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Alzheimer’s disease (AD) is a degenerative disease of the central nervous system characterized by memory loss and cognitive
dysfunction. With the increasing aging of the population, the incidence of AD and the number of patients are also increasing year
by year, causing more and more heavy burdens to the family and society. Catalpol, an iridoid glycoside compound, is one of the
main active components of Rehmannia glutinosa. At present, a large number of experimental studies in vivo and in vitro have
confirmed that catalpol has antioxidant, anti-inflammatory, antiapoptotic, and other neuroprotective effects, and it plays a
significant role in the prevention and treatment of AD, with very small side effects and high safety. +erefore, it may be an ideal
drug for the treatment of AD. Based on this, the role and mechanism of catalpol in AD will be comprehensively reviewed in
the following.

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease
with insidious onset and progressive progression. Along
with the increasing aging of the population in all countries,
the prevalence of AD (see Table 1 for specific acronyms) is
also increasing year by year. Currently, 6.2 million Amer-
icans aged 65 and older suffer from AD. It is expected to
increase to 13.8 million by 2060 [1]. Memory impairment
and cognitive decline are the main symptoms of early AD.
+e mechanism of Alzheimer’s disease has not yet been fully
clarified, but factors such as oxidative stress [2], mito-
chondrial dysfunction [3], and inflammation [4] play an
important role in the occurrence and development of AD.
Due to the complex pathogenesis (see Figure 1), current
drug interventions for AD can improve symptoms to a
certain extent but cannot prevent or delay the progression of
AD [5].

Traditional Chinese medicine (TCM) has the charac-
teristics of multitarget action. Screening the active ingre-
dients for AD from TCM is becoming a research hotspot. In
recent years, A variety of Chinese herbal medicines have
been proved to be effective in the treatment of AD, such as

Huperzia [6], ginseng [7], and ginkgo [8], and some active
ingredients (e.g., β-asarether [9], ligustrazine [10]) extracted
from Chinese herbs medicines also have this effect. In ad-
dition, recent studies have shown that the traditional Chi-
nese medicine compound Liuwei Dihuang Decoction can
improve the learning and memory ability of mice with senile
dementia, and catalpol, the main active ingredient in it, can
inhibit the apoptosis of neural stem cells through the blood-
brain barrier [11]. Catalpol (see Figure 2) is an iridoid
glycoside compound extracted from the root of Rehmannia
glutinosa (see Figure 3), which has been shown to have
antioxidant, anti-inflammatory, and other neuroprotective
effects, as well as certain protective effects against AD, PD,
and neurological diseases such as hypoxic/ischemic injury
[12]. In this paper, the effect and mechanism of catalpol on
AD were reviewed.

2. Effect of Catalpol on Alzheimer’s Disease

2.1. Anti-Inflammatory Effect. Under normal physiological
conditions, inflammation is a defensive response against
various injuries, which is composed of a series of molecules,
cells, and their complex control network, helping to remove
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harmful substances and control the inflammatory process
[13]. However, it is now considered to be a key factor leading
to the progression of AD. In response to pathological
substances (such as toxic proteins, dead neurons, etc.), the
activation of glial cells can lead to the massive release of
proinflammatory factors or other neurotoxic substances,
leading to neuronal damage [14].

Yang C. et al. suggested that catalpol could significantly
downregulate the levels of proinflammatory mediators nitric
oxide and cytokines (interleukin and tumor necrosis factor
α) in LPS-treated BV2 microglia. In addition, catalpol

significantly reduced the levels of reactive oxygen species
and malondialdehyde (MDA) in primary cortical neurons
stimulated by hydrogen peroxide, increased the activity of
superoxide dismutase (SOD) and glutathione (GSH), re-
versed cell apoptosis, and restored mitochondrial membrane
potential (MMP) [15]. Transcriptional data also showed that
catalpol significantly reduced the expression of inflamma-
tion-related genes, such as inducible nitric oxide synthase
(iNOS), cyctoxase-2 (COX-2), and Toll-like receptor 4
(TLR4). Moreover, this study further revealed that catalpol’s
inhibitory effect on inflammation was achieved by inhibiting
the activation of nuclear factor-κB (NF-κB). It is suggested
that catalpol may inhibit the inflammatory response of as-
trocytes, and the inactivation of NF-κB may be the main
anti-inflammatory mechanism. +erefore, catalpol may be
an effective drug for the treatment of inflammation-related
neurodegenerative diseases [16]. Choi Yh et al. showed that
catalpol significantly inhibited the secretion of proin-
flammatory mediators induced by LPS, including NO and
prostaglandin E2. Meanwhile, catalpol also downregulates
the expression of regulatory enzymes stimulated by LPS,
such as iNOS and COX-2. Catalpol also inhibited the
production and expression of LPS-induced proin-
flammatory cytokines, such as TNF-α and IL-1β. In addi-
tion, catalpol inhibits the NF-κB signaling pathway by
blocking the phosphorylation and degradation of κB-α in-
hibitor and blocking the nuclear translocation of NF-κB p65.
Catalpol inhibited the LPS-induced expression of Toll-like
receptor 4 (TLR4) and myeloid differentiation factor 88,
which was associated with the inhibition of LPS binding to
TLR4 on the cell surface. Catalpol significantly reduced the
production of ROS induced by LPS. It is suggested that
catalpol may inactivate the NF-κB signal by antagonizing
TLR4 and eliminating ROS, thereby inhibiting the inflam-
mation of BV2 microglia mediated by lipopolysaccharide,
and catalpol may play a potential role in the inhibition of the
development and treatment of inflammatory diseases [17].
Glial cell-mediated inflammation plays an important role in
the pathogenesis of AD. In vitro, besides having direct
neurotoxic effects on neurons, Aβ also activates glial cells to
produce a series of inflammatory factors, including TNF-α,
ROS, NO, and iNOS, thus accelerating the progression of
AD. Catalpol can protect neurons from damage caused by
various toxic stimuli. Before 5 microM Aβ1-42, pretreat-
ment with catalpol at 500 microM for 30min not only at-
tenuated the neurotoxicity of Aβ1-42-triggered neurons but
also inhibited the activation of glial cells to a certain extent.
+erefore, catalpol may be a useful anti-inflammatory agent
for the treatment or prevention of inflammation-related
neurodegenerative diseases, such as AD [18].

2.2. Antioxidative Stress. Dysfunction of neurons in specific
regions caused by oxidative stress is an important part of the
pathological process of AD. Oxidative DNA damage in
neurons is closely related to cognitive deficits and occurs at
the early stage of pathological changes in various neuro-
degenerative diseases [19]. +e brain is more susceptible
than other tissues to oxidative stress, which is involved in the

Table 1: Abbreviation.

Acronym Corresponding English
AD Alzheimer’s disease
AChE Acetylcholinesterase
AGEs Advanced glycation endproducts
BACE1 β-Secretase 1
BMECs Brain microvascular endothelial cells
CAT Catalpol
ChAT Acetyltransferase
CK Creatine kinase
COX-2 Cyclooxygenase-2
ERK Extracellular signal-regulated kinase
EPO Erythropoietin
GPx Glutathione peroxidase
GSH Glutathione
GSH-PX Glutathione peroxidase
GS Glutamine synthetase
H2O2 Hydrogen peroxide
IL Interleukin
IDE Insulin-degrad
iNOS Inducible nitric oxide synthase
IRX3 Iroquois homeobox protein 3
LDH Lactate dehydrogenase
LPS Lipopolysaccharide
MDA Malondialdehyde
MMP Mitochondrial membrane potential
mAChR1 Muscarinic acetylcholine receptor M1
MAP-2 Microtubule-associated protein 2

MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide

MS Multiple sclerosis
NO Nitric oxide
NF-κB Nuclear factor-κB
NEP Neprilysin
OGD Oxygen-glucose deprivation
OLGs Oligodendrocytes

p-CREB Phosphorylated cAMP-responsive element-binding
protein

PD Parkinson’s disease
PKC Protein kinase C
PMA Phorbol-12-myristate-13-acetate
PARP-1 Poly-ADP-ribose polymerase-1
ROS Reactive oxygen species
SOD Superoxide dismutase
TNF-α Tumor necrosis factor α
TLR4 Toll-like receptor 4
TrkB Tyrosine kinase receptor
VEGF Vascular endothelial growth factor
WMLs White matter lesions
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development of AD by promoting Aβ deposition, Tau
hyperphosphorylation, and neuronal damage. +erefore,
improving the antioxidant effect may be beneficial for the
treatment of AD [20, 21].

Tian YY et al. found that catalpol increased neuronal
activity, significantly reduced the dose-dependent death of
MPP+ -induced dopaminergic neurons, and prevented the

inhibition of complex I activity induced by MPP+ and the
loss of MMP. In addition, catalpol reduces the content of
lipid peroxides and improves the activities of GPX and SOD
[22]. Rotenone significantly altered mitochondrial func-
tions, such as complex I activity, decreased MMP, enhanced
antioxidant status, glutathione depletion, and enzyme (GPX
and SOD) disturbance, and increased lipid peroxidation.
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Figure 1: +e pathogenic mechanisms and pathology of AD.
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Figure 2: Chemical structure of catalpol.

Figure 3: Plants and rhizome of Rehmannia glutinosa.
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Catalpol increased the activities of complex I, SOD, and GPX
in rotenone-treated mice and decreased the loss of lipid
peroxidation and MMP. +is indicates that catalpol has a
certain protective effect on rotenone-induced toxic damage
in mice [23].

Catalpol could significantly increase cell viability and
reduce the formation of intracellular ROS. In addition,
catalpol inhibited H2O2-induced oxidative stress by inhib-
iting the decrease of antioxidant enzyme activities such as
GPX, GSH reductase, and GSH content during the GSH
redox cycle. However, the promotion of catalase activity by
catalpol was not obvious. +e protective effect of catalpol on
H2O2-damaged astrocytes may be related to maintaining the
balance of glutathione metabolism and reducing the for-
mation of ROS.+erefore, catalpol is a potential drug for the
prevention or treatment of neurodegenerative diseases (such
as AD) related to oxidative stress [24]. Catalpol can obvi-
ously improve cell morphology, enhance cell viability, and
maintain the integrity of the cell membrane. In addition,
catalpol could significantly inhibit the decrease of T-SOD
and GSH-Px activities and the increase of MDA content in
cells. Catalpol had a protective effect on oxidative damage of
astrocytes induced by H2O2 [25].

Huang JZ et al. showed that catalpol could reduce the
oxidative stress of the cerebral cortex by regulating the
activity and concentration of ROS-related enzymes SOD,
GPX, and glutathione catalase, but it could not reduce the
oxidative stress by regulating MDA. Catalpol also reduces
the levels of soluble Aβ40 and Aβ42 in the cerebral cortex,
thereby inhibiting the formation of senile plaques [26]. After
catalpol treatment, the learning and memory impairment of
mice was alleviated by the Morris water maze test. +is
suggests that catalpol may be a potential drug for the
treatment of AD [26].

+erefore, catalpol can ameliorate oxidative stress-in-
duced neurodegenerative diseases and is a potential drug for
the prevention or treatment of oxidative stress-related
neurodegenerative diseases (such as AD) [22, 24, 26].

2.3. 'e Resistance to Apoptosis. Liang JH et al. treated
cortical primary cultured neurons with Aβ1-42 to induce
neuron injury and used it as an in vitro model of AD.
Catalpol inhibits neuronal apoptosis by reducing intracel-
lular ROS and Bax levels, MMP, and cytopigment C release,
as well as regulating the activity and cleavage of Caspase-3
and Caspase-9 [27]. Chronic cerebral hypoperfusion is
thought to be the cause of white matter lesions (WMLS),
which can lead to cognitive impairment. Catalpol can sig-
nificantly inhibit the inflammatory response of white matter
and reduce the apoptosis of oligodendrocytes and myelin
sheath injury [28].

2.4.CatalpolPromotes theGrowthofCorticalNeuronalAxons.
Synaptic loss is one of the common factors that lead to
cognitive impairment; catalpol can significantly improve
cognitive function in elderly male Sprague-Dawley rats. In
primary rat cortical neurons with Aβ injury, catalpol can
prolong the microtubule-associated protein 2 (MAP-2)

positive neurons in length and increase the cerebral cortex
and hippocampal synaptic proteins (dynamin 1, PSD-95)
and synaptophysin expression. Catalpol may be a potential
therapeutic agent for the treatment of cognitive disorders
such as AD [29]. Intriguingly, 1-5mg·mL−1 catalpol can
significantly promote the growth of axons. With
2.5mgmL−1, the axon growth was shortened when the dose
was 5mgmL−1. Catalpol had the strongest promoting effect
on axon growth with 2.5mgmL−1. Catalpol can promote the
growth of axons of cortical neurons but not the survival of
cortical neurons [30].

2.5. Antiaging Effect. Aging is an independent risk factor for
the onset of AD. According to statistics, 10% of people over
65 years old suffer from AD, while 40% of people over 85
years old suffer from AD [31]. Some experimental results
suggest that catalpol has an antiaging effect.

+e study of Zhang XL et al. found that catalpol sig-
nificantly improved the cognitive dysfunction of aging
model mice, inhibited the loss of neurons in the hippo-
campus, and enhanced the exploratory behavior and passive
avoidance response of aging mice [32, 33]. Catalpol can
increase SOD, GSH-Px, and Na+-K+ATPase and Ca2+-
Mg2+ATPase activity and reducesMAD level, indicating that
catalpol plays an antiaging role by increasing the activity of
endogenous antioxidant enzymes and reducing the gener-
ation of free radicals [32]. Catalpol also regulates the ac-
tivities of endogenous antioxidants, glutathione, and lipid
peroxides in the spleen and liver. +e antiaging effect of
catalpol is realized at least in part by promoting the activity
of endogenous antioxidant enzymes and normalizing the
energy disorder. Catalpol is worthy of a further preclinical
study in the treatment of AD [34]. Catalpol can increase the
activity of LDH, glutamine synthase (GS), and Na+-K+-
ATPase and Ca2+-Mg2+-ATPase activity, reducing the ac-
tivity of creatine kinase in the brain of D-galactose aging
mice. +erefore, catalpol may be used as an antiaging agent
against neurodegenerative diseases such as AD [34].

Liu J found that compared with young mice, the elderly
rats significantly decreased such as synapses and GAP-43
levels, catalpol can improve the synapses of aged rats and
GAP-43 levels and raised some important signaling proteins,
catalpol can also improve the damaged neural plasticity and
increase the aging rat survival neurons in the brain network
of information storage, and catalpol improve age-related loss
of neural plasticity by “normalizing” involved in signaling
cascade of presynaptic protein [35].

+ese studies (Table 2) have confirmed the antiaging
effects of catalpol.

3. Potential Mechanism of Catalpol in the
Treatment of AD

3.1. Inhibition of Excessive Production of Reactive Oxygen
Species. Catalpol can significantly increase the survival rate
of primary astrocytes induced by H2O2 and decreased the
intracellular ROS level [24]. Catalpol inhibits neuronal
damage by increasing the activity of antioxidant enzymes
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such as GSH-Px and glutathione reductase during the
glutathione redox cycle. An important mechanism of cat-
alpol’s protective effect may be related to the maintenance of
the glutathione metabolic system and the inhibition of ROS
production [37]. Catalpol significantly inhibited LDH re-
lease, MDA level, and GSH decrease. Catalpol reduces Hcy-
stimulated ROS overproduction and inhibits transcription
activation of NF-κB [38].

3.2. Improve the Activity of Antioxidant Enzymes.
Catalpol increases antioxidant activity in the brain, probably
due to an increase in antioxidant enzyme activity. Catalpol
can protect PC12 cells from apoptosis induced by hydrogen
peroxide [39]. Several subsequent studies have shown
similar antioxidant effects [40, 41]. For example, Zhang et al.
found that catalpol improved memory impairment and
upregulated antioxidant capacity in D-galactose-damaged
mice. Catalpol increased the activity of SOD and GSH-Px in
the cerebral cortex and hippocampus, decreased the level of
MAD, and increased Na+-k +ATPase and Ca2+-Mg2+AT-
Pase activity [32]. In addition to improving antioxidant
enzymes, catalpol has the ability to improve energy meta-
bolism [18].

+erefore, the important mechanism of the catalpol
neuroprotective effect may be closely related to the pro-
motion of antioxidant enzyme activity, the reduction of
MAD level, and the prevention of mitochondrial
dysfunction.

3.3. Inhibition of NO Formation. Metabolic disorders or
excessive NO production in the brain are associated with the
pathology of AD [42].

Free radical NO produced by activated glial cells is in-
volved in a variety of physiological/pathological processes.
NO and iNOS as inflammatory molecules can further

increase IL-1β [36, 43]. Catalpol can inhibit the formation of
NO and improve neurodegenerative diseases, including PD
and AD [18]. Aβ1-42 induces excessive production of NO
and iNOS by astrocytes, thereby reducing the survival of
cortical neurons. Catalpol can effectively reduce Aβ1-42-
induced neurotoxicity by reducing glial cell activation and
inhibiting the production of inflammatory cytokines in-
cluding TNF-α, ROS NO, and iNOS [18].

Rotenone can increase the production of NO and the
level of iNOS, while catalpol can reduce the above two levels
[44]. According to the analysis of ERK and JNK phos-
phorylation levels, catalpol significantly reduced NO levels
and regulated the activation of ERK and JNK [44]. +e
results of morphology, immunocytochemistry, and flow
cytometry showed that catalpol inhibited the apoptosis of
primary neurons in the midbrain. ERK signaling pathway
plays an important role in NO-mediated neuronal degen-
eration. Catalpol may inhibit neuronal apoptosis by regu-
lating the increase of NO and iNOS in ERK-mediated
neurodegenerative diseases [44]. Pretreatment of astrocytes
with catalpol had negative effects on LPS + IFN-c stimula-
tion, NO and ROS formation, and iNOS activity. At the
transcriptional level, catalpol also weakens the gene ex-
pression of some inflammatory cytokines, such as iNOS,
COX-2, and TLR4 [16].

3.4. Inhibition of Mitochondrial Dysfunction.
Mitochondrial dysfunction may occur early in oxidative
stress response and is an important factor in the pathological
mechanism of neurodegenerative diseases [45]. An in vivo
model of LPS-induced inflammation suggests that LPS in-
duces a loss of mitochondrial integrity (i.e., decreased MMP
and increased osmotic transition pore opening). Given
catalpol for 10 days prior to LPS injection, it can protect
brain mitochondrial function by reducing MMP opening in
the hippocampus and cerebral cortex [46]. Catalpol

Table 2: Effect of catalpol on anti-AD.

Category Specific effects References

+e anti-inflammatory

(1) Downregulation of proinflammatory mediators NO and cytokines [15]
(2) Reduce the expression of genes associated with inflammation [16]
(3) Inhibit the production and expression of proinflammatory cytokines induced by
LPS [17]

(4) Protects neuron cells from damage caused by various toxic stimuli [18]

Antioxidant stress

(1) Prevent inhibition of complex I activity and loss of MMP induced by MPP [22]
(2) Increase the activities of complex I, SOD, and GPX, and reduce the loss of lipid
peroxidation and MMP [23]

(3) Less H2O2-induced systemic oxidative stress [24]
(4) In view of the H2O2-induction of oxidative damage to astrocytes [25]

Antiapoptotic (1) Inhibition of nerve cell apoptosis [27]
(2) Reduce the apoptosis and myelin sheath injury of oligodendrocytes [28]

Promote the growth of cortical
neuronal axons

(1) Reduce the levels of soluble Aβ40 and Aβ42 in the cerebral cortex, thereby inhibiting
the formation of age plaques [26]

(2) Enhance the clearance rate of soluble aβ [36]
(3) Improve cognitive function and increase the expression of synaptic proteins [29]
(4) Promote the growth of cortical neuronal axons [30]

Antiaging (1) Antiaging effect [32, 34]
(2) Improve age-related loss of neuroplasticity [35]
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treatment can reduce the high permeability of BBB induced
by fibrils Aβ1-42. In addition, catalpol inhibits apoptosis by
Aβ1-42 induces through mitochondria-dependent and
death receptor pathways, decreased levels of matrix metal-
loproteinases(MMPs), MMP-2, MMP-9, and AGEs recep-
tors, and increased levels of tight junction proteins (ZO-1,
occludin, and claudin-5), LDL receptor-associated protein 1,
and P-glycoprotein. Catalpol also enhanced soluble Aβ
elimination [43].

Catalpol can inhibit mitochondrial dysfunction in cell
models and animal experiments. In MPTP-exposed mid-
brain neuron-astrocyte culture, catalpol reduces the accu-
mulation of ROS and MMP, as well as intracellular CA2+,
mitochondrial complex I activity, inhibits the opening of
MPTpore, reverses MAO-B activity, and prevents astrocytes
from MPP+ -induced apoptosis to inhibit mitochondrial
dysfunction [47]. Recent in vivo studies by Zhang et al. also
showed that catalpol may play a role in the treatment of
neurodegenerative diseases (such as AD) by preventing
mitochondrial dysfunction in the cerebral cortex and hip-
pocampus [34].

3.5. Inhibition of Cell Apoptosis. Apoptosis is considered to
be an important factor in the pathogenesis of neurode-
generative diseases. Similarly, it is also accompanied by
mitochondrial dysfunction, leading to excessive production
of ROS, loss of MMP, and release of cytochrome C [48]. It
maintains a balance between the expression of proapoptotic
Bax and antiapoptotic Bcl-2, which plays an important role
in protecting cells from apoptosis. Increased Bax expression
can promote cell apoptosis, while upregulated Bcl-2 ex-
pression can inhibit cell apoptosis [49]. Caspases play a
major role in the cascade of apoptosis through internal and
external pathways, and both caspase-3 and caspase-9 are the
executor of apoptosis in neurodegenerative diseases [50].

In the apoptosis of H2O2 induced PC12 cells, the expression
of Bcl-2 was downregulated, and the expression of Bax was
upregulated. Mitochondrial cytochrome Cwas released into the
cytoplasm, Caspase-1 and Caspase-3 were activated, and PARP
was cleaved. Catalpol can not only inhibit the downregulation of
Bcl-2, the upregulation of Bax, and the release of mitochondrial
cytochrome C into the cytoplasm but also inhibit the activation
of Caspase-3 and the cleavage of PARP and finally inhibit the
H2O2-induced apoptosis. +erefore, catalpol can inhibit H2O2-
induced apoptosis of PC12 cells by regulating Bcl-2 family
members and inhibiting cytochrome C release and caspase
cascade activation [38]. +e antiapoptotic mechanism of cat-
alpol may be through the effective regulation of Bcl-2 and Bax
expression. Catalpol inhibits the leakage of cytochrome c from
mitochondria to the cytoplasm and weakens the activation of
caspase-3 and the cleavage of PARP [38]. +e primary cortical
neurons treated with Aβ1-42 were used as AD cell models in
vitro. After exposure to Aβ1-42 (5 microM) for 72h, apoptosis
occurred in the neurons, which were characterized by enhanced
activity of caspases and ROS, increased Bax, loss of MMP, and
release of cytopigment c. Pretreatment with 0.5mM catalpol for
30 min followed by Aβ1-42 inhibited neuronal apoptosis by
inhibiting ROS accumulation, Bax level, MMP, and

cytopigment C release and regulating the activity and division of
Caspase-3 and Caspase-9 to a certain extent.+erefore, catalpol
plays a protective role in Aβ1-42-induced primary cortical
neurons through the mitochondria-dependent caspase pathway
[27].

Catalpol can protect cortical neurons from Aβ1-42-in-
duced neurotoxicity [26]. +is effect is partly related to the
regulation of mitochondria-dependent caspases, the re-
duction of Bax expression and intracellular ROS accumu-
lation, and the reduction of mitochondrial dysfunction.

+erefore, catalpol can inhibit nerve cell apoptosis and
delay or prevent the cognitive decline caused by nerve cell
apoptosis.

3.6. Regulating the NF-κB Signaling Pathway. NF-κB is an
important transcription factor that is expressed in brain
cells, including neurons, microglia, and astrocytes, and is
involved in a variety of brain functions. In particular, glial
NF-κB has been identified as a key signaling molecule in
neurodegenerative diseases (such as AD), brain injury, and
viral infection [51, 52].

Catalpol may play a neuroprotective role by inhibiting
the NF-kB signaling pathway to attenuate the microglia-
mediated neuroinflammatory response. It blocks oxidative
damage of cortical neurons by inhibiting the p53-mediated
Bcl-2/Bax/caspase-3 apoptosis pathway and regulating the
Keap1/Nrf2 pathway [15]. Catalpol significantly reduced the
production of NO and ROS and the activity of iNOS.
Moreover, catalpol can effectively reduce the expression of
inflammatory-related genes, such as iNOS, COX-2, and
TLR4. In addition, catalpol inhibited the inflammatory re-
sponse by inhibiting the activation of NF-κB. Catalpol can
inhibit the inflammatory response of astrocytes, and the
inactivation of NF-κB may be the main determinant of its
anti-inflammatory mechanism. +erefore, catalpol may be a
very effective drug for the treatment of inflammation-related
neurodegenerative diseases such as AD [16]. Catalpol in-
hibits NF-κB signaling by reducing TLR4 and ROS levels,
thereby inhibiting LPS-mediated inflammation of BV2
microglia [17].

3.7. Regulation of Neurotrophic Factors. +e neurotrophic
factor is a growth factor. +ey can prevent programmed cell
death initiated by the associated neurons, thus facilitating
neuronal survival [53]. Neurotrophic factors such as BDNF
and GDNF have strong neuroprotective effects [54].

BDNF is an important factor regulating neural plasticity.
It not only promotes neuronal survival and differentiation
but also regulates synaptic plasticity and transmission in the
central nervous system [55, 56]. BDNF may play a central
role in the mechanism of synaptophysin affecting neuro-
plasticity [57]. +e effect of catalpol on the cholinergic
system was eliminated in vitro by blocking the action of
BDNF by K252a or BDNF functional antibodies [58]. +is
suggests that catalpol may ameliorate the decline in memory
function by improving partial cholinergic function, which is
associated with BDNF activity. In neurodegenerative ani-
mals, morphological changes (e.g., reduced dendritic
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branching patterns, density of dendritic spines, and density
of hippocampal fibers) are closely associated with decreased
BDNF content in the brain [57, 59]. +erefore, the increased
expression of BDNF after catalpol treatment is likely to play
a key role in the improvement of learning and memory [60].
Catalpol also significantly increased the level of BDNF in the
brain, thereby increasing the survival rate of new neurons by
inhibiting apoptosis.

Catalpol improves memory by increasing BDNF expression
and protects forebrain neurons from neurodegenerative dis-
eases [58]. Compared with the elderly rats, the increase of PKC
and BDNF in the hippocampus of the catalpol treated group
was highly correlated with synaptophysin and GAP-43. +ese
results indicated that catalpol could increase the presynaptic
protein in the hippocampus of aged rats and upregulate the
relevant signalingmolecules.+erefore, catalpolmay ameliorate
age-related neuroplasticity loss by “normalizing” presynaptic
proteins and their associated signaling pathways in elderly rats
[35]. Catalpol can also significantly increase the level of BDNF
in the brain, thereby increasing the survival rate of newborn
neurons by inhibiting apoptosis [61].

3.8. Increasing the Density of Muscarinic Receptors in the
Brain. In a mouse model of dementia, catalpol improves
learning by increasing the density of muscarinic receptors in the
brain [62]. Serum levels of ACh, ChAT, and BDNF in the
catalpol group increased in a dose-dependentmanner, while the
level of AChE decreased in a U-shaped dose-corresponding
curve. Catalpol significantly increased the levels of muscarinic
AChR subtypes M1 and M2 in the hippocampus. +is suggests
that catalpol has neuroprotective and memory-enhancing ef-
fects, the mechanism of which may be related to the central
cholinergic system [63]. Catalpolmodulates cholinergic nervous
system function through its effect on ChAT. Catalpol may be
helpful in the treatment of AD but has no effect onM receptor
affinity [64]. +e activity of acetylcholinesterase (AChE) in the
brain of aging mice was increased, the activity of ChATpositive
neurons in the basal forebrain of aging mice was significantly
decreased, and the expression of muscarinic acetylcholine re-
ceptor M1 (MAChR1) was decreased. It was also found that the
levels of TNF-α, IL-1B, and advanced glycation end products
(AGEs) increased in the brain tissues of aging mice. However,
these biochemical indices were significantly reversed after two
weeks of catalpol administration. It was suggested that catalpol
had a protective effect on the brain of aging mice induced byD-
galactose, which might be related to the protective effect of
catalpol on the brain cholinergic and immune damage of mice.
+erefore, catalpol is worthy of further use in preclinical studies
ofAD [65]. Catalpol can improve the structural abnormalities of
the cerebral cortex and increase the expression of the M1 re-
ceptor in AD rats [66].

3.9. 'e Expression Levels of Bcl-2 and Bax Were Regulated.
Catalpol stimulated the expression of Bcl-2 and inhibited the
expression of Bax. Catalpol inhibited Ca2+ increased and
downregulated CaMK phosphorylation in LPS-induced
PC12 cells. CaMK-dependent ASK-1/JNK/p38 signaling
cascades are blocked by catalpol and apoptosis is reduced

[67]. Catalpol had an antiapoptotic effect on Aβ25-35-in-
duced PC12 cells. Catalpol could increase the activity and
decrease the apoptosis rate of PC12 cells damaged by Aβ25-
35. At the same time, catalpol significantly inhibited Aβ25-
35 induced, increased Bax expression, and decreased Bcl-2
expression [68]. Catalpol can significantly inhibit oligo-
dendrocytes and myelin sheath damage and promote the
recovery of cognitive decline. Catalpol also significantly
increased the expression of Bcl-2 and phosphorylated cAMP
response element-binding protein (p-CREB). In conclusion,
catalpol can prevent hypoperfusion-induced white matter
injury and cognitive impairment by upregulating Bcl-2
downstream through the P-CREB signaling pathway. It is
suggested that catalpol may play a certain role in the
treatment of cerebrovascular white matter injury [69].

3.10. Promoting PKC Expression. Catalpol significantly im-
proved the cognitive function of aged rats and increase the
expression of the synaptic protein (dynamin 1, PSD-95,
synaptophysin) in the cerebral cortex and hippocampus. In
addition, catalpol can prolong the length of MAP-2 positive
neurons and reduce the inhibitory effect of Aβ on syn-
aptophysin and synaptophysin in primary rat cortical
neurons damaged by Aβ. Bisindolylmaleimide I, a PKC
inhibitor, decreased the effect of catalpol on MAP-2-positive
neurite growth and synaptic protein expression, suggesting
that PKC may be involved in the prevention of Aβ-induced
neurodegeneration by catalpol [29].

3.11. Protecting the Blood-Brain Barrier. +e blood-brain
barrier is crucial for maintaining the internal environment
of the brain and its normal function. +e destruction of the
blood-brain barrier will accelerate the course of AD. In
Alzheimer’s disease (AD), excess Aβ deposition in the brain
leads to cell damage and destruction of the blood-brain
barrier (BBB). Liu CY study shows catalpol can inhibit Aβ1-
42-induced brain microvascular endothelial cell apoptosis,
increase levels of tight junction proteins to maintain the
integrity of the blood-brain barrier, and can effectively
regulate Aβ-related transporters on vascular endothelial cells
to increase the clearance of soluble Aβ in the brain, which is
a potential drug for the treatment of AD [70]. Feng S et al.
also demonstrated that catalpol alleviated the increase of
BBB permeability by inhibiting the decomposition of skeletal
actin and connectin in BMECs, as well as the secretion of
endothelin-1 and inflammatory cytokines [71].

3.12.OtherMechanisms. Catalpa promotes the expression of
α-secretase (ADAM10) and its proteolytic products SAPPα
and C83. In addition, the extracellular signal-associated
kinase/cAMP response element-binding protein (ERK/
CREB) signaling pathway is upregulated in catalpol treated
SweAPP N2A cells. +e effect of catalpol on the inhibiting
Aβ generation might be closely involved with α-cleavage of
APP processing [72].

In summary, the mechanism of catalpol against AD is
shown in Table 3 and Figure 4.
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Table 3: Anti-AD mechanism of catalpol.

Category Possible mechanisms (signaling pathway) References
Inhibits excessive production of
reactive oxygen species (1) Increase cell survival and reduce intracellular ROS level [24]

Improve the activity of antioxidant
enzymes

(1) Improve the activities of SOD and GSH-Px [32]
(2) Improve the level of GSH and the activities of SOD and GSH-Px [32]
(3) Increase antioxidant enzyme activity [18, 39]

Inhibition of NO production

(1) Negative effects on LPS + IFN-c stimulation, NO and ROS formation, and iNOS
activity [16]

(2) Inhibition of NO formation and improvement of neurodegenerative conditions [18]
(3) To prevent neuronal apoptosis by regulating the increase of NO and iNOS [44]

Inhibits mitochondrial dysfunction

(1) Prevention of apoptosis induced by fiber Aβ1-42 through mitochondrial-
dependent and death receptor pathways [36]

(2) Protecting brain mitochondrial function by decreasing MMP opening [46]
(3) Inhibition of mitochondrial dysfunction [34, 47]

Inhibition of apoptosis
Attenuated mitochondria-dependent caspase cascade; inhibits the leakage of
cytochrome C from mitochondria to the cytoplasm, and weakens the activation of
caspase-3 and cleavage of polyADP ribose polymerase

[27, 39]

Regulation of NF-κB pathway

(1) Inhibition of NF-κB activation and LPS-induced acute inflammatory response [43]
(2) Inhibition of NF-κB activation and protection of mitochondrial function [46]
(3) Reducing microglia-mediated neuroinflammatory response by inhibiting NF-κB
signaling pathway [15, 16]

Regulation of neurotrophic factors

(1) Hippocampus BDNF was significantly increased, which was positively correlated
with synaptophysin expression; “Normalize” presynaptic proteins and their
associated signaling pathways

[35]

(2) Enhance the expression of BDNF [58, 60]

Increase the density of muscarinic
receptors in the brain

(1) Protective effect on cholinergic [49]
(2) Improve learning ability and increase the density of muscarinic receptors in the
brain [62]

(3) Regulating cholinergic nervous system function through the influence on ChAT [64]

+e expression levels of Bcl-2 and Bax
were regulated

(1) Stimulate Bcl-2 expression and inhibit Bax expression [67]
(2) Inhibition of the increase of Bax expression and decrease of Bcl-2 expression
induced by Aβ25-35 [68]
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Bcl2 Bax

Cyt-c realease
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Figure 4: Catalpol mechanism diagram.
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4. Conclusion

+e pathogenesis of AD is very complex, involving cho-
linergic injury, immune inflammation, aging, and many
other aspects. Disorder of intestinal flora may also lead to the
progression of AD pathology and cognitive impairment
[73, 74]. However, the drugs used for the treatment of AD
are mainly single-target drugs, such as Donepezil hydro-
chloride and Memantine, which can improve or relieve the
symptoms of AD patients to a certain extent, but patients are
prone to some adverse reactions after medication, so it is not
suitable for long-term use. TCM treatment of chronic dis-
eases has the characteristics of integrity, multiapproach, and
multitarget, with less toxic and side effects, and has a certain
potential in the prevention and treatment of AD. TCM holds
that insufficient kidney essence deficiency and the medullary
sea are the underlying cause of AD; Rehmannia glutinosa
with blood and nourishing Yin is beneficial to fill the effect of
pulp; catalpol is the main active ingredient of Rehmannia
glutinosa; on the animal and cell models, a large number of
studies have shown that catalpol has significant nerve
protection and anti-inflammatory and antiaging effect, and
prompt catalpol has the potential to be the prevention and
treatment of AD. Catalpol can not only protect neurons
from injury but also promote the recovery of neuroendo-
crine disorders of the hypothalamic-pituitary-adrenal axis
(HPA) in AD rats [75]. Catalpol has few side effects [76], and
catalpol’s small molecules have the ability to cross the blood-
brain barrier [76]. With further research on the action and
mechanism of catalpol, catalpol may become an ideal drug
for the prevention and treatment of AD.

However, at present, there is very little clinical research
data on the prevention and treatment of AD by catalpol,
and the related studies are mainly focused on animal ex-
periments and cell experiments, which need to be further
strengthened and deepened in the future clinical studies.
+e system biology (such as metabolomics, etc.) and
network pharmacology studies on catalpol prevention and
treatment of AD are also insufficient, which will provide
some evidence-based medical basis for explaining the
mechanism, target, and network pharmacological target of
catalpol.

However, it is important to note that pharmacokinetic
studies have shown that catalpol has a short half-life. In in
vivo studies, it lasts less than 1.5 hours [77, 78]. In order to
prolong the half-life of catalpol and achieve a longer neu-
roprotective effect, the functional groups of catalpol will be
modified in the future to screen and design more optimized
catalpol analogs, so as to better prevent and control AD.
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