficient. This 

was done using n=12 animals, and 10,226 cells from 5xFAD mice across ages. Additional 

information can be found in the Life Sciences Reporting Summary.

Data and Code Availability.

Raw and processed mouse sequencing data that support the findings of this study have 

been deposited in the Gene Expression Omnibus (GEO) database under accession number 

GSE143758 and also available at https://singlecell.broadinstitute.org/single_cell/study/

SCP302/mouse-alzheimers-anddisease-astrocytes. Code is available at: https://github.com/

naomihabiblab/5xFADs-NucSeq.
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Extended Data

Extended Data Fig. 1. A cellular map of the mouse hippocampus of WT and 5xFAD mice and 
quality controls.
(a) Doublet detection and elimination. 2-D tSNE embedding of 60,818 single nuclei RNA 

profiles from hippocampus of four WT and four 5xFAD 7- month old mice, before filtration. 

Top: Color coded by cluster assignment. Bottom: Color coded by doublet score assigned 

per cell by the Scrublet1 software, used to infer doublet cells and clusters to exclude from 

the analysis. (b) Number of genes and transcripts across clusters. Violin plots showing the 
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distribution of number of genes (top) and transcripts (unique UMIs, bottom) detected in each 

cluster (n=8 mice, 10 samples). Cluster numbers as in Fig. 1b. (c) 2-D tSNE embedding 

of single nuclei RNA profiles from hippocampus of WT and 5xFAD mice (as in Fig. 1b), 

colored by (from left to right): batch, mouse strain (WT or AD) and sample. (d) Similar 

distribution of samples and batches across clusters. The percent of cells per cluster, in WT 

and 5xFAD mice. Middle: Colored by batch/lysis buffer (red= EZ lysis. Blue = NP40 lysis, 

Methods), Right: Colored by sample (blue color scale, 4 animals and 5 samples per mouse 

strain, AD or WT). Left: The hierarchical cluster tree and annotations of clusters, as in Fig. 

1b.
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Extended Data Figure 2. Cell type marker genes and assignments.
(a) Expression of marker genes across clusters. 2-D tSNE embedding of single nuclei 

RNA profiles from hippocampi of WT and 5xFAD mice (as in Fig. 1b), colored 

by expression levels of marker genes: Grin2b (neurons), Gad2 (GABAergic neurons), 

Vcan (Oligodendrocytes precursor cells, OPCs), Hmha1 (microglia), Flt1 (endothelial), 

Vtn (pericytes), Plp1 (oligodendrocytes), Slc1a3 (astrocytes), Gfap (astrocytes), Rarres2 

(ependymal/NPCs), Slc6a13 (fibroblasts), Homer1 (immediate early gene, IEGs). (b) 

Clusters and marker genes. Dot plot showing the expression level (color scale) and the 
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percent of cells expressing (dot size) marker genes across all clusters (rows). Cluster 

numbers as in Fig. 1b. (c) Disease associated microglia (DAM) signature enriched in AD. 

Violin plots showing the distribution in WT (n=8 animals, 896 cells) and AD (n=8 animals, 

1,540 cells) of microglia expression scores for signatures of genes up-regulated in DAM 

compared to homeostatic microglia (from keren-Shaul et al.2, Methods). Expression score 

per cell is the geometric mean normalized expression level (TPMs) across all signasture 

genes, corrected by subtraction of the geometric mean expression of a random set of genes 

of similar expression levels (Methods). (d) Recently activated pyramidal neurons. Left: Dot 

plot as in (c) showing the expression of immediate early genes (IEGs) across all clusters 

(as in Fig. 1b), showing cluster 23, capturing pyramidal neurons expressing IEGs. Right: 

tSNE plot of all cells, color coded by the expression level of the Egr4 gene in CA3/CA1/

Subiculum (cluster 23), and DG excitatory neurons (part of cluster 12). (e) Cell type specific 

markers. Dot plots showing the expression level (color scale) and the percent of cells 

expressing (dot size) genes across all clusters (rows, as in Fig. 1b), showing markers found 

to be specific to cells classified as (from left to right): ependymal/NPCs, fibroblasts and 

pericytes.

Extended Data Figure 3. Diversity of astrocyte states in WT and 5xFAD mice.
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(a) 2-D Umap3 embedding of 7,345 single nuclei RNA profiles of astrocytes (as in Fig. 1d) 

from hippocampus of 4 WT (left) and 4 5xFAD (AD, right) 7-month old mice. Colored by 

cluster, all other cells in light yellow in the background. (b) 2-D Umap3 embedding as in 

(a), colored by sample (left), or batch (right). (c) Number of genes and transcripts across 

clusters. Violin plots showing the distribution of number of genes (top) and transcripts 

(unique UMIs, bottom) detected per cluster (n=8 animals, total of 7,345 cells). Cluster 

numbers as in (a). (d) Diffusion maps4 of 7,345 single nuclei RNA profiles of astrocytes in 

the hippocampus of WT and 5xFAD mice, showing 2-D embedding of cells in combinations 

of the top four diffusion components (DC), colored by mouse strain, WT (blue) and 5xFAD 

(AD, red). (e) Distribution of astrocyte states in WT and AD brains. Box plots showing the 

fraction of each astrocyte cluster (compared to total number of astrocyte cells, clusters as in 

Fig. 1d, n=8 animals, 10 samples), in WT and 5xFAD mice. Displaying the median (thick 

lines), 25% and 75% quantiles (box), and individual samples (dots).
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Extended Data Figure 4. DAAs in hippocampus of both female and male 5xFAD mice and in the 
cortex.
(a) 2-D tSNE embedding of single nuclei RNA profiles of astrocytes from hippocampus 

of 7-month old female (1,500 nuclei, 2 mice, left) and male (5,183 nuclei, 4 mice, right) 

of three WT and three 5xFAD (AD) mice. Colored by cluster assignment. The three end 

states are marked on the graph: homeostatic Gfap-low, Gfap-high and DAA (annotated by 

projection of cluster IDs and expression patterns from Fig. 1d, Methods). (b) 2-D tSNE 

embedding as in (a), colored by cluster IDs of male mice, classified as cluster 4 (DAA) and 
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cluster 6 (Gfap-low) from Figure 1d. All other cells in grey. (c) Male and female astrocytes 

share expression of marker genes across clusters. Expression levels (as color scale) and 

the percent of cells expressing (as dot size) of marker genes for DAA (Ggta1, Gsn, Osmr, 

Vim, Serpina3n, Ctsb, Gfap), Gfap-low (Fabp7, Slc38a1, Myoc, Aqp4, Id1, Id3, Gfap) 

and Gfap-low (Mfge8, Slc7a10, Luzp2) across clusters, split to male (purple color scale) 

and female (yellow color scale) mice. (d) Proportion of DAAs increase and homeostatic 

Gfap-low astrocytes decrease in AD female mice. The proportion of astrocytes classified 

as Gfap-low (clusters 1,2,5,6 in (a)), DAAs (cluster 3 in (a)) and Gfap-high (cluster 4 in 

(a)) in male and female mice. Bar: individual mice, colored by strain and sex. (e) DAAs 

found in 5xFAD mice cortex at age 7 and 10 months. 2-D tSNE embedding of single nuclei 

RNA profiles of astrocytes from WT and AD mice, from the cortex of 7 and 10 month 

old mice (6,062 nuclei, 4 mice) and hippocampus of 7-month old mice (5,344 nuclei, 4 

mice). Colored by cluster assignments: Gfap-low (three clusters split to hippocampus and 

cortex), Gfap-high, DAA, intermediate and other. (f) Similar expression patterns of marker 

genes in astrocytes in the hippocampus and cortex. Dot plot showing the expression level 

(as color scale) and the percent of cells expressing (as dot size) marker genes for DAAs, 

Gfap-high and Gfap-low across clusters (as in (e)), split by brain region to hippocampus 

(Hip, yellow color scale) and cortex (Crtx, purple color scale). (g) 2-D tSNE embedding 

as in (e), colored by predicted cluster ID of hippocampal astrocytes from 7-month old 

male mice (inferred by CCA5,6 projections, as in Fig. 1d, Methods). (h) Cortical astrocyte 

populations match astrocyte states identified in the hippocampus. Heat map showing the 

correspondence between the de novo cluster IDs (rows, from (e)) of the cross regional 

dataset, and the predicted cluster IDs (columns) using the hippocampal astrocytes cluster 

IDs as reference (as from Fig. 1d). Color scale based on the proportion of predicted IDs 

per de novo cross-regional cluster. (i) DAAs appear in the cortex of 5xFAD (AD) mice. 

The proportion of astrocytes, per sample, across clusters, including clusters of Gfap-low, 

DAAs, and Gfap-high astrocytes. Bars: Individual mice, color annotated by region: cortex or 

hippocampus (Hip), age: 7 or 10 months (m), and strain: AD or WT. (j) Astrocyte marker 

genes expressed in 7-month old male mice (complementary to Fig. 1e). Left: Average 

expression level (color scale) and the percent of cells expressing (dot size) marker genes for: 

Gfap-low (Slc7a10, encoding a solute carrier transporter of D-serine and other amino acids7; 

Trpm3, encoding a transient receptor potential M3 channel related to store-operated calcium 

entry in astrocytes8), DAA (Ctsb, encoding a protease involved in proteolytic processing of 

amyloid precursor protein9,10; Csmd1, associated with cognitive functions11; C4b, encoding 

complement factor 4; Vim, a marker of adult neurogenesis/NSCs12), common to DAA and 

Gfap-high (Cd9, encoding a transmembrane protein, reported to be expressed by neural stem 

cells like astrocytes13), and Gfap-high (Sparcl1/Hevin, encoding a pro-synaptic protein in 

astrocytes14,15; Aqp4, a known marker of astrocyte endfeet16), for each cluster (cells and 

clusters as in Fig. 1e). Right: Violin plots (n=8 animals, 10 samples), showing the expression 

level distributions of Csmd1 and Ctsb in WT and AD astrocytes.
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Extended Data Figure 5. DAAs and physiological Gfap-high astrocytes have shared and distinct 
transcriptional programs.
(a) Differential expression across astrocyte states. Volcano plots showing differentially 

expressed genes in each pair of states (n=8 animals, 10 samples. y-axis:-log adjusted 

hypergeometric p-value, following FDR multiple hypothesis correction, x-axis:average 

log fold change). AD risk factor genes from GWAS marked in orange (as in Fig. 2a). 

(b) DAAs, Gfap-high astrocytes, and cluster 3 astrocytes share multiple upregulated 

genes and pathways compared to the homeostatic Gfap-low astrocyte population, but 
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also have distinct expression programs. Pathway (rows) enrichment for upregulated genes 

in cluster 4 (C4, DAAs, n=478 cells), cluster 6 (C6, Gfap-high, n=457), or cluster 3 

(C3, intermediate state,n=1,666 cells), compared to Gfap-low astrocytes (n=1,594 cells). 

Enriched pathways21,22 (hypergeometric pvalue with FDR<0.05. n=8 animals, 10 samples), 

colored by -log FDR values (as in Fig. 2b, with full list of pathway annotations and no 

scaling).

Extended Data Figure 6. DAAs express signatures of reactive astrocytes and are found across 
brain regions.
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(a-b) Signatures of inflammatory reactive astrocytes found in AD. Ridge plots showing 

the distribution of expression scores across each astrocyte cluster, for previously defined 

signature genes of: pan-reactive, A1, and A2 (from Liddelow et al.17, left), or of: pan-

reactive, inflammation (LPS-induced), and ischemia (MCAO-induced) (from Zamanian 

et al.18 right). Expression score per cell is the geometric mean normalized expression 

level (TPMs) across all signature genes, corrected by subtraction of the geometric mean 

expression of a random set of genes of similar expression levels. (b) Violin plots showing 

the distribution of expression scores across WT (3,831 cells, n=4 animals) and AD (3,514 

cells, n=4 animals), for signature genes for: A1 and A2 astrocytes (as defined in Liddelow 

et al.17). Scores computed as in (a). (c) Expression of genes from reactive, A1, and 

A2 signatures, showing diversity of gene patterns across astrocyte clusters. 2-D umap3 

embedding of 7,345 single nuclei RNA profiles of astrocytes in the hippocampus of WT and 

5xFAD mice (as in Extended Data Fig. 3a), colored by the gene expression level. Area of 

the graph with highest expression is marked in dotted black lines. Gene name on top of each 

graph. The signature the gene is associate with (pan reactive, A1 or A2) on the right side of 

each panel. (d) Astrocytes expressing DAA markers are present in AD brains, enriched in 

the subiculum and in proximity to Aβ plaques. Representative immunofluorescence images 

(staining repeated over n=4 AD and WT mice, with 4 brain slices per animal) in sagittal 

sections of 7–8-month old 5XFAD mice (with Figure 2f-h). From top to Bottom: Subiculum, 

stained for GFAP (green), VIM (red), and serpinA3N (gray), (as in Fig. 2f). Dentate gyrus 

(in Figure 2g, left) and subiculum (in Figure 2g, right), stained for GFAP (green), VIM (red), 

and Aβ (gray). Subiculum, stained for GFAP (green), serpinA3N (red), and Aβ (gray) (as in 

Figure 2h). Cell nuclei are shown in blue (Hoechst). Scale bar, 50μm.
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Extended Data Figure 7. Clustering of astrocyte cells from both WT and 5xFAD mice across 
ages.
(a-b) A map of astrocyte states in WT and AD across ages. 2-D tSNE embedding of 

sNuc-Seq profiles of astrocytes in WT and 5xFAD (AD) mice across 6 different age groups 

(in months): 1.5–2 (n=6 mice), 4–5 (n=4), 7–8 (n=8), 10 (n=2), 13–14 (n=6), and 20 (n=2, 

WT only). (23,863 cells, from four batches, united by CCA integrated analysis5,6, Methods). 

Colored by: cluster IDs (in (a)), or predicted cluster IDs (using reference cluster IDs of 

astrocytes of 7-month old mice as in Fig. 1d, in (b)). (c) The correspondence between the 
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de novo cluster IDs (columns) of the time course data, and the predicted cluster IDs (rows) 

from astrocytes of 7-month old mice (as in Fig. 1d). Color scale = proportion of predicted 

IDs per de novo cluster. (d-g) 2-D tSNE embedding of time course astrocytes as in (a), 

colored by: age (d), mouse strain, AD/WT (e), batch (f), or sample (g). (h) Continuous 

trajectory of astrocyte states across ages in WT and AD. 2-D diffusion map embedding of 

astrocytes across ages. Colored by de novo clusters: Gfap-low (1), Gfaplow/ intermediate 

(2), Gfap-high (3), and DAAs (4). 15,113 astrocyte cells, down sampled randomly from 

23,863 cells to capture 2,500 cells of each age group (or the maximum number of cells 

available if less than 2,500). (i) 2-D diffusion map embedding (as in (h)), colored by 

predicted cluster IDs (as in (b)). (j) 2-D embedding of the 15,113 astrocytes of AD (left) 

and WT (right) cells across ages, projected onto the diffusion map of 7-month old mice 

(embedded by the weighted average position of the K-NN in the diffusion map in Fig. 1d, 

Methods). Colored by the de novo clusters (as in (a)). (k) The expression level (as color 

scale) and the percent of cells expressing (as dot size) of marker genes for DAAs (Ggta1, 

Gsn, Osmr, Vim, Serpina3n, Ctsb, and Gfap), Gfaphigh (Fabp7, Slc38a1, Myoc, Aqp4, Id1, 

Id3, and Gfap) and Gfap-low (Mfge8, Slc7a10, Luzp2), across de novo clusters of astrocytes 

in the time course dataset.
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Extended Data Figure 8. DAAs are largely derived from Gfap-low astrocytes.
(a-b) Direction of transition of AD astrocytes from their global optimal nearest neighbor 

(origin) cell (predicted by the Hungarian algorithm19, Methods) to their given position in 

the diffusion map. For each cluster, force field (black arrows) marking the directionality of 

transitions along the diffusion map4 (as in Figure 1d), cells colored by cluster ID. Showing 

transitions from the predicted cell of origin among all WT cells or AD cells outside the 

cluster (a), or among all WT cells only (b) (transition from origin cells among all AD cells 

outside the cluster or AD cells in different clusters from a preceding time point, shown in 

Fig. 3). (c) Proportion of cells of origin per cluster (dot size and color) for each AD cluster 

(rows), from all WT cells (left) or from AD cells from all other clusters (right). (d) Scheme 

of transitions. A graph showing arrows between pairs of clusters with high proportion of 

origin cells (>15%) when mapping AD to all WT cells. Color and width of edge reflects the 
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proportion. Diffusion map as in (a) in the background. (e) Genes correlated with predicted 

transitions from WT cells to DAA in AD. The expression level across clusters (dot color) 

and the percent of cells expressing (dot size) significant (Pearson Correlation coefficient, 

FDR qvalue<0.001, n=28 mice, 25,076 cells, Supplementary Table 1) genes that correlated 

with the transition to cluster 3 (intermediate) or cluster 4 (DAAs) from WT cells. Bottom: 

Assignment of each gene to a transition between pairs of clusters (upregulated = purple, 

downregulated = orange). (f) Direction of transition on the diffusion space of AD astrocytes 

in each cluster from their weighted K-nearest neighbor position among all other WT cells. 

Force field showing the directionality of transitions between the expected position in the 

diffusion map (weighted average position of K-NN among all WT cells, k=10) to the true 

position along the diffusion map (as in Figure 1d) for each cell. Colored by cluster IDs. 

Cluster numbers labeled on top of each graph.
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Extended Data Figure 9. DAA-like astrocytes found in aging human cortex.
(a-b) Diversity of human astrocytes. 2-D tSNE embedding of 3,392 sNuc-Seq profiles of 

cortical human astrocytes from post-mortem aging brains of AD and non-AD individuals, 

taken from Mathys et al.20, colored by cluster ID (de novo clustering, clusters A-F, (a)), 

or by predicted cluster IDs (clusters 1–6, by CCA5,6 projections, (b)) using as reference 

clusters of 7-month old mice (as in Fig. 1d). (c) The average prediction scores (as color 

scale) and the percent of cells with score above 0 (as dot size) for the three major end-states 

mouse clusters (from Fig. 1d), across the human astrocyte clusters (as in a, Mathys et al. 
20). From left to right: Gfap-low (mouse cluster 1), DAAs (mouse cluster 4), and Gfap-high 

(mouse cluster 6). (d) Dot plot showing the expression level (as color scale) and the percent 

of cells expressing (as dot size) marker genes for mouse astrocyte states: DAA (OSMR, 
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VIM, GFAP), Gfap-high (ID1, ID3, SLC38A1, GFAP) and homeostatic Gfap-low (MFGE8), 

across clusters of the human cortical astrocytes (from Mathys et al.20).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A cell atlas of the hippocampus reveals unique disease-associated astrocytes in AD.
(a) Overview of the experimental strategy. (b) Cell map of mouse hippocampus in WT and 

AD. tSNE embedding of 54,769 single nucleus RNA profiles from hippocampi of 7-month-

old male mice, four WT and four 5xFAD (AD); colored by cluster. Right: Hierarchical 

cluster tree. (c) Changes in frequency of multiple cell types in AD. Right: Boxplot showing 

fraction of nuclei per cluster in WT and AD mice. Box: 75% and 25% quantile. Line: 

Median. Dots: individual samples. Left: Log ratio of average fraction in WT vs. AD. 

Asterisks: Statistically significant differences between AD and WT (n=8 animals, two-sided 

p-value<0.01, paired t-test or Wilcoxon test for non-normally distributed samples). (d) A 

continuous trajectory across three major astrocyte states in AD and WT brains. Diffusion 

map embedding of 7,345 WT and AD astrocytes, colored by cluster (grey: cells of other 
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conditions). The three end states are marked: Gfap-low/high and DAA. Inset: Map colored 

by Gfap expression level. (e) Marker genes of astrocyte states. Expression level (color scale) 

of marker genes across clusters and the percentage of cells expressing them (dot size). (f) 
An increase in frequency of DAAs and reduction in frequency of homeostatic Gfap-low 

astrocytes in AD. Boxplot (as in c) showing the fraction of nuclei per cluster in WT and AD. 

Asterisks: Statistically significant differences between AD and WT (n=8 animals. Statistical 

test as in c). Similar proportions found in cortical brain region and in female mice, Extended 

Data Fig. 4.

Habib et al. Page 34

Nat Neurosci. Author manuscript; available in PMC 2022 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. DAAs are associated with diverse molecular pathways and positioned in proximity to 
Aβ plaques in AD.
(a) Multiple genes upregulated in DAAs and Gfap-high compared to Gfap-low astrocytes 

(total 7,345 astrocytes across states). Volcano plot showing differential expression of genes 

in each pair of states (n=8 animals; 1,594, 478 and 457 cells in clusters 1,4 and 6 

respectively; negative binomial p-value, FDR correction). Y-axis: -log10(adjusted p-value) 

and Xaxis: average log fold change (FC). All cluster pairs in Extended Data Fig. 5a. AD 

risk factor genes from GWAS marked in orange. (b) Shared and distinct upregulated genes 
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and pathways between clusters 4 (DAAs), 6 (Gfap-high) and 3 (intermediate) astrocytes 

compared to Gfap-low astrocytes. Left: Geatmap showing the significance of upregulated 

pathways in the three clusters (n=8 animals. 2265 cells in cluster 3, other cells numbers as 

in (a); Hypergeometric p-value, FDR<0.05. -log(FDR) values as colorbar) Selected pathway 

names are highlighted (full list in Extended Data Fig. 5b and Supplementary Table 3). Right: 

Venn diagrams of up-regulated genes (hypergeometric p-value FDR < 0.01). (c) Signatures 

of reactive astrocytes found in AD. Violin plots showing the distribution of expression 

scores (y axis) for previously defined signature genes for (left) pan-reactive, inflammation-

associated (LPS), and ischemia-associated (MCAO) reactive astrocytes (from6) across WT 

(3,831 cells, n=4 animals) and AD (3,514 cells, n=4 animals), and (right) pan-reactive and 

A1-reactive astrocytes (from5) across clusters (n=8 mice, 10 samples, Extended Data Fig. 

6a-c). (d) Overlapping upregulated genes between disease-associated microglia (DAM)1 

and DAA. 18 shared genes (nodes), connected by functional links (edges), weighted (edge 

width) proportionally to the confidence levels (Methods). (e-h) Astrocytes expressing DAA 

markers are found in AD brains, enriched in the subiculum and in proximity to Aβ plaques. 

Representative immunofluorescence images in sagittal sections of 7–8-month old mice. 

Subiculum, stained for GFAP (green), VIM (red), and serpinA3N (gray), in WT mice 

(e) and 5XFAD mice (f). Dentate gyrus (g, left) and subiculum (g, right), stained for 

GFAP (green), VIM (red), and Aβ (gray) in 5XFAD mice. Subiculum, stained for GFAP 

(green), serpinA3N (red), and Aβ (gray) in 5XFAD mice (h). Cell nuclei are shown in blue 

(Hoechst). Scale bar, 50 μ m. Red arrows or red boxes: colocalization of three proteins. 

Experiments repeated on 4 brain slices per animal on n=4 AD and WT mice.
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Figure 3. DAAs are derived from homeostatic Gfap-low astrocytes and increase with age.
(a) sNuc-Seq time course experiment in WT and 5xFAD mice across six age groups (n=28 

mice detailed in Supplementary Table 1). (b) Relative increase of microglia frequency with 

age, in AD compared to WT. Log ratio frequency of microglia cells in AD vs. WT (y 

axis), by age (x axis), in animal pairs matched by batch and age. (c) Continuous trajectory 

across three major astrocyte states in AD and WT brains across ages. Embedding of 23,863 

astrocytes in diffusion map (as in Fig. 1d), highlighting cells per age and condition (top: WT, 

bottom: AD), colored by inferred cluster identity (from Fig. 1d, consistent with independent 
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clustering and diffusion map embedding of time course data in Extended Data Fig. 7). 

Bottom right: Schematic of astrocyte states and predicted transitions. (d) An increase in the 

frequency of DAAs and a decrease in homeostatic Gfap-low astrocytes with age. Fraction 

of Gfap-low, DAA and Gfap-high cells out of all astrocytes (y axis) across ages (x axis), in 

AD (red) and WT (blue). Line: linear regression, with confidence intervals. R and p-values 

of the linear fit. Inset: fraction of DAAs in WT. (n=23,863 cells across ages. n=28 nmice 

as detailed in Supplementary Table 1). (e-f) DAAs are predicted to mainly derive from the 

population of Gfap-low astrocytes. Diffusion map (as in (c)) with directions of transition 

(directed arrows, Methods) of AD astrocytes (n=12 animals, 10,226 cells) from their optimal 

nearest neighbor (cell of origin) among all other AD astrocytes outside the cluster (e), 

or among all AD astrocytes from preceding (measured) time point (f). Additional clusters 

and mappings in Extended Data Fig. 8. (g) DAAs are predicted to emerge from Gfap-low 

astrocytes according to the proportion of cells of origin per cluster. Top: For each pair 

of consecutive time points, the proportion (color bar) of astrocytes (rows) predicted to be 

derived from cells in each of the clusters in the preceding time point (columns). Bottom: 

Graph connecting (arrows) pairs of clusters (nodes) between consecutive time points. Only 

showing edges between clusters if the proportion of cells of origin is at least 14%. Arrow 

color: proportion. (h) Genes correlated with transitions to DAAs across clusters and ages. 

Top: Expression across clusters of genes significantly correlated (n=12 animals. Pearson 

correlation coefficient, FDR<10−3) with the transition to cluster 4 (DAAs), from each cluster 

in a preceding time point. Dot color: expression level; Dot radius: proportion of cells 

expressing the gene. Bottom: Assignment of each gene (column) to the transition from a 

cluster (row) and time point (color bar): upregulated = purple, downregulated = orange. (i) 
DAA-like cells found in aging human cortex. Right: tSNE of 3,392 sNuc-Seq profiles of 

cortical post-mortem human astrocytes from aging brains of healthy and AD individuals, 

taken from Mathys et al.4, colored by de novo cluster ID. Left: Proportions (color bar, 

scaled per column) of human astrocyte clusters (rows) mapped to mouse astrocyte clusters 

(columns). Bottom: Proportion of human astrocytes from healthy and AD individuals per the 

predicted mouse astrocyte cluster ID (n=48 individuals). Box: 75% and 25% quantile. Line: 

Median. Dots: individuals.
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