
Individualized and Generalized Learner Models for Predicting 
Missed Hepatic Metastases

Parvathy Sudhir Pillai*,a, Scott Hsieha, David Holmesb, Rickey Carterc, Joel G Fletchera, 
Cynthia McCollougha

aDepartment of Radiology, Mayo Clinic, Rochester, MN, USA 55905

bBiomedical Imaging Resource, Mayo Clinic, Rochester, MN, USA 55905

cDepartment of Health Sciences Research, Mayo Clinic, Jacksonville, Florida, USA 32224

Abstract

The diagnostic performance of radiologist readers exhibits substantial variation that cannot be 

explained by CT acquisition protocol differences. Studying reader detectability from CT images 

may help identify why certain types of lesions are missed by multiple or specific readers. Ten 

subspecialized abdominal radiologists marked all suspected metastases in a multi-reader-multi-

case study of 102 deidentified contrast-enhanced CT liver scans at multiple radiation dose 

levels. A reference reader marked ground truth metastatic and benign lesions with the aid of 

histopathology or tumor progression on later scans. Multi-slice image patches and 3D radiomic 

features were extracted from the CT images. We trained deep convolutional neural networks 

(CNN) to predict whether an average (generalized) or individual radiologist reader would detect 

or miss a specific metastasis from an image patch containing it. The individualized CNN showed 

higher performance with an area under the receiver operating characteristic curve (AUC) of 0.82 

compared to a generalized one (AUC = 0.78) in predicting reader-specific detectability. Random 

forests were used to build the respective versions from radiomic features. Both the individualized 

(AUC = 0.64) and generalized (AUC = 0.59) predictors from radiomic features showed limited 

ability to differentiate detected from missed lesions. This shows that CNN can identify and 

learn automated features that are better predictors of reader detectability of lesions than radiomic 

features. Individualized prediction of difficult lesions may allow targeted training of idiosyncratic 

weaknesses but requires substantial training data for each reader.
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1. INTRODUCTION

In multi-reader, multi-case observer studies, the performance across radiologist readers 

exhibits wider variability than can be explained by variations due to image dose, quality, 
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or reconstruction parameters. There is a critical need to study interobserver variability to 

devise targeted training strategies and achieve a consistent level of diagnostic performance. 

Quantifying case and reader-specific qualities affecting diagnostic performance is of prime 

importance before further optimization in terms of low-dose protocols can be realized. 

While there has been substantial investigation of artificial intelligence (AI)-based methods 

for the task of detecting metastatic cancer, there may be complementary value in using them 

for radiology education.

We aim to investigate the lesion-based characteristics of hepatic metastases from abdominal 

CT images that cause radiologists to miss detecting them. Using two AI-based approaches, i) 

radiomics analysis, and ii) deep convolutional networks (CNNs), we predict the radiologists’ 

performance for detecting malignant lesions from contrast-enhanced CT images. For each 

approach, we produce both a generalized and an individualized prediction. The generalized 

prediction is trained to identify the difficult lesions that are missed by many radiologists, 

whereas the individualized prediction is trained to identify lesions difficult for a specific 

radiologist, which may be affected by reader-specific fallacies. Accurate predictions of 

reader-specific detectability of lesions could enable targeted training of idiosyncratic 

weaknesses by optimizing the collection of cases that a resident learns from.

2. METHODS

2.1 Reader Performance Study

We used the data from a previous study [1] that collected abdominal CT images from 102 

patients. A total of 124 hepatic metastatic lesions were identified from 51 patients through 

histopathology or progression on subsequent scans. Ten abdominal radiologists from our 

institution were recruited after IRB approval for the reader performance study.

2.2 Image processing

Raw CT images were reconstructed using five combinations of algorithms and quality 

reference mAs (QRM) levels. The five combinations were i) 200 QRM filtered back 

projection (FBP), ii) 160 QRM iterative reconstruction (IR), iii) 120 QRM IR, iv) 120 

QRM FBP, and v) 100 QRM IR. We used the PyRadiomics package [2] to extract 110 3D 

radiomic features from all reconstructed images. 3D image patches comprising 3 slices of 

size 128×128 pixels, centered around the lesions, were extracted from the images to be used 

as the inputs to the CNNs.

2.3 Prediction of reader detectability

The ground truth was established by a reference reader according to predefined criteria. 

In particular, ground truth metastases were established on the basis of progression in 

subsequent imaging or on histopathology. The ten radiologists marked all suspected 

metastases from the reconstructed images with a confidence score between 1 and 100 

(examples in Figures 1.a and 1.b).

We use the term learner to signify any AI mechanism that is automatically able to learn 

patterns in reader detectability of lesions. Two sets of prediction tasks were defined: i) 
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Generalized: a single learner that learns simultaneously for all 10 radiologists, and ii) 

Individualized: separate learners for each radiologist. Each of the reconstructed lesions 

were assigned binary labels based on the prediction task. The generalized learner uses 

labels of “detected” if found by >75% of all readers or “missed” otherwise, while the 

individualized learner uses the labels of “detected” or “missed” by individual readers. 

The reader performance data was partitioned into 5 groups for five-fold cross-validation, 

without data leakage. Specifically, separation of lesions in the train and test sets were with 

respect to a unique patient identifier. This ensured the avoidance of same-patient bias and 

repetition of data at different reconstruction combinations. The training data was up-sampled 

using random sampling to overcome the class-imbalance issue with the minority class of 

missed lesions. The classification performances for the prediction tasks were tested using 

the portion of reserved data in each iteration. We used the following approaches to compare 

generalized and individualized prediction of missed lesions.

2.4 Radiomic data analysis

The 110 handcrafted features extracted by the PyRadiomics package [2] belong to 7 

subgroups depicted in Table 1. PyRadiomics includes features such as first-order statistics 

that describe the distribution of voxel intensities within the image region, shape-based 

descriptors for the specifics of the 3D shape and sizes, gray level cooccurrence matrix 

(GLCM) for the second order joint probability of image levels, gray level size zone matrix 

(GLSZM) for the gray level zones in an image, gray level run length matrix (GLRLM) for 

length of pixels with the same gray level value, neighboring gray tone difference matrix 

(NGTDM) for the difference between gray levels with neighbors, and gray level dependency 

matrix for the adjacent voxels that are dependent (gray level difference is below a threshold) 

on a central voxel. Masking was not applied to the lesions because the tumors were not 

segmented.

Removing zero-variance features that do not contribute to the classification resulted in 106 

features. As the number of radiomic features outnumber the sample images, we employed 

feature selection as the first step to avoid overfitting. Our strategy was to choose one feature 

from each of these groups that could predict whether readers would miss/detect lesions 

with the highest accuracy. The features are selected based on the ANOVA F-test, where the 

F-statistic is the variation between sample means and within the samples, that are expected 

to vary in a similar manner under the null hypothesis. Higher F-values indicate higher 

variability among the samples. The most significant feature from each group is selected 

based on the highest F-value along with p-values lower than the significance level to reject 

the null hypothesis. As the train and test set changes per iteration, the selected features also 

change. For the final model fit, we considered the feature that appeared the greatest number 

of times from a group across the various iterations.

Next, we trained classifiers for the generalized and individualized tasks to predict the 

radiologists’ capability to detect lesions. A set of classifiers that included 3-nearest 

neighbors, linear and radial basis support vector machine, decision tree, random forest, 

multilayer perceptron, naive Bayes, and quadratic determinant analysis were used. We chose 

random forest as the final classification model due to better performance on the test set 
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(generalized AUC = 0.59, individualized AUC = 0.64) and lower proneness to overfitting. 

Hyperparameter tuning of the random forest classifier in terms of maximum tree depth, 

number of samples per node, and number of trees was performed through grid search. The 

validation AUC for the other classifiers ranged between 0.52 and 0.57 for the generalized 

version and 0.54–0.59 for the individualized version.

2.5 Deep Convolutional Neural Network

Pretrained VGG-16 [3] CNNs with ImageNet classification task weights [4] were used to 

automatically extract and process image features from resized 3D image patches. Instead 

of RGB channels in color images which the network was initially trained on, we used the 

slice at the center, one slice before, and one slice after to mimic the three dimensionalities 

of data. The densely connected layers of these CNNs trained for ImageNet classification task 

were removed and two more convolution, batch normalization, pooling layers were added 

for fine tuning. A final dense layer with a SoftMax activation was used for the predictions. 

A pipeline of data augmentation to avoid class imbalance, dropout to reduce overfitting, and 

transfer learning with fine-tuning was used to train the CNNs on the reader performance 

data.

3. RESULTS

Reader sensitivity across the 10 radiologists ranged from 67.3% to 93.0% with an average 

sensitivity of 85.74%. Reader 4 missed the least number of lesions and reader 1 the 

most. Reader-specific eye-scanning patterns and image-specific characteristics would also 

contribute to the detectability of lesions.

Table 2 lists the meaning of each of the selected features from PyRadiomics. Figure 2.a 

compares the individualized and generalized classification of radiomic features in predicting 

the detectability of lesions in the test set by each reader. The individualized version at 

an average area under the receiver operating characteristic curve (ROC-AUC) of 0.64 

performed slightly better than the generalized version (AUC = 0.59) on the test set. The 

highest difference in AUC between the individualized and generalized random forests was 

for reader 4, with the former reporting a 16% increase. As discussed above reader 4 has the 

best diagnostic sensitivity. The generalized random forest performed better only for readers 

8 and 9, which however, is only a 2% and 1% improvement over the individualized version.

Individualized CNNs obtained an average area under the receiver operating characteristic 

curve (AUC) of 0.82 (±0.04) in categorizing lesions as missed or detected by the 10 readers 

across the test sets for each fold. The generalized CNN obtained an average AUC of 

0.78 (±0.04). The performance of the two CNN versions across the readers is depicted in 

Figure 2.b. As in the case with radiomic features, individualized CNN fared better than the 

generalized CNN for all readers except readers 4 and 9. Individualized CNN outdid the 

generalized one by 8.8% in the best case (reader 2), while the latter bettered the former at 

7.8% for reader 4.
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4. CONCLUSIONS

Image features extracted from deep CNNs outperformed handcrafted radiomic features 

in predicting radiologist detectability of metastatic liver lesions. An individualized CNN 

provides higher performance than a generalized CNN in predicting reader-specific lesion 

detectability. However, this requires substantial training data and effort for each reader. 

In situations where this training data cannot be collected, a generalized CNN may be an 

efficient method for identifying metastases that could be used for radiologist training.
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Figure 1. 
a) Example metastatic lesion detected by all 10 radiologists. b) Example metastatic lesion 

missed by all radiologists
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Figure 2. 
a) Comparing AUCs of individualized and generalized radiomics. b) Comparing AUCs of 

individualized CNN and generalized CNN for reader-specific lesion detectability
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Table 1.

Selected PyRadiomics features with P-values resulted from the ANOVA F-test

Feature group No. features Generalized Individualized

Selected feature P-value Selected feature P-value

First Order Statistics 19 Range <0.001 Median <0.001

Shape-based (3D) 16 Imc1 <0.001 Inverse Variance <0.001

Gray Level Cooccurrence Matrix 24 Dependence Non-
Uniformity

<0.001 Dependence Non-
Uniformity

<0.001

Gray Level Run Length Matrix 16 Run Entropy <0.001 Gray Level Non-Uniformity <0.001

Gray Level Size Zone Matrix 16 Coarseness <0.001 Coarseness <0.001

Neighboring Gray Tone Difference 
Matrix

5 Gray Level Non-
Uniformity

<0.001 Gray Level Non-Uniformity <0.001

Gray Level Dependence Matrix 14 Least Axis Length <0.001 Flatness <0.001
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Table 2.

Semantics of selected radiomic features from generalized and individualized predictions

Generalized Individualized

Feature Meaning of Measure Feature Meaning of Measure

Range Range of gray values in the region of interest 
(RoI) in an image

Median Meadian gray level intensity within the 
RoI

Imc1 Informational measure of correlation between 
pixels in the RoI

Inverse Variance Inverse variance of the intensities for a 
length of pixels with the same gray level 
value

Dependence Non-
Uniformity

Similarity of dependence in the image, with lower 
values denoting homogeneous dependences

Dependence Non-
Uniformity

Run Entropy Uncertainty in the distribution of gray levels Gray Level Non-
Uniformity

Similarity of gray-level intensity values 
in the image

Coarseness Spatial rate of change between the center voxel 
and it’s neighborhood

Coarseness

Gray Level Non-
Uniformity

Variability of gray-level intensities in the image Gray Level Non-
Uniformity

Least Axis Length Smallest axis length of the ellipsoid that encloses 
the RoI

Flatness Relationship between the largest and 
smallest principal components in the 
Principal Component Analysis (PCA) 
performed using the voxel coordinates of 
the image
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