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Abstract

Psychiatric studies of suicide provide fundamental insights on the evolution of severe

psychopathologies, and contribute to the development of early treatment interventions. Our focus

is on modelling different traits of psychosis and their interconnections, focusing on a case study

on suicide attempt survivors. Such aspects are recorded via multivariate categorical data, involving

a large numbers of items for multiple subjects. Current methods for multivariate categorical

data—such as penalized log-linear models and latent structure analysis—are either limited to

low-dimensional settings or include parameters with difficult interpretation. Motivated by this

application, this article proposes a new class of approaches, which we refer to as Mixture of

Log Linear models (MILLS). Combining latent class analysis and log-linear models, MILLS defines

a novel Bayesian approach to model complex multivariate categorical data with flexibility and

interpretability, providing interesting insights on the relationship between psychotic diseases and

psychological aspects in suicide attempt survivors.
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1. Introduction.

We are motivated by a psychiatric study of suicide attempts, focused on investigating the

psychological profiles of survivors of a suicidal act (e.g. Scocco et al. (2020), De Leo et al.

(2004), Nock et al. (2008)). Studies on suicide attempts are crucial for the development of

novel interventions, based on early identification of key psychological symptoms, such as

depression or hallucination (e.g., Hawton and Fagg (1988), Kelleher et al. (2011)). Detailed

characterisation of the psychological profiles in suicide attempts provide important insights

on the dynamics of suicidal acts, and the relationships between psychotic symptoms and

other psychological traits, such as empathy (De Beurs et al. (2019)). We are interested in

analysing traits of suicide attempt patients, including psychoses and empathic profiles, while

also characterizing interactions across these classes of traits.
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In the psychological literature, the investigation of the relationship between psychoses and

empathy has received considerable attention, remaining a challenging research objective

which is routinely explored (e.g., McCormick et al. (2012), Ladisich and Feil (1988)). In

general, specific empathic profiles are also associated with depression (Cusi et al. (2011),

Schreiter, Pijnenborg and Aan Het Rot (2013)), obsessive compulsive disorders (Fontenelle

et al. (2009)), anxiety (Perrone-McGovern et al. (2014)) and hostility (Guttman and Laporte

(2002)). For example, a frequent symptom of depression is the inability to perceive our

own feelings, which is also realistically associated with the inability to comprehend other

individuals’ emotions (e.g., Cusi et al. (2011)). Similar examples involve different empathic

conditions, such as personal distress and severe hostility, which are likely to be associated

with acute anxiety (Guttman and Laporte (2002)).

Although there are many studies focusing on the interconnections among these

psychological aspects, their mutual influence in patients attempting suicide is not completely

understood. Indeed, preliminary evidence suggests that individuals who attempted suicide

can exhibit unexpected association patterns across psychotic symptoms and specific

empathic profiles, and such interactions could be relevant for characterising underlying

psychological mechanisms (Scocco et al. (2020), Wang et al. (2020), Zhang et al. (2019)).

For instance, depressed individuals with a high level of empathic concern may suffer

inconsistent thoughts and feelings, exacerbating their clinical condition and potentially

increasing the risk of reattempting suicide.

Subjects analysed in the study correspond to a sample of 56 inpatients hospitalized after

an attempted suicide at the psychiatric ward of Padova Hospital (Italy) between January

2017 and December 2018 (Scocco et al. (2020)). Suicide attempts can be intentional or not,

depending on whether the individual consciously realizes that his actions are intended to

kill him. This distinction can be blurred for many episodes; for example, with poisoning or

drug overdoses (Britton et al. (2012)). In this study, we rely on clinicians’ evaluations about

intentionality. Individuals were labelled as “attempted suicide” if they harmed their body and

consciously realized that such an act could kill them (e.g., Goodfellow, Kõlves and de Leo

(2019)). During hospitalisation, clinicians submit self-reported questionnaires to each patient

to supervise their psychological evolution over time. Such tools are developed to investigate

different aspects of individuals’ psychology, with the main focus being on the evaluation

of the psychotic profiles and the empathic status (Scocco and De Leo (2002)). Specifically,

these facets are evaluated through the Symptom Check List (SCL-90; Derogatis, Lipman and

Covi (1973)) and the Interpersonal Reactivity Index (IRI; Davis (1980)) questionnaires.

The SCL-90 is commonly used to describe psychiatric symptoms, using 90 items scored

on a five-point Likert scale; additionally, scores can be grouped into nine subscales

(somatization, obsessive-compulsive, interpersonal sensitivity, depression, anxiety, hostility,

phobic anxiety, paranoid ideation, psychoticism) corresponding to well-defined psychiatric

profiles (Derogatis, Lipman and Covi (1973)). As suggested by our clinician collaborators,

it is of particular interest to focus on 4 subscales of the questionnaire: obsessive-compulsive

(OC), depression (DEP), anxiety (ANX) and hostility (HOS), encompassing a total of 39 items

measuring the psychotic aspects which are more relevant in suicide attempts evaluation. We

have further removed from analysis 4 items with a large fraction of missing observations,
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resulting in a total of 35 items for SCL-90. Although we could have used imputation methods,

the high proportion of missingness and our small sample size led us to instead remove these

items. See Table 6 in Appendix A for a detailed illustration of the items under investigation.

The IRI is a 28-item instrument scored on a five-point Likert scale that measures the

emotional and cognitive components of a person’s empathy, with four subscales. The IRI

measures the cognitive capacity to see things from the point of view of others (Perspective

Taking, PT), the tendency to experience reactions of sympathy, concern and compassion

for other people undergoing negative experiences (Empathic Concern, EC), the tendency

to experience distress and discomfort in witnessing other people’s negative experiences

(Personal Distress, PD) and the capacity to strongly identify oneself with fictitious characters

in movies, books, and plays (Fantasy, FS). We will focus only on the 22 items that were

uniquely associated with a specific empathic subscale, and without missing observations.

For a detailed illustration, see Table 7 in Appendix A.

Following the notation convention of Lauritzen (1996), we will indicate with V = {1, …,

k} the set of k = 57 categorical items collected from the two psychological questionnaires

combined. We also denote with (Yj, j ∈ V) the variables taking values in the finite set ℐj,

with dimension ℐj = dj corresponding to the number of categories of the j-th item. In the

psychological study under investigation, dj = 5 and ℐj = 0, …, 4 , for each j = 1, …, 57.

Data collected from patients consist of an n × k matrix with elements yij ∈ {0, …, 4}, where

i = 1, …, 56, j = 1, …, 57. Table 1 illustrates the univariate frequencies for the items under

investigation, sorted according to the subscale they refer to.

Preliminary findings suggest that most subjects generally report high scores of hostility

(HOS). Such a subscale focuses on measuring different dimensions of hostility, including

thoughts, feelings, and actions that are characteristic of the negative affect state of anger

(Derogatis, Lipman and Covi (1973)). High scores demonstrate that resentment, irritability

and rage are common in the patients under investigation. Similarly, subjects respond

with high scores to items belonging to the Anxiety (ANX) and Obsessive-Compulsive (OC)

subclasses. These items are devoted to measuring nervousness, tension and impulses that

are experienced as irresistible (Derogatis, Lipman and Covi (1973)). The prevalence of high

scores in these questions indicate that patients who attempted suicide demonstrate feelings

of apprehension and panic, and that they often feel the need to obsessively check what they

do.

Interestingly, we observe heterogeneous responses to items measuring depressive profiles

(DEP). For example, subjects respond to the item SCL-15 (“Thoughts of ending your life”)

both with low and high scores. Similarly, responses to most questions referring to empathic

traits are heterogeneous, and indicate that the sample is characterized by different profiles

in terms of empathic feelings. As an exception, it is of interest to focus on the Empathic-

Concern subscale (EC), which is characterised by more polarized answers; see for example,

item IRI-18 (“When I see someone being treated unfairly, I sometimes don’t feel very much
pity for them”) and IRI-14 (“Other people’s misfortunes do not usually disturb me a great
deal”), where most patients respond with low scores (disagreement) indicating feelings of

sympathy and concern for unfortunate others.
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These preliminary descriptions indicate that patients under investigation have nontrivial

psychopathological traits, characterised by different psychotic symptoms and interesting

empathic profiles. To provide deeper insights into the psychopathology of attempted suicide,

it is important to characterize the association structure across the items, in order to evaluate

which profiles are mostly associated with specific symptoms. Therefore, the focus of further

analysis will be on making inference on the dependence structure across the different pairs

of categorical variables (Yj, Yj′), j = 2, …, k, j′ = 1, …, j, providing a measure of the

intensity of the pairwise dependence and an assessment of uncertainty in estimation. Several

studies have described the design and the empirical dependence structure across the SCL-90

and IRI items, focusing on random samples (e.g., Prunas et al. (2012), Gilet et al. (2013))

or subjects with moderate psychotic symptoms (Prinz et al. (2013)). However, related

information is not available for suicide attempt survivors, who might show unexpected

association patterns that differ from other psychotic profiles (Scocco et al. (2020)).

Associations and interactions across categorical variables are generally investigated through

multi-way contingency tables, where individuals are cross classified according to their

values for the different items. These tools are routinely used to investigate the association

across the items and to test for the presence of specific dependence structures; see for

example Agresti (2002) for an introduction. Under the adopted notation, the contingency

table is denoted as ℐV = Xj ∈ V ℐj, while its generic elements i = i1, …, ip ∈ ℐV  are

referred to as the cells. Given a sample of size n, the number of observations falling in

the generic cell i is denoted as y(i), with ∑i ∈ ℐV y(i) = n. The joint table has a number of

elements equal to ℐV = ∏j = 1
k dj = 557 in our motivating application, which is exponential

in the number of categorical variables and tremendously large. Indeed, computation of

the joint cell counts is unfeasible even for moderate values of k, and is basically limited

to settings with at most 15 binary variables (e.g., Johndrow and Bhattacharya (2018)).

In addition, most cells will contain zero observation, leading to issues during estimation;

for example, non existence of maximum-likelihoods estimates (e.g., Fienberg and Rinaldo

(2007)). The huge dimensionality and severe sparsity motivate novel methods to adequately

characterise the interactions among categorical variables in multivariate categorical data,

with sparse log-linear models and latent structure modelling being popular options.

1.1. Relevant literature.

The development of methods to analyse categorical data began well back in the 19th

century, and remains a very active area of research (e.g., Fienberg and Rinaldo (2007)).

Log-linear models are particularly popular. Logarithms of cell probabilities are represented

as linear terms of parameters related to each cell index, and with coefficients that can be

interpreted as interactions among the categorical variables (Agresti (2002)). The relationship

between multinomial and Poisson log-likelihoods allows one to obtain maximum likelihood

(ML) estimates for log-linear models leveraging standard generalized linear model (GLM)

algorithms (e.g., Fisher–Scoring), with the vectorized table of cell counts used as a response

variable. As outlined in Section 1, when the number of variables increases the number of

cells of the contingency table grows exponentially. Therefore, many cells will be empty and

there will be infinite ML estimates (Fienberg and Rinaldo (2007)). To overcome this issue and
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obtain unique estimates, it is often assumed that many coefficients are zero, and estimation

is performed via penalised likelihood (Nardi and Rinaldo (2012), Hastie, Tibshirani and

Wainwright (2015), Ravikumar, Wainwright and Lafferty (2010)). However, these methods

require computation of the joint cell counts, which is unfeasible in our setting.

Bayesian approaches for inference in log-linear models often restrict consideration to

specific nested model subclasses; for example, hierarchical, graphical or decomposable log-

linear models (Lauritzen (1996)). Conjugate priors on the model coefficients are available

(Massam, Liu and Dobra (2009)), but exact Bayesian inference is still complicated since

the resulting posterior distribution is not particularly useful, lacking closed form expressions

for important functionals—such as credible intervals—and sampling algorithms to perform

inference via Monte Carlo integration. As an alternative, the posterior distribution can be

analytically approximated with a Gaussian distribution if the number of cells is not excessive

(Johndrow and Bhattacharya (2018)). When the focus is on selecting log-linear models with

high posterior evidence, stochastic search algorithms evaluating the exact or approximate

marginal likelihood are available (Dobra and Massam (2010), Dobra and Mohammadi

(2018)).

A different perspective on analyzing multivariate categorical data relies on latent structures

(Lazarsfeld (1950)). This family of models is specified in terms of one or more latent

features, with observed variables modelled as conditionally independent given the latent

features. Marginalising over the latent structures, complex dependence patterns across the

categorical variables are induced (e.g., Andersen (1982)). Representative examples include

latent class analysis (Lazarsfeld (1950)) and the normal ogive model (Lawley (1943)),

where a univariate latent variable with discrete or continuous support, respectively, captures

the dependence structure among the observed categorical variables; see also Frühwirth-

Schnatter, Celeux and Robert (2019), Chapters 9 and 11, and references therein. More

flexible multivariate latent structures have also been introduced; for example, grade of

membership models (Erosheva (2005)) and the more general class of mixed membership

models (Airoldi et al. (2014)). Specific latent variable models can also be interpreted as

tensor decompositions of the contingency tables (Dunson and Xing (2009), Bhattacharya

and Dunson (2012)); see also Kolda and Bader (2009) for a discussion.

To conduct meaningful and interpretable inferences, it is important for marginal or

conditional distributions and measures of association to have a low-dimensional structure.

For example, it is often of substantial interest to characterise bivariate distributions and test

for marginal or conditional independence (Agresti (2002)). Leveraging data-augmentation

schemes, estimation of latent variable models is feasible in high-dimensional applications

(e.g., Dunson and Xing (2009)); however, these approaches might require many components

to adequately characterize complex data, and can lack simple interpretability of the model

parameters and the induced dependence structure. On the other hand, log-linear models

directly parameterize the interactions among the categorical variables (Agresti (2002)) or

the lower-dimensional marginal distributions (Bergsma and Rudas (2002)), but estimation

is generally unfeasible when the number of variables is moderate to high, due to the huge

computational bottlenecks and the massively large model space. Sparse log-linear models

and latent class structures are deeply related in the way in which sparsity is induced in
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the resulting contingency table (Johndrow, Bhattacharya and Dunson (2017)), but a formal

methodology mixing the benefits of the two model families is still lacking.

Motivated by the application to studies of suicide attempt, in this article we introduce

a novel class of Bayesian models for categorical data, which we refer to as MILLS. We

propose to model the multivariate categorical data as a composite mixture of log-linear

models with first order interactions, characterising the bivariate distributions with simple and

robust models while accounting for dependencies beyond first order via mixing different

local models. Such a specification models categorical data with a simple, yet flexible,

specification which can take into account complex dependencies with a relatively small

number of components. The idea of mixing simple low-dimensional models to reduce the

number of parameters needed to characterize complex data has a long history. One example

is mixing first order Markov models to account for higher order structure (Raftery (1985)).

See also Frühwirth-Schnatter, Celeux and Robert (2019) for related ideas.

2. Log linear models.

Following Lauritzen (1996), we fix an arbitrary reference cell i⋆ of the contingency table,

which can be assumed as i⋆ = (0, …, 0) without loss of generality. For each cell i ∈ ℐV  of

the table, we denote as p(i) = pr(Y1 = i1, …, Yk = ik) the probability of falling in cell i.

According to the notation of Section 1, we denote as p = p i /p i⋆ , i ∈ ℐυ  the vectorised

ratio between cell probabilities and the reference cell i⋆; see also Johndrow and Bhattacharya

(2018). A log-linear model is a generalised linear model for the resulting multinomial

likelihood, which represents the logarithms of cell probabilities additively as a function of a

set of log-linear parameters ϑ. Following Propostion 2.1 of Letac and Massam (2012), it is

possible to relate cell probabilities and log-linear coefficients as follows:

log p = Xϑ, (1)

where X is a full rank ℐV × ℐV  matrix if the transformation is invertible; for

example, when X is the identity matrix, the so-called identity parametrisation is obtained.

Identifiability is imposed through careful specification of the matrix X, which determines

the model parametrisation and, consequently, constraints on the parameters, and fixing

the first element of ϑ to zero (Agresti (2002)); see also Letac and Massam (2012),

Proposition 2.1, for related arguments. Equation (1) can be extended to embrace a larger

class of invertible and noninvertible log-linear parametrisations; for example, marginal

parametrisations (e.g., Bergsma and Rudas (2002), Roverato, Lupparelli and La Rocca

(2013), Lupparelli, Marchetti and Bergsma (2009)).

In general, it is desirable to specify a sparse set of m coefficients with m ≪ ℐυ ,

corresponding to some notion of interactions among the categorical variables; for example,

representing conditional or marginal independence (Agresti (2002)). When a sparse

parameterisation is employed, it is common to remove in equation (1) the columns of X
associated with excluded coefficients, thereby obtaining a more parsimonious design matrix

with dimension ℐV × m. In this article we focus on the corner parameterisation, which is
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particularly popular in the literature for categorical data (Agresti (2002), Massam, Liu and

Dobra (2009), Letac and Massam (2012)), and is generally the default choice in statistical

software. The columns of X under the corner parameterisation can be formally expressed

in terms of Möbius inversion (e.g., Letac and Massam (2012), Preposition 2.1); see also

Massam, Liu and Dobra (2009), Lemma 2.2. For simplicity in exposition, we prefer to use

matrix notation.

Let y = y(i), i ∈ ℐυ  denote the vectorised cell counts. The likelihood function associated

with the multinomial sampling and log-linear parameters can be expressed, in matrix form,

as follows:

∏
i ∈ ℐV

p(i)y(i) = exp y⊤Xϑ − nκ(ϑ) = exp y⊤ϑ − nκ(ϑ) ,
(2)

with κ(ϑ) = log 1⊤ exp(Xϑ) . Such a parametrisation yields a very compact data reduction,

since the canonical statistics y⊤X = y⊤ correspond to the marginal cell counts relative to

the highest interaction term included in the model (Massam, Liu and Dobra (2009), Agresti

(2002)). In particular, we will consider hierarchical log-linear models which include all the

main effects and all the first-order interactions; under such a specification, the canonical

statistics y correspond to the marginal bivariate and univariate tables (e.g., Agresti (2002)).

3. Composite likelihood.

The log-partition function in equation (2) involves a sum of ℐV  terms, the total number

of cells. Due to the immense number of cells, the likelihood cannot be evaluated unless the

number of variables k is very small. Approximations of intractable likelihoods have been

proposed in the literature, with Monte Carlo maximum likelihood (Snijders (2002), Geyer

and Thompson (1992)) being one option. Composite likelihoods provide a computationally

tractable alternative to the joint likelihood, relying on a product of marginal or conditional

distributions; see Varin, Reid and Firth (2011) for an overview. Extending the work of

Meng et al. (2013), Massam and Wang (2018) focused on composite maximum likelihood

estimation for log-linear models, with a careful choice of the conditional and marginal

distributions based on the conditional dependence graph. However, the dependence graph

is typically unknown and its estimation can be very demanding and affected by large

uncertainty (Dobra and Massam (2010)).

We propose to replace the joint likelihood with a simple and robust alternative. Denote as P2
the set of subsets of V with cardinality 2. For each E2 ∈ P2, let yE2 denote the vectorised

E2-marginal bivariate table of counts. We define, for each yE2, a saturated log-linear model

with corner parametrisation:

p yE2; ϑE2 = exp yE2
⊤ X2ϑE2 − nκ2 ϑE2 = exp yE2

⊤ ϑE2 − nκ2 ϑE2 , (3)
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where κ2 ϑE2 = log 1⊤ exp X2ϑE2 , dim ϑE2 = dim yE2 = ℐE2 = ∏j ∈ E2dj and

ϑE2 ∈ ℝ ℐE2 . In our motivating application, this choice implies ϑE2 ∈ ℝ25, with the first

element of ϑE2 equal to 0 for identifiability. There is an important difference between yE2
and yE2. The former refers to the E2-marginal bivariate table, while the latter refers to the

sufficient statistics of the log-linear model with corner parametrisation, which are elements

of the bivariate and univariate E2-marginal table; see, for example, Agresti (2002).

We define a surrogate likelihood function combining the distributions defined in (3) as

∏
E2 ∈ P2

p yE2; ϑE2
wE2 = exp ∑

E2 ∈ P2
wE2log p yE2; ϑE2

= exp ∑
E2 ∈ P2

wE2 yE2
⊤ ϑE2 − nκ2 ϑE2 .

(4)

Equation (4) is constructed with the same motivation of composing simplified likelihoods

from marginal densities in composite likelihood estimation; see, for example, Cox and

Reid (2004), Varin, Reid and Firth (2011). Differently from Massam and Wang (2018), we

include contributions for all the bivariate distributions in equation (4), since the underlying

graphical structure is not known a priori, and it is not possible to decide which marginal

densities should be included accordingly. Instead, we include all bivariate terms and assign

to each component a nonnegative weight wE2 ∈ ℝ+, controlling the contribution of the E2

component to the joint likelihood function.

Although it is common to choose unity weights wE2 = 1 for each E2 ∈ P2 (e.g., Cox and

Reid (2004)), careful choice of composite weights can improve efficiency (Varin, Reid and

Firth (2011)). Popular choices focus on selecting weights according to some optimality

criteria; for example, to correct the magnitude (Pauli, Racugno and Ventura (2011))

or curvature (Ribatet, Cooley and Davison (2012)) of the likelihood-ratio test or, more

generally, to improve statistical efficiency of the resulting estimating equation (e.g. Lindsay,

Yi and Sun (2011), Fraser and Reid (2020), Pace, Salvan and Sartori (2019)). Beside

asymptotic arguments, such procedures are also practically well justified since equation

(4) might include redundant terms, accounting for the same contribution (e.g., marginal

univariate) multiple times. This has motivated the development of more efficient likelihood

composition, with the focus on producing sparse estimating equations with few informative

components by setting some weights to zero via constrained optimisation (Ferrari, Qian and

Hunter (2016), Huang and Ferrari (2017)). In this article, we build on a similar strategy

and aggregate the different components under a Bayesian approach, imposing a sparsity-

inducing prior on the weights which favours deletion of redundant terms.

Equation (4) can also be motivated from an inferential point of view. When interest focuses

on inferences for low-dimensional marginal distributions, such as univariates and bivariates,

estimates based on the pseudo likelihood in equation (4) and the original likelihood in (2)

are equivalent, since the joint model is a closed exponential family which includes only first
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order interactions in the sufficient statistics (Mardia et al. (2009), Theorem 2). With respect

to this consideration, it is also worth highlighting that the sufficient statistics yE2 of the

simplified model in equation (3) are actually a subset of the sufficient statistics of the joint

model for y in (2) and that ∪E2 ∈ P2 yE2 = y.

Although in a variety of applications the focus of statistical inference is on low-dimensional

margins and related measures of association, equation (4) may be oversimplified and hence

lead to a poor characterisation of multivariate categorical data. For example, there may be

significant dependence in the data beyond first order. To improve flexibility, we propose to

use equation (4) to characterize variability within subpopulations using a mixture modeling

approach. To formalize this, denote with iE2 the elements of ℐE2, cells of the E2-marginal

bivariate table. The contribution for a single observation yi = (yi1, …, yik) in equation (4) can

be expressed as

p yi; ϑ, w = exp ∑
E2 ∈ P2

wE2 1 yi, iE2 X2ϑE2 − κ2 ϑE2 , (5)

with ϑ = ϑE2 E2 ∈ P2, w = wE2 E2 ∈ P2 and 1 yi, iE2  corresponding to a vector of length

ℐE2  with a 1 in the position for the cell in which the E2 component of yi falls and all

other elements 0. We introduce a latent group indicator zi ∈ {1, …, H} with pr[zi = h] =

νh, indexing the subpopulation for the ith subject. We use equation (4) as a local model for

characterizing the dependence structure of subjects in the same latent group. By allowing the

weights wE2 to vary across subpopulations, we allow the complexity of the local model to

vary substantially and adapt to the subpopulation-specific structure.

Considering only observations belonging to group h and denoting with nℎ = ∑i = 1
n 1 zi = ℎ

the number of units in group h, we interpret equation (4) as a model for the contingency

table conditional on group membership, as

p yℎ; ϑℎ, wℎ ∣ z = exp ∑
E2 ∈ P2

wE2
ℎ yE2

ℎ⊤ϑE2
ℎ − nℎκ2 ϑE2

ℎ , (6)

where the composite likelihood weights wℎ = wE2
ℎ

E2 ∈ P2 and the log-linear parameters

ϑℎ = ϑE2
ℎ

E2 ∈ P2 are allowed to vary across mixture components h = 1, …, H to

characterise different dependence patterns in different subpopulations. Marginalising over

the latent feature z and considering the contribution for all the data points, we obtain a joint

model with likelihood function equal to

p(y; ϑ, w, v) = ∏
i = 1

n
∑

ℎ = 1

H
vℎp yi; ϑℎ, wℎ , (7)

with ϑ = ϑℎ
ℎ = 1
H

, w = wℎ
ℎ = 1
H  and v = vℎ ℎ = 1

H .
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The adaptive log-linear structure imposed within each component of equation (6) allows one

to characterize complex dependence patterns with few components. Increasing the number

of components H, any structure can be effectively characterised under MILLS. The following

Lemma formalizes the ability of MILLS to represent any p ∈ S ℐV , with S ℐV  denoting the

ℐV − 1 -dimensional simplex. See Appendix B for a proof.

LEMMA 3.1. Any p ∈ S ℐV  admits representation (7) for some H, with νh ∈ (0, 1) such that

∑ℎ = 1
H vℎ = 1.

Equation (7) provides a compact model for efficiently making inference on low-dimensional

marginals. For example, a natural estimate for the E2 bivariate distribution is given by

pr iE2 = ∑
ℎ = 1

H
vℎexp X2ϑE2 − κ2 ϑE2 ,

which corresponds to a weighted average of local estimates, with weights given by the

mixture weights.

4. Bayesian inference.

We proceed with a Bayesian approach to inference, and specify prior distributions for the

parameters ν, ϑE2
ℎ  and w. We rely on Dirichlet and Gaussian distributions, letting

(v ∣ H) DIR 1
H , …, 1

H ,

ϑE2
ℎ ∣ σ2 iidN ℐE2 μE2, σE2

2 I , E2 ∈ P2, ℎ = 1, …, H .
(8)

Estimation for the number of active components is performed by choosing a conservative

upper bound H0 for H, and specifying a sparse Dirichlet distribution on the mixture weights

to automatically favour deletion of redundant components (Rousseau and Mengersen

(2011)). In practical application, we found that values H0 ∈ [5, 10] often provide sufficiently

large bounds for the number of mixture components. However, we recommend checking

posterior estimates for the number of nonempty groups H, specifying a larger value H0

if H is close to the upper bound H0, in order to guarantee that such value is sufficiently

large to capture the correct number of components. The Gaussian priors on the log-linear

parameters allow simple inclusion of prior information, for example reflecting knowledge on

the expected direction and strength of the association between pairs of variables. Moreover,

computations are particularly easy adapting the Pólya-Gamma data-augmentation strategy

for the multinomial likelihood and Gaussian prior (Polson, Scott and Windle (2013)).

Under an exponential family representation, other conjugate priors are available for the

natural parameters (e.g., Massam, Liu and Dobra (2009), Bradley, Holan and Wikle (2020)).

However, Gaussian priors have simpler interpretation and facilitate computation.
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As motivated in Section 3, the prior distribution for the composite weights wE2
ℎ ∈ ℝ+

should induce sparse configurations, deleting redundant components. To address this with

computational tractability, we rely on a continuous spike and slab prior. Such a strategy

focuses on introducing latent binary indicators δE2
ℎ ∈ 0, 1  encoding exclusion or inclusion

of the E2 component in (4), with pr δE2
ℎ = 1 = γ0

ℎ. Conditionally on δE2
ℎ , each wE2

ℎ  is

drawn independently either from a distribution concentrated around zero, P0, or from a

diffuse distribution over the real positive line, which we denote as P1. For computational

convenience, we rely on the following hierarchical specification for wE2
ℎ .

δE2
ℎ ∣ γ0

ℎ iidBERNOULLI γ0
ℎ ,

wE2
ℎ ∣ δE2

ℎ iidGAMMA 1 + a0
ℎδE2

ℎ , a1
ℎ , E2 ∈ P2, ℎ = 1, …, H

(9)

Although it is possible to replace the spike with a Dirac mass at 0, we follow Ishwaran

and Rao (2005), and introduce a continuous shrinkage prior, which is shown to generally

improve computation and mixing; see also Legramanti, Durante and Dunson (2020) for

related arguments.

Marginalising out δE2
ℎ  from (9), we obtain a discrete mixture between a Gamma distribution

with shape 1 and rate a1
ℎ (Exponential), and a Gamma distribution with shape (1 + a0) and

rate a1
ℎ. The parameter γ0 controls the prior proportion of active terms, and is assigned

a symmetric BETA(0.5, 0.5) prior (Ishwaran and Rao (2005)). Specifying large values for

a1
ℎ, substantial mass around 0 is induced, while a0

ℎ controls the mean and variance for the

Gamma distribution associated with the slab. See Figure 1 for a graphical illustration of the

prior density over illustrative combinations of hyper-parameters. In the absence of explicit

prior information on the composite likelihood weights, we recommend to elicit the prior

distribution to include values around 1 with high probability in the slab component. Such

choice guarantees that, when a component is included, default units weights are selected

with high probability a priori, centering the model around a standard specification.

4.1. Posterior computation.

There is a rich literature on the use of alternative likelihoods for Bayesian inference; for

example, approximate likelihood (Efron (1993)), partial likelihood (Raftery, Madigan and

Volinsky (1996)), empirical likelihood (Lazar (2003)) and adjusted profile likelihood (Chang

and Mukerjee (2006)), among many others. See also Greco, Racugno and Ventura (2008)

for related arguments. Although the use of composite likelihoods in Bayesian inference is

more recent (e.g., Ribatet, Cooley and Davison (2012), Pauli, Racugno and Ventura (2011)),

it has received substantial attention (Miller (2019)). Related to these approaches, we conduct

inference using the composite posterior distribution

π(ϑ, v ∣ y) ∝ π(ϑ)π(v)π(w)p(y; ϑ, w, v) . (10)
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Since the composite likelihood function p(y; ϑ, w, ν) is not a proper distribution function,

it is important to guarantee that the pseudo-posterior (10) is proper (Ribatet, Cooley and

Davison (2012)). The following Lemma shows that our composite posterior does have this

property. See Appendix B for a proof.

LEMMA 4.1. π(ϑ, v ∣ y) is a proper probability distribution.

To make inference from (10), we rely on an MCMC algorithm whose main steps are described

in Appendix C. We leverage the Pólya-Gamma data augmentation strategy of Polson, Scott

and Windle (2013) to obtain conditionally conjugacy between the Gaussian prior and the

multinomial likelihood, while the mixture weights ν and composite weights w are updated

sampling from Dirichlet and Gamma full conditional distributions, respectively. Similarly,

the mixture indicator zi is sampled from its full conditional categorical distribution, for

each i = 1, …, n. The main bottleneck is storage of the conditional bivariate terms, which

have size O Hk2d2 . Although the introduction of the spike and slab strategy drastically

improves estimation—since many components are effectively assigned to zero weight at

each iteration and equation (4) involves only few informative components—the storage

of redundant terms is required during estimation and can be burdensome. However, the

proposed algorithm easily scales up in our motivating application, relying on a mixed R

and C++ implementation on a standard laptop; see Section 6. Scaling to much larger cases

can potentially be accomplished by replacing the continuous spike with a mass at zero or

thresholding redundant components as an approximation.

5. Simulation study.

In order to evaluate the model performance, we considered a simulation study over

four different settings. In each scenario, we focus on an artificial sample of size n =

400, with k = 15 categorical variables and d1 = ⋯ d15 = 4 categories. In the first

scenario, multivariate categorical data are generated from a latent class model with H
= 5 components and probabilities generated from a uniform prior on the simplex. The

second scenario samples categorical variables j ∈ J = (1, 2, 3, 4, 5) from a dense log-linear

model with first order interactions and coefficients randomly sampled from a Gaussian

distribution with standard deviation 0.1, while the remaining categorical variables j ∉ J
are generated from independent Dirichlet-Multinomial distributions with hyper-parameter

(3, 3, 3, 3). In the third scenario, we focus on the same groups of variables, imposing

more structure on the variables in the group J, which are sampled from the joint

probability mass function assigning probability 0.1 to the cells iJ ∈ (1, …, 1), …, (4, …, 4)
and probability 0.6 to the remaining cells in equal proportion; see also Russo, Durante

and Scarpa (2018). The remaining variables j ∉ J are generated from independent Dirichlet-

Multinomial distributions with hyper-parameter (3, 3, 3, 3). The fourth and last scenario

further complicates the second one by introducing an additional group of variables

J′ = (5, 6, 7, 8, 9, 10), generated from a dense hierarchical log-linear model with first and

second order interactions, and coefficients randomly sampled from a Gaussian distribution

with standard deviation 0.1.
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The focus of these settings is on inducing challenging data generating processes,

characterised by heterogeneous dependence across subsets of categorical variables. Posterior

inference for MILLS relies on 1000 iterations collected after a burn-in period of 1000, setting

a conservative upper bound H = 5 and specifying μE2
ℎ = 0, σE2

2 = 3 and a0
ℎ = 10, a1

ℎ = 10,

with h = 1, …, H and E2 ∈ P2. Trace plots and MCMC diagnostics indicate good mixing

in all the settings considered. As competitor approaches, we considered two flexible latent

variable models, whose estimation is feasible in the settings under investigation. The first is

a Bayesian specification of a latent class model with H = 10 classes, sparse Dirichlet priors

over the mixture weights and unit Dirichlet priors on the class-specific probabilities. Such

an approach corresponds to a finite mixture of product multinomial distributions; see, for

example, Frühwirth-Schnatter, Celeux and Robert (2019), Chapter 9, for an introduction.

The second competitor is a simplex factor model (Bhattacharya and Dunson (2012)) with H
= 10 latent factors. This approach can be interpreted as a mixed membership model (e.g.,

Airoldi et al. (2014)) for multivariate categorical data. Specifically, the observed categorical

variables are modeled as conditionally independent given a vector of subject-specific latent

attributes lying on the simplex. Such latent features can be interpreted as the subject-specific

partial membership to H extreme profiles, with each individual partially belonging to

each extreme profile, to a different degree; see also Manrique-Vallier (2014) for a similar

specification with longitudinal survey data. Again, we rely on a Bayesian specification

relying on independent Dirichlet priors over the model parameters. As outlined in Section

1.1, both approaches induce a parsimonious low-rank decomposition of the probability

mass function, and the connection between such decompositions and a log-linear model

specification has been explored in Johndrow, Bhattacharya and Dunson (2017).

The focus of the simulations is on evaluating the ability of the approaches in estimating

low-dimensional functionals of the data. We focus on the set P2 of bivariate distributions,

whose precise estimation is crucial for computing measures of bivariate associations and

making inference on the dependence structure. Figure 2 illustrates the variability across P2
under the four simulations settings and for the three approaches considered. The first row

of Figure 2 shows estimated posterior mean for the three methods, compared with their

empirical counterparts in terms of Kullback–Leibler divergence, Wasserstein distance and

normalised Pearson’s residuals.

The first column of Figure 2 illustrates results for the first scenario, and suggests that when

data are generated from a latent class model, the three approaches are comparable in terms

of goodness of fit, with MILLS resulting in predictions which are more accurate on average,

but also more variable. The good performance of the latent class model was expected, since

such an approach is correctly specified in the first scenario. As outlined in Section 3, MILLS

can induce a latent class specification as a special case, and therefore its performance is on

average similar with the competitors, but also characterized by a higher variability which

might be due to the estimation of the richer dependence structure imposed within each

mixture component. In the second and third scenario, results indicate the superiority of MILLS

with respect to the latent class model and the simplex factor model. Such a result highlights

the ability of the proposed approach to adapt to settings with heterogeneous dependence

patterns across subsets of variables; the third column of Figure 2, in addition, confirms how
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MILLS achieves better performance than the competitors also when such dependence patterns

go beyond first order interactions. Lastly, the fourth scenario illustrates the ability of MILLS

to adapt better than the competitors to highly complex settings, dependence patterns beyond

first order interactions and involving multiple sub-groups of variables. The superiority of

MILLS in such settings might be due to the parsimonious composite likelihood specification

of equation (4), with adaptive estimation of the degree of dependence required by each

component. Variability in the simulations is assessed considering the posterior 0.025 and

0.975 quantiles of the estimated bivariate distributions, graphically reported for each method

in the second and third row of Figure 2 respectively. The main empirical findings are

consistent with the discussion outlined above, indicating an overall better performance of

MILLS under complex data generating processes.

5.1. Additional simulations studies.

As suggested by an anonymous Referee, we conducted an additional simulation study

to evaluate the performance of MILLS in estimating functionals of primary interest in our

application. These quantities correspond to the dependence structure among the items, to

the number of subpopulations and their specific structure, and they can be estimated using

the posterior distribution for the Cramer-V, the number H of nonempty groups, and the

group-specific parameters ϑℎ, respectively. We estimate these functionals via Monte Carlo

integration, postprocessing the MCMC sample to obtain point and interval estimates via

posterior means and quantile-based credible intervals, respectively.

The simulation focuses on three additional settings characterized by the same sample size

(n = 56) and number of categorical variables (k = 57) as in our motivating application,

sampling categorical variable with d = 5 from a latent class model with H = 2, H = 5 and H
= 10 groups, respectively, and probabilities generated from a uniform prior on the simplex.

Each setting is replicated 100 times using different random seeds, and in each replication

posterior inference for MILLS relies the same settings as in Section 5, increasing the upper

bounds on the mixture components to H0 = 10.

In Table 2, we evaluate the Root Mean Squared Error (RMSE) of the posterior mean and

assess coverage of 90% quantile-based credible intervals. The first part of Table 2 reports

the RMSE between the posterior mean and the functionals of interest, and results indicate

that MILLS accurately estimates these quantities in simulations. Estimation for the number

of components might be biased due to the more intricate structure introduced by MILLS,

which requires fewer component than a latent class model to characterize the data. The

second part of Table 2 focuses on the coverage of 90% credible intervals, and results indicate

that intervals have a coverage close to the nominal level for all functionals of interest. As

outlined in Section 3 and in Ribatet, Cooley and Davison (2012) and Pauli, Racugno and

Ventura (2011), it is important to carefully weight each likelihood component to reduce

the under coverage of credible intervals constructed from unadjusted composite-likelihood

specifications. Since MILLS adjusts each component with a positive weight wE2
ℎ , we do

not observe signs of significant under coverage. Coverage can be potentially improved

introducing a further level of adjustment to explicitly control for the curvature of the
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asymptotic distribution of the posterior; see Ribatet, Cooley and Davison (2012) for further

arguments.

6. MILLS for psychopathological associations.

We applied MILLS on the data described in Section 1. Posterior inference for MILLS uses the

same specification as in the simulations, relying on 3000 iterations collected after a burn-in

of 1000. Posterior computation requires approximately 7 minutes per 100 iterations and 4GB

of RAM on a laptop with an INTEL(R) CORE(TM) I7–7700HQ @ 2.8 GHZ processor running Linux.

We conducted sensitivity analysis for different hyper-parameter specifications, replicating

posterior computation with values H0 ∈ {10, 15}, a0
ℎ ∈ 10, 100, 1000 , a1

ℎ ∈ 10, 100, 1000

and σE2
2 ∈ 3, 10 . The overall empirical findings were robust across changes in hyper

parameters.

Posterior inference focuses on bivariate associations measured via the Cramer-V, which

can be easily computed via Monte Carlo integration leveraging the MCMC output. Figure 3

illustrates the dependence structure as a graph, with nodes corresponding to the categorical

variables and edges to their associations, with thicker edges corresponding to stronger

associations and higher Cramer-V. The left panel of Figure 3 refers to MILLS, and the right

panel to a latent class model with H = 10 components and the same specification as in the

simulations. In order to improve graphical visualisation, we have removed from the graph

the items whose largest associations is below 0.1.

Our empirical findings highlight the presence of strong associations across several subscales,

in particular within items associated with similar profiles. For example, the bulk of

central nodes in Figure 3 denote items associated with depressive (SCL-DEP) and obsessive

compulsive profiles (SCL-OC), suggesting significant interconnections within these two

subscales. Similarly, items corresponding to the Empathic Concern (EC) subscale have

different associations among them, and with other empathic subscales. To some extent,

this result confirms the validity of the tools to measure psychopathological symptoms, which

characterize consistent psychological profiles and highlights that such traits are strongly

associated in suicide attempt survivors. In addition, some items corresponding to different

profiles measured within the same questionnaire are characterized by strong interactions.

For example, the empirical findings indicate an association between an anxious subject

SCL-ANX-2 (“Nervousness or shakiness inside”) and SCL-DEP-15 (“Thoughts of ending your
life”) in suicide attempt survivors. Similarly, we observe an association between IRI-EC-9

(“When I see someone being taken advantage of, I feel kind of protective towards them.”)

and IRI-PD-10 (“I sometimes feel helpless when I am in the middle of a very emotional
situation.”), which indicate how patients under investigation feel empathic to others, in

particular in stressful situations.

Other interesting associations involve items in different subscales. For example, there is an

association between an item from the IRI questionnaire IRI-FS-1 (“I daydream and fantasize,
with some regularity, about things that might happen to me”) with the item SCL-ANX-33

(“Feeling fearful”), and also the SCL-DEP-30 item (“Feeling blue”). This dependence structure
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is coherent with a paranoid profile, with fantasies about things that might happen and

with such thoughts inducing substantial fear and sadness. Another interesting association

involves the items SCL-OC-51 (“Your mind going blank”) and IRI-PD-19 (“I am usually
not effective in dealing with emergencies.”), which are consistent with a profile with low-

capacity to handle complex situations with calm. Panels of Figure 4 assess uncertainty in

MILLS estimation considering the 0.025 and 0.975 posterior quantiles of the Cramer-V, and

suggesting that the estimated structure is maintained considering such posterior summaries.

These interconnections are further explored in Table 3, which reports the posterior means

and 95% credible intervals for the Cramer-V referring to different bivariate associations

of interest. Current empirical findings confirm the presence of strong associations within

the depressive symptoms subscale (SCL-DEP) and between SCL-DEP and obsessive-compulsive

subscale (SCL-OP). Worth mentioning are also the associations between the perspective-taking

(IRI-PT) and other empathic components, as well as the already mentioned association

between obsessive compulsive symptoms and personal distress. These results provide an

overview of the dependence structure characterizing the psychopathology of suicide attempt

survivors, highlighting the interdependence among psychological symptoms and empathic

profiles.

Results from a latent class model on the overall association structure—reported in the right

panel of Figure 3—are roughly consistent with inference based on MILLS, suggesting dense

associations among items related to the same pychopathologies. However, this approach

required a larger number of mixture components to adequately characterise the data under

investigation; see Table 4, where the posterior medians of the mixture weights under both

approaches are reported, suggesting evidence of 2 nonempty components for MILLS and 5

for the latent class model. As discussed in Section 1.1, this result might be due to the

richer structure imposed by MILLS within each subpopulation, which is expected to reduce the

number of components required to characterize higher order dependencies.

This property leads to relevant practical implications for the analysis of our motivating

application. For example, when interest is on characterizing profiles specific to each

subpopulation, inference for latent class models would focus on evaluating the parameters

within each nonempty component, describing the univariate response patterns of the

individuals belonging to that specific latent group (e.g., McHugh (1956)). Inference on other

relevant quantities, such as the association structure within each component, is not possible

under a standard latent class model, due to the independence assumption of the items

conditionally on the group membership. Instead, under the proposed MILLS, we can easily

conduct inference on such association structures, effectively characterising the interactions

between psychopathological symptoms and empathic traits in each subpopulation.

Figure 5 compares the posterior means of the Cramer-V across items, within each

of the two nonempty subpopulations—according to results summarized in Table 4.

Associations reported in the left panel of Figure 5 refer to the first latent group, and

highlight several connected psychopathological symptoms, in particular within depression

and anxiety traits. Items measuring empathic profiles, instead, show a more sparse

structure in the first subpopulation, indicating strong associations only across few items.

The second subpopulation (right panel of Figure 5) is instead characterized by more
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interconnected associations, both in terms of empathic profiles and psychopathological

symptoms. Although many items are similarly associated across the subpopulations, it is

interesting to observe that some association patterns deviate across groups. For example, SCL-

DEP-14 (“Feeling low in energy or slowed down”) is associated with obsessive compulsive

symptoms in the first subpopulation (SCL-OC-9, “Trouble remembering things”), while in

the second group it is linked with empathic profiles (e.g., IRI-PD-10, “I sometimes feel
helpless when I am in the middle of a very emotional situation”). Similarly, different anxiety

symptoms (SCL-ANX-86, “Feeling pushed to get things done” and SCL-ANX-23, “Suddenly
scared for no reason”) are associated with some psychopathological items in the first

subpopulation (SCL-OC-10, “Worried about sloppiness or carelessness”) and with empathic

items in the second (IRI-FS-12, “Becoming extremely involved in a good book or movie is
somewhat rare for me”).

These aspects are further detailed in Table 5, which reports the posterior means and credible

intervals for the Cramer-V for a subset of bivariate distributions, separately across the two

subpopulations. Subjects in the first group are characterized by several associations across

different SCL-90 items, in particular with respect to depressive and obsessive compulsive

symptoms, reporting posterior means for the bivariate Cramer-V above 0.4. The structure

across empathic items indicates instead interesting interconnections across the fantasy scale

and between fantasy and obsessive-compulsive symptoms. The second group characterizes

latent profiles more driven by empathic aspects, in particular referring to the IRI-PT subscale,

and items measuring depressive, obsessive-compulsive and anxiety symptoms.

These information, combined with the results in Table 4, provide a richer interpretation

of the psychology underling suicide attempt survivors. Subjects in the first profile show

indications of high mental distress, characterized by important associations across severe

psychopathological symptoms. The estimated proportion of the population in this class is

0.67 (first column of Table 4), so that the majority of the suicide attempt survivors belong

to this group. The second profile is associated with roughly a third of the population (0.32,

second column of Table 4) and differs from the first one reporting more dense associations

across empathic aspects. Therefore, patients in this subpopulation are characterized by a

psychopathology more driven by the emotional and cognitive components of empathy.

Such results indicate that the patients under investigation are characterized by different

latent profiles that vary in terms of the association structure between psychopathological

symptoms and empathic traits. Also, investigation of the subpopulation specific structure

indicates that the proposed approach has concrete advantages over a latent class

specification, since it allows investigation of the association structure characterising

different subpopulations, providing additional insights on the psychology of suicide attempt

survivors. These findings suggest that empathy and psychotic symptoms are deeply related

in the characterisation of the psychosis of suicide attempt survivors, and deserve further

attention.

6.1. Model checking.

In order to check if MILLS provides a reasonable representation of the observed psychological

data, we follow the approach illustrated in Section 5 and rely on posterior checks to validate
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our model (e.g., Gelman et al. (2014)). Specifically, MILLS assumes that conditionally on

the group membership, the specification in equation (6) provides a flexible characterization

of the psychopathological patterns characterizing the subpopulation. We are therefore

interested to measure if such group-specific structures are adequately accounted for,

comparing the posterior predictive distribution for a functional of interest with its empirical

value. We will focus on the posterior predictives for the bivariate distributions, conditionally

on the subpopulation membership, for MILLS and the latent class model.

According to Table 4, posterior inference provides evidence for two subpopulations for

MILLS and five for the latent class models. Figure 6 illustrates the Kullback–Leibler

divergence, normalized Pearson’s residuals and Wasserstein distance between the observed

and estimated population-specific bivariate distributions, focusing on the subpopulations

estimated by MILLS and the latent class model. Current empirical findings suggest that MILLS

provides a good fit for both the subpopulation specific structures, providing estimates for

the bivariate distributions that are close to their empirical counterparts, and with more

accurate results for the second subpopulation. In addition to estimating a larger number of

subpopulations, the latent class model is also characterized by an overall worse fit within

each group, likely due to the conditional independence assumption across items which is not

met in practice.

7. Discussion.

Motivated by a case study on suicide attempt survivors, this article has proposed a new

approach for the analysis of categorical data relying on a mixture of log linear models,

with a computationally convenient composite likelihood-type specification facilitating

implementation. Although multivariate categorical data are very commonly collected in

many different areas, we still lack methods for doing inferences on associations among

variables in a flexible manner that can accommodate more than a small number of

variables. Current log-linear models do not scale up to large contingency tables and latent

structure methods sacrifice some of the key advantages of log-linear models in terms

of providing a direct and interpretable model on the association structure. Hence, latent

structure models are in some sense too black box and unstructured, potentially leading to a

nonparsimonious characterization of the data, and necessitating a moderately large number

of latent components.

The goal of the proposed framework is to borrow the best of both worlds between latent

structure and log linear models. The proposed methods have shown practical advantages in

our motivating application, highlighting the presence of clinically interesting associations

between psychopathological symptoms and empathy in suicide attempt survivors. There

are many interesting next steps in terms of including further computational simplifications

to facilitate scaling up, and to include more complex data structure which are routinely

collected in psychological studies; for example, having missing data or mixed measurement

scales. Also, it is of substantial interest to develop a formal testing procedure based on

MILLS to assess whether psychiatric patients that did not attempt suicide differ in terms of

psychopathologies from patients under investigation.
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APPENDIX A: ITEMS DETAILS

Table 6 and 7 report, respectively, the description of the items included in the analysis.

Subject respond to the questions with their level of agreement, with 0 indicating “Not at all”

and 4 indicating “Extemely”. Items were selected according to the subscale they belong to—

reported in the second column of Table 6 and 7—as suggested by our clinician collaborators.

APPENDIX B: PROOFS

PROOF OF LEMMA 3.1. The proof for the full generality of MILLS relies on illustrating how

such a specification induces a finite mixture of independent multinomial distributions as a

special case. Without loss of generality, consider equal number of categories dj = d for j =

1, …, k and equal weights wE2
ℎ = 1/(k − 1) for E2 ∈ P2 and h = 1, …, H. Introduce a set of

constrained log-linear coefficients ϑE2
ℎ  as ϑE2

ℎ = L ⊗ ϑE2
ℎ , where L denotes a vector of length

d2 with the first 1 + k(d − 1) elements equal to 1 and the remaining 0, and with ⊗ denoting

element-wise product. Therefore, each ϑE2
ℎ  induces a log-linear independence model, which

includes only main effects. Under the above constraints,

∑
ℎ = 1

H
vℎexp ∑

E2 ∈ P2
wE2

ℎ X2ϑE2
ℎ − κ2 ϑE2

ℎ , (11)

corresponds to a discrete mixture of product multinomial distribution, for which Theorem 1

of Dunson and Xing (2009) follows directly, after noticing that

ψℎ
(j) = M ∏

E2 ∈ P2: j ∈ E2
exp X2ϑE2

ℎ − κ2 ϑE2
ℎ wE2

ℎ
, (12)

where M denotes a d × d2 marginalisation matrix, comprising zeros and ones in appropriate

positions (e.g., Lupparelli, Marchetti and Bergsma (2009)). □

PROOF OF 4.1. In order to show that (10) is a proper probability distribution, it is necessary to

show that the normalising constant is finite, which correspond to showing that
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∬ π(ϑ)π(v)π(w)p(y; ϑ, w, v)dϑ dv dw (13)

= ∬ π(ϑ)π(v)π(w) ∏
i = 1

n
∑

ℎ = 1

H
vℎp yi ∣ ϑℎ, wℎ dϑ dv dw < ∞ . (14)

Since the priors specified in (8) are proper, it is sufficient to show that

sup
ϑ, v

∏
i = 1

n
∑

ℎ = 1

H
vℎp yi ∣ ϑℎ, wℎ < ∞, (15)

which is always bounded being a product of probabilities. □
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Fig. 1.
Graphical illustration of the prior distribution of equation (9) for different hyper-parameter

values. In each panel, γ0
ℎ = 0.2.
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Fig. 2.
Simulation studies. Wasserstein distance, normalised Pearson’s residuals and absolute

Kullback–Leibler divergence between estimates and observed quantities. First row refers

to posterior means; second and third to posterior 0.025 and 0.975 quantiles, respectively.

Black boxplots refer to MILLS. Gray and light-gray to latent class model and simplex factor

model, respectively.
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Fig. 3.
Association structure of the items. Color of the labels varies with subscales, while edge

widths vary with the value of the posterior mean of the pairwise Cramer-V.
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Fig. 4.
Posterior quantiles of the pairwise Cramer-V under MILLS.
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Fig. 5.
Posterior means of the pairwise Cramer-V under MILLS for the two estimated subpopulations.
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Fig. 6.
Absolute Kullback–Leibler, normalised Pearson’s residuals and Wasserstein distance

between estimated and observed bivariate distributions. Black and grey boxplots refer to

MILLS and a latent class model, respectively.
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Table 1

Univariate descriptive statistics. SCL-90 questionnaire (left) and IRI-28 (right). Second column refer to the

specific subscale the items refer to. Subjects answer with their level of agreement with numbers ranging from

0 (“Not at all”) to 4 (“Extremely”)

ITEM SUB 0 1 2 3 4

SCL-2 ANX 12 15 17 8 4

SCL-17 ANX 4 4 9 11 28

SCL-23 ANX 3 4 10 10 29

SCL-33 ANX 6 9 7 12 22

SCL-39 ANX 5 6 7 11 27

SCL-72 ANX 4 7 9 6 30

SCL-78 ANX 6 6 7 8 29

SCL-80 ANX 5 5 8 7 31

SCL-86 ANX 5 6 17 13 15

SCL-5 DEP 16 5 6 5 24

SCL-14 DEP 10 15 12 10 9

SCL-15 DEP 12 3 10 14 17

SCL-20 DEP 4 11 6 14 21

SCL-22 DEP 9 5 6 9 27

SCL-26 DEP 6 8 13 14 15

SCL-29 DEP 18 12 7 10 9

SCL-30 DEP 16 14 14 9 3

SCL-31 DEP 9 13 9 12 13

SCL-32 DEP 13 14 5 11 13

SCL-71 DEP 8 12 8 12 16

SCL-79 DEP 10 13 5 15 13

SCL-11 HOS 6 8 8 22 12

SCL-63 HOS 2 2 6 6 40

SCL-67 HOS 2 4 7 2 41

SCL-74 HOS 3 2 9 9 33

SCL-3 OC 14 13 11 8 10

SCL-9 OC 7 6 8 22 13

SCL-10 OC 2 8 13 18 15

SCL-28 OC 9 6 11 20 10

SCL-38 OC 7 8 9 19 13

SCL-45 OC 3 9 7 14 23

SCL-46 OC 9 5 8 19 15

SCL-51 OC 6 5 8 13 24

SCL-55 OC 7 10 11 16 12

SCL-65 OC 1 2 6 11 36

IRI-2 EC 4 7 9 17 19

IRI-4 EC 19 10 13 8 6
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ITEM SUB 0 1 2 3 4

IRI-9 EC 3 6 7 14 26

IRI-14 EC 21 15 8 6 6

IRI-18 EC 27 7 7 7 8

IRI-1 FS 10 10 22 9 5

IRI-5 FS 8 12 12 14 10

IRI-7 FS 10 11 18 12 5

IRI-12 FS 19 13 9 7 8

IRI-16 FS 15 8 14 9 10

IRI-23 FS 8 12 15 4 17

IRI-26 FS 12 11 8 14 11

IRI-10 PD 4 9 14 12 17

IRI-13 PD 13 12 14 9 8

IRI-17 PD 11 10 12 11 12

IRI-19 PD 11 12 7 10 16

IRI-3 PT 9 19 12 14 2

IRI-11 PT 5 8 17 12 14

IRI-15 PT 10 9 13 14 10

IRI-21 PT 5 9 14 16 12

IRI-25 PT 12 13 15 10 6

IRI-28 PT 4 11 12 15 14
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Table 2

Additional simulation study. Root mean squared error (RMSE) of the posterior mean estimator and coverage of

90% credible intervals across three simulation scenarios. Values are averaged across 100 replications

RMSE COVERAGE, 90%

Cramer-V H ϑ Cramer-V H ϑ

2 classes 0.043 0.021 0.000 0.871 0.860 0.910

5 classes 0.038 1.002 0.001 0.890 0.880 0.903

10 classes 0.069 2.013 0.012 0.903 0.890 0.880
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Table 3

Bivariate Cramer-V. Posterior means and 95% credibile intervals

Cramer-V 95% CI

SCL-DEP-29 SCL-DEP-30 0.471 [0.375, 0.570]

SCL-DEP-29 SCL-OC-55 0.428 [0.335, 0.519]

SCL-DEP-30 SCL-DEP-32 0.424 [0.318, 0.527]

SCL-DEP-30 SCL-DEP-31 0.422 [0.324, 0.522]

SCL-OC-38 SCL-OC-46 0.410 [0.304, 0.516]

SCL-ANX-2 SCL-OC-3 0.402 [0.306, 0.498]

SCL-OC-55 SCL-ANX-72 0.398 [0.294, 0.508]

SCL-ANX-2 SCL-DEP-15 0.391 [0.298, 0.494]

SCL-DEP-30 SCL-ANX-33 0.389 [0.297, 0.486]

SCL-OC-51 IRI-PD-19 0.381 [0.278, 0.476]

SCL-OC-9 SCL-DEP-14 0.378 [0.281, 0.472]

IRI-EC-9 IRI-PD-10 0.367 [0.271, 0.465]

IRI-PT-11 IRI-PT-21 0.362 [0.270, 0.465]

IRI-EC-2 IRI-EC-9 0.358 [0.262, 0.450]

IRI-FS-1 SCL-ANX-33 0.357 [0.275, 0.453]
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Table 4

Posterior medians (and standard deviations) for the mixture weight parameters. Values are sorted in decreasing

order. Results for the latent class approach are reported until the first empty group

v1 v2 v3 v4 v5 v6

Latent Class 0.530 (0.065) 0.208 (0.055) 0.157 (0.048) 0.053 (0.031) 0.030 (0.023) 0.000 (0.004)

MILLS 0.671 (0.089) 0.318 (0.088) 0.000 (0.008) 0.000 (0.008) 0.000 (0.007) –

Ann Appl Stat. Author manuscript; available in PMC 2022 July 07.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aliverti and Dunson Page 37

Table 5

Bivariate Cramer-V. Posterior means and 95% credibile intervals for the two estimated subpopulations

CRAMER-V 95% CI

FIRST GROUP SCL-DEP-29 SCL-DEP-30 0.491 [0.377, 0.603]

SCL-OC-38 SCL-OC-46 0.463 [0.343, 0.570]

SCL-OC-28 SCL-OC-38 0.447 [0.340, 0.555]

SCL-DEP-30 SCL-DEP-31 0.428 [0.335, 0.549]

SCL-OC-55 SCL-ANX-72 0.403 [0.320, 0.520]

IRI-EC-9 IRI-PD-10 0.379 [0.280, 0.506]

IRI-FS-16 SCL-FS-7 0.363 [0.284, 0.487]

IRI-FS-12 SCL-OC-9 0.363 [0.284, 0.487]

SCL-OC-9 SCL-DEP-14 0.352 [0.264, 0.418]

SCL-OC-9 SCL-DEP-31 0.337 [0.201, 0.425]

SECOND GROUP IRI-PT-11 IRI-PT-28 0.486 [0.345, 0.611]

IRI-FS-12 IRI-FS-26 0.482 [0.339, 0.625]

IRI-EC-18 IRI-PT-25 0.472 [0.332, 0.606]

IRI-PT-25 IRI-PT-28 0.466 [0.346, 0.572]

SCL-ANX-2 SCL-OC-3 0.455 [0.320, 0.545]

SCL-DEP-29 SCL-OC-55 0.446 [0.326, 0.509]

SCL-DEP-26 SCL-DEP-32 0.419 [0.284, 0.512]

SCL-OC-38 SCL-OC-51 0.381 [0.302, 0.498]

IRI-PD-10 IRI-FS-12 0.370 [0.271, 0.415]

IRI-EC-9 IRI-FS-12 0.353 [0.262, 0.421]
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Table 6

SCL-90 subscales

ID SUBSCALE

2. Nervousness or shakiness inside (ANX)

3. Unwanted thoughts, words, or ideas that won’t leave your mind (OC)

5. Loss of sexual interest or pleasure (DEP)

9. Trouble remembering things (OC)

10. Worried about sloppiness or carelessness (OC)

11. Feeling easily annoyed or irritated (HOS)

14. Feeling low in energy or slowed down (DEP)

15. Thoughts of ending your life (DEP)

17. Trembling (ANX)

20. Crying easily (DEP)

22. Feeling of being trapped or caught (DEP)

23. Suddenly scared for no reason (ANX)

26. Blaming yourself for things (DEP)

28. Feeling blocked in getting things done (OC)

29. Feeling lonely (DEP)

30. Feeling blue (DEP)

31. Worrying too much about things (DEP)

32. Feeling no interest in things (DEP)

33. Feeling fearful (ANX)

38. Having to do things very slowly to insure correctness (OC)

39. Heart pounding or racing (ANX)

45. Having to check and double-check what you do (OC)

46. Difficulty making decisions (OC)

51. Your mind going blank (OC)

55. Trouble concentrating (OC)

63. Having urges to beat, injure, or harm someone (HOS)

65. Having to repeat the same actions such as—touching, counting, washing (OC)
.

67. Having urges to break or smash things (HOS)

71. Feeling everything is an effort (DEP)

72. Spells of terror or panic (ANX)

74. Getting into frequent arguments (HOS)

78. Feeling so restless you couldn’t sit still (ANX)

79. Feelings of worthlessness (DEP)

80. Feeling that familiar things are strange or unreal (ANX)

86. Feeling pushed to get things done (ANX)
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Table 7

IRI-28 questionnaire. Subjects answer with their level of agreement with numbers ranging from 0 (“Does not

describe me”) to 4 (“Describes me very well”)

ID SUB

1. I daydream and fantasize, with some regularity, about things that might happen to me. (FS)

2. I often have tender, concerned feelings for people less fortunate than me. (EC)

3. I sometimes find it difficult to see things from the “other guy’s” point of view. (PT)

4. Sometimes I don’t feel very sorry for other people when they are having problems. (EC)

5. I really get involved with the feelings of the characters in a novel. (FS)

7. I am usually objective when I watch a movie or play, and I don’t often get completely caught up in it. (FS)

8. I try to look at everybody’s side of a disagreement before I make a decision. (PT)

9. When I see someone being taken advantage of, I feel kind of protective towards them. (EC)

10. I sometimes feel helpless when I am in the middle of a very emotional situation. (PD)

11. I sometimes try to understand my friends better by imagining how things look from their perspective. (PT)

12. Becoming extremely involved in a good book or movie is somewhat rare for me. (FS)

13. When I see someone get hurt, I tend to remain calm. (PD)

14. Other people’s misfortunes do not usually disturb me a great deal. (EC)

15. If I’m sure I’m right about something, I don’t waste much time listening to other people’s arguments. (PT)

16. After seeing a play or movie, I have felt as though I were one of the characters. (FS)

17. Being in a tense emotional situation scares me. (PD)

18. When I see someone being treated unfairly, I sometimes don’t feel very much pity for them. (EC)

19. I am usually pretty effective in dealing with emergencies. (PD)

21. I believe that there are two sides to every question and try to look at them both. (PT)

23. When I watch a good movie, I can very easily put myself in the place of a leading character. (FS)

25. When I’m upset at someone, I usually try to “put myself in his shoes” for a while. (PT)

26. When I am reading an interesting story or novel, I imagine how I would feel if the events in the story were happening to me. (FS)

28. Before criticizing somebody, I try to imagine how I would feel if I were in their place. (PT)
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