Table 2. Summary of deep-learning networks.
No. | Encoder | Decoder/base architecture | Total parameter (million) | Prediction time per image (ms) |
---|---|---|---|---|
1 | ResNet-34 [13] | PSPNet [14] | 21.44 | 46.7 |
2 | ResNet-34 [13] | LinkNet [15] | 21.77 | 52.8 |
3 | ResNet-34 [13] | DeepLabV3+ [10] | 22.43 | 51.6 |
4 | ResNet-34 [13] | UNet++ [11] | 26.07 | 55.9 |
5 | DenseNet-121 [16] | UNet [17] | 13.60 | 73.6 |
6 | Res2Net-50 [18] | UNet [17] | 31.63 | 62.1 |
7 | Xception [19] | DeepLabV3+ [10] | 37.77 | 67.1 |
8 | EfficientNet-B4 [12] | FPN [20] | 19.35 | 76.2 |
9 | EfficientNet-B4 [12] | DeepLabV3+ [10] | 18.62 | 68.1 |
10 | EfficientNet-B4 [12] | UNet++ [11] | 20.81 | 80.0 |