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Oral and gut dysbiosis leads to functional alterations in
Parkinson’s disease
Sungyang Jo 1,7, Woorim Kang2,3,7, Yun Su Hwang 1, Seung Hyun Lee1, Kye Won Park4, Mi Sun Kim1, Hyunna Lee 5,
Hyung Jeong Yoon 6, Yoo Kyoung Park6, Mauricio Chalita3, Je Hee Lee3, Hojun Sung2, Jae-Yun Lee2, Jin-Woo Bae2 and
Sun Ju Chung 1✉

Although several studies have identified a distinct gut microbial composition in Parkinson’s disease (PD), few studies have
investigated the oral microbiome or functional alteration of the microbiome in PD. We aimed to investigate the connection
between the oral and gut microbiome and the functional changes in the PD-specific gut microbiome using shotgun metagenomic
sequencing. The taxonomic composition of the oral and gut microbiome was significantly different between PD patients and
healthy controls (P= 0.003 and 0.001, respectively). Oral Lactobacillus was more abundant in PD patients and was associated with
opportunistic pathogens in the gut (FDR-adjusted P < 0.038). Functional analysis revealed that microbial gene markers for
glutamate and arginine biosynthesis were downregulated, while antimicrobial resistance gene markers were upregulated in PD
patients than healthy controls (all P < 0.001). We identified a connection between the oral and gut microbiota in PD, which might
lead to functional alteration of the microbiome in PD.
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BACKGROUND
Parkinson’s disease (PD) is a chronic progressive neurodegenera-
tive disease affecting more than 6 million people worldwide1. The
non-motor symptoms of PD, such as constipation, impaired
olfaction, and rapid eye movement sleep behavior disorders, are
frequently present before the onset of motor symptoms, which
might be explained by the accumulation of alpha-synuclein in the
peripheral nervous system before spreading to the substantia
nigra2. The progressive spreading of alpha-synuclein from
peripheral nerves into the brain was previously proposed in
neuropathologic studies and also demonstrated in mouse models,
where injection of preformed alpha-synuclein fibrils into the
gastric muscular layers resulted in the spread of pathologic alpha-
synuclein into the brain, while truncal vagotomy prevented the
spread3,4. These findings led to the hypothesis that the pathology
of PD may initiate in the gut5.
Animal studies have clarified the role of the gut microbiome in

PD. Germ-free mice showed limited alpha-synuclein pathology,
while mice with microbiota from PD patients exhibited enhanced
motor dysfunction6. Human studies have also revealed distinct gut
microbial compositions associated with PD7–11, but little is known
about the alteration of the oral microbiome in PD. Dysbiosis of the
oral microbiome has been observed in systemic diseases including
cancer, autoimmune diseases, and gastrointestinal diseases12. The
systemic effects of oral dysbiosis can be explained by local and
systemic inflammation as well as the oral-gut connection. In
general, the oral bacteria poorly colonize in a healthy digestive
system13,14. However, in pathological circumstances, oral patho-
gens could affect the gut environment, enhancing the oral-gut
dysbiosis connection. For example, an increased abundance of the
oral-associated microbiome was observed in the gut in patients

with inflammatory bowel disease, colon cancer, and liver
cirrhosis12,15,16. Oral dysbiosis could also affect the pathogenesis
of PD through the oral-gut connection. However, the number of
studies on the oral microbiome in PD is limited, especially on its
link with the gut microbiome5.
In addition, prior investigations have focused on the analysis of

bacterial composition in PD using 16 S rRNA gene-based amplicon
sequencing17. This method only targets the 16 S rRNA locus, which
is a taxonomically informative marker18. Although this sequencing
method is inexpensive and analytically convenient19, it has low
taxonomic resolution at the genus level, and only enables indirect
assumptions about biological functions20–22. Functional analysis of
the microbiome is essential to determine how the bacterial
composition affects the development of PD and to use it as a
therapeutic target. In addition, the ecological dynamics of the
microbiota enable the recovery of initial function, despite
compositional changes23. Whole-genome shotgun metagenomic
sequencing evaluates DNA from the whole microbial commu-
nity18, thus providing high-resolution detection at the species
level and elucidation of biological functions encoded by the
microbial genome18,21,22. The use of whole-genome shotgun
sequencing is increasing, but few studies have been conducted in
PD patients to date24.
In the present study, we aimed to address the lack of data on

the link between the oral and gut microbiome in PD, and on the
functional alterations of the PD microbiota. We investigated the
taxonomic and functional changes in the oral and gut microbiota
in PD patients and healthy controls. In addition, we identified a
discriminatory panel of candidate microbial biomarkers using the
oral and gut microbiota.
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RESULTS
Baseline clinical characteristics of PD patients and healthy
controls
The study population included 91 patients with PD and 85 healthy
controls (HCs). The mean age at study enrollment was not
significantly different between the PD patients and HCs (mean ±
standard deviation, 65.1 ± 7.9 vs. 64.6 ± 8.0, P= 0.66) (Table 1). The
prevalence of constipation was higher in PD patients than in HCs
(47.3% vs. 12.9%, P < 0.001). Sex, body mass index, and dietary
intake were not significantly different between two groups. The
degrees of swallowing difficulty and olfactory dysfunction were

higher in PD patients than in HCs. In PD patients, the median
disease duration (IQR) was 2.0 (0.0─6.0) years and the median
(IQR) Unified PD Rating Scale (UPDRS) part 3 was 32.0 (25.0─40.0).
Previous studies indicated that PD medication such as catechol-

o-methyl transferase (COMT) inhibitors and anticholinergics
affected the microbiota composition, so we conducted a beta-
diversity analysis to detect any effect of PD medication on the
microbiota composition. Stool microbiome was related to the use
of COMT inhibitor (P= 0.001) and amantadine (P= 0.048), while
the oral microbiome was related to the use of dopamine agonist
(P= 0.003) and amantadine (P= 0.049).

Table 1. Baseline clinical characteristics of patients with Parkinson’s disease (PD) and healthy controls.

PD patients
(n= 91)

HCs (n= 85) P value

Age, years 65.1 ± 7.9 64.6 ± 8.0 0.66

Male 49 (53.8%) 40 (47.1%) 0.45

BMI, kg/m2 24.3 (22.3− 26.4) 23.9 (21.3− 25.6) 0.09

Education, years 12.0 (12.0− 16.0) 12.0 (12.0− 16.0) 0.88

Clinical symptoms

IBS 3 (3.3%) (3.5%) >0.99

Constipation 43 (47.3%) 11 (12.9%) <0.001*

Bristol stool scale 4.0 (2.0− 4.0) 4.0 (4.0− 4.0) <0.001*

Swallowing test 0.0 (0.0− 3.0) 0.0 (0.0− 0.0) 0.003*

Smell test 9.0 (6.0− 10.0) 10.0 (10.0− 10.0) <0.001*

Disease duration 2.0 (0.0− 6.0) —

UPDRS

Part 1 5.0 (3.0− 7.0) —

Part 2 7.0 (4.0− 11.0) —

Part 3 32.0 (25.0− 40.0) —

Part 4 0.0 (0.0− 2.0) —

Total score 44.0 (34.0− 60.0) —

Hoehn and Yahr stage 2.0 (2.0− 3.0) —

Medication for PD

Levodopa 74 (81.3%) —

Dopamine agonist 35 (38.5%) —

COMT inhibitor 7 (7.7%) —

MAO-B inhibitor 25 (27.5%) —

Amantadine 19 (20.9%) —

Levodopa equivalent daily dose, mg 450.0 (275.0− 802.5) —

Daily dietary intake (n= 83) (n= 78)

Total energy, kCal 2168.5 ± 500.5 2160.3 ± 566.6 0.92

Carbohydrate, g 295.1 ± 69.9 288.4 ± 79.6 0.57

Protein, g 88.2 ± 25.8 88.9 ± 25.1 0.85

Animal source 47.2 ± 15.5 47.1 ± 16.5 0.96

Plant source 40.9 ± 16.5 41.8 ± 16.4 0.73

Fat, g 68.5 ± 26.4 67.7 ± 24.2 0.84

Animal source 40.2 ± 20.0 38.7 ± 18.4 0.63

Plant source 28.3 ± 12.9 29.0 ± 12.8 0.75

Fiber, g 38.4 ± 17.0 38.0 ± 17.6 0.87

Soluble 5.0 ± 2.5 5.1 ± 2.4 0.08

Insoluble 18.9 ± 8.1 19.2 ± 8.6 0.80

Values are mean ± standard deviation, n (%), or median (interquartile range).
PD Parkinson’s disease, HCs healthy controls, BMI body mass index, IBS irritable bowel syndrome, UPDRS Unified Parkinson’s Disease Rating Scale, COMT
catechol-O-methyltransferase, MAO-B monoamine oxidase B.
*P < 0.05.
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Fig. 1 Gut and oral microbial community structure based on 16 S rRNA gene sequencing. a, b Principal coordinates analysis based on the
Bray-Curtis dissimilarity between Parkinson’s disease (PD) and healthy controls in a stool and b oral samples. c, d Phylum-level bar charts of PD
and HCs in the c stool and d oral samples. e, f Comparison of the e gut microbiome and f oral microbiome between PD and HCs using genus-
level LEfSe analysis. The top 10 genera based on the LDA score in the PD and control groups are shown. The cut-off value for oral LDA effect
size was set at 2.0. LLKB (Lachnospiraceae; LLKB01000001), PAC001043 (Lachnospiraceae, AJ576336), PAC001032 (Lachnospiraceae, unpublished),
PAC001115 (Christensenellaceae, HQ716403) PAC000661 (Oscillospiraceae; JN713389) PAC002046 (Lachnospiraceae, GQ897562), and Eubacter-
ium_g23 (Oscillospiraceae, GQ502529) were the phylotype genera (Family, NCBI accession number).
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16 S rRNA gene sequencing of the oral and gut microbiota
Stool samples were analyzed in 88 PD patients and 84 HCs, and
oral samples were analyzed in 74 PD patients and 69 HCs after
excluding those with low sequence coverage and those who
refused to give oral samples (Supplementary Fig. 1). Character-
istics of the subset of patients sampled for oral and gut
microbiome were similar to those of the total study population
(Supplementary Table 1 and Supplementary Table 2).
Beta-diversity analysis showed significant differences in the

microbial composition between the two groups in the gut (P=
0.001) and oral samples (P= 0.003) (Fig. 1a, b), while there were no
significant differences in alpha diversity (Supplementary Fig. 2).
In the gut, the most common phylum was Firmicutes, which had

a similar abundance between PD patients and HCs. Bacteroidetes
was significantly more abundant in HCs (FDR-adjusted P; Q=
0.007), while Proteobacteria was more abundant in PD patients
(Q= 0.048) (Fig. 1c). In the oral samples, the most common
phylum was Firmicutes, followed by Proteobacteria and Actinobac-
teria, all of which did not show significant differences between the
two groups (Fig. 1d).
According to the linear discriminant analysis (LDA) effect size

(LEfSe) analysis, short-chain fatty acid-producing gut bacteria such
as Prevotella, Roseburia, Coprococcus, and Ruminococcus had lower
LDA scores in PD patients. Escherichia, Bifidobacterium, Sporobac-
ter, Oscillibacter, and Lactobacillus had higher LDA scores in PD
patients than in HCs (Fig. 1e). Aside from the top 20 genera
according to the LEfSe analysis, genera that were abundant in
patients with PD in previous studies (i.e., Hungatella, Odoribacter,
Alistipes, and Collinsella) were also more abundant in PD patients
than in HCs (Q < 0.030)25–27, along with the proinflammatory
genus Mogibacterium (Q= 0.043). In the oral samples of PD
patients, Lautropia, Abiotrophia, and Oscillibacter had lower LDA
scores while Lactobacillus, Capnocytophaga, and Megasphaera had
higher LDA scores than in HCs (Fig. 1f).
We compared the gut microbiota between patients whose H&Y

stage was less than 3 (mild PD) and patients whose H&Y stage was
3 or greater (severe PD). The beta-diversity was not significantly
different between mild PD and severe PD (P= 0.147)

(Supplementary Fig. 3). LEfSe analysis showed that the PD-
associated microbiome in this study, such as Lactobacillus and
Bifidobacterium, and gut pathogens such as Klebsiella, were higher
in severe PD compared with mild PD. We also compared the oral
microbiota between mild PD and severe PD. The beta diversity
was significantly different between mild PD and severe PD (P=
0.042). In the severe PD group, oral Hemophilus and Lactobacillus
were increased, and Lautropia was decreased.

Functional analysis based on 16 S rRNA gene sequencing
We indirectly compared the function of the oral microbiome using
16 S rRNA gene sequencing between patients with PD and HCs
using PICRUSt. Beta-glucoside operon transcriptional antitermina-
tor was higher in the oral samples of PD compared with the
healthy controls (Supplementary Table 3). However, the results
were not statistically significant after adjusting for multiple
comparisons.

Association between the oral and gut microbiome
In the previous four studies that investigated the oral microbiome
in PD and in this study, one common oral bacteria consistently
found to be increased in PD was Lactobacillus14,28–31. Therefore,
we focused on oral Lactobacillus, a facultative anaerobe that could
survive in the digestive tract.
Lactobacillus was significantly more abundant in PD patients, in

both the oral cavity (Q= 0.044) and the gut (Q= 0.187 and P=
0.049). We examined the correlation between the abundance of
oral Lactobacillus in the mouth with that of gut microbiome. In PD
patients, the abundance of oral Lactobacillus was associated with a
low abundance of gut Faecalibacterium, which is a representative
intestinal commensal bacterium (Q= 0.013), and with a high
abundance of gut Citrobacter, Klebsiella, and Enterobacter, all of
which belong to the opportunistic pathogenic Enterobacteriaceae
(Q ≤ 0.038) (Fig. 2). However, the correlation was not significant in
HCs. Oral Lactobacillus and stool Lactobacillus did not show a
significant association in both PD and HCs (Q= 0.36).

Fig. 2 Correlation between oral Lactobacillus and stool bacteria in Parkinson’s disease. a–d Linear regression analysis between oral
Lactobacillus and stool. a Faecalibacterium, b Citrobacter, c Klebsiella, and d Enterobacter.
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Association between the microbiome and clinical
manifestations of PD
Canonical correspondence analysis showed that PD severity index
(UPDRS total score) was positively correlated with the disease
duration, dysphagia, and the use of COMT inhibitor or amantadine,
whereas age, Bristol stool index, IBS, and olfactory function were
not significantly correlated with PD severity (Supplementary Fig. 4
and Supplementary Table 4). The total UPDRS score was associated
with a higher abundance of Bifidobacterium (Q= 0.002) and
Lactobacillus (Q= 0.006) among the top 20 genera from the LEfSe
analysis. However, there was no genus correlated negatively with
the PD severity indexes. Stool firmness (low Bristol stool scale) was
related to a low abundance of Prevotella (Q= 0.003). The use of
COMT inhibitor or amantadine was positively associated with
disease severity. In contrast, none of the oral microbiota was
significantly correlated with the clinical symptoms of PD.

Whole-genome shotgun metagenomics of the gut microbiome
Using stool samples, we conducted high-resolution taxonomic
and functional analyses based on the whole-genome shotgun
metagenomics data. The alpha diversity was significantly higher in
PD patients than in HCs (P= 0.048 for Chao1, and P= 0.0003 for
Shannon) (Fig. 3a), and the beta-diversity was also significantly
different between the two groups (P= 0.001) (Fig. 3b). We found
that Prevotella copri, Prevotella VZCB, and four Faecalibacterium
species were less abundant in PD patients than in HCs (Fig. 3c).
Conversely, possible pathogens or proinflammatory species, such
as Alistipes onderdonkii, Bacteroides dorei, Parabacteroides merdae,
and Butyrivibrio crossotus, were more abundant in PD patients.
Aside from the top 20 species according to the LEfSe analysis,
proinflammatory species (Bacteroides cellulosilyticus, Bacteroides
eggerthii, Butyricimonas virosa, and Bilophila wadsworthia) were
also significantly more abundant in PD patients (Q < 0.041).

Fig. 3 Gut microbial species-level community structures based on whole-genome shotgun sequencing. a Alpha diversity between
Parkinson’s disease (PD) and healthy controls. b Principal coordinates analysis based on the Bray-Curtis dissimilarity. c Species-level LEfSe
analysis. The top 10 genera in the gut based on the LDA score in the Parkinson’s disease and HC groups are shown. Faecalibacterium FP929045
(AJ270470), Faecalibacterium GL538271 (GL538271), Prevotella VZCB (VZCB01000106), Faecalibacterium GG697149 (GG697149) and Lachnospira
CZBV (CZBV01000019) were phylotype species (NCBI accession number). Boxplot centerline represents the median (50th percentile). The top
and bottom hinges represent 75th and 25th percentiles, respectively. The upper and lower whiskers correspond to the highest and lowest
data points. n.s: not significant, *P < 0.05, **P < 0.01, ***P < 0.001.
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Functional analysis based on whole-genome shotgun
metagenomics
Microbial genes involved in glutamate metabolism (ko00250) and
arginine biosynthesis (ko00220) were downregulated in PD
patients compared with HCs (all Q < 0.0001) (Fig. 4). Conversely,
microbial genes involved in the prokaryotic defense system
(ko02048), antimicrobial resistance (ko01504), and cationic anti-
microbial peptide (CAMP) resistance (ko01503) were upregulated
in PD patients compared with HCs. Interestingly, glutamate
decarboxylase, which converts L-glutamate into γ -aminobutyric
acid (GABA), was present at a higher frequency in the gut of PD
patients than in HCs (Q= 0.004). Conversely, glutamate synthase
and phosphoribosylformylglycinamidine synthase, all of which
produce L-glutamate, were present at a lower frequency in PD
patients than in HCs (all Q < 0.0001) (Supplementary Fig. 5).
Furthermore, genes involved in the synthesis of arginine
(ornithine carbomoyltransferase, Q= 0.021; argininosuccinate
synthase, Q < 0.0001; and argininosuccinate lyase, Q < 0.0001)
were present at a lower frequency in PD patients than in HCs, and
genes involved in the consumption of arginine (arginase, Q <
0.0001) were present at a higher frequency in PD patients than
in HCs.
Network analysis showed that alanine, aspartate, and glutamate

metabolism (ko00250) and arginine metabolism (ko00220) were
strongly correlated with Prevotella copri, Prevotella VZCB, and
Faecalibacterium species (all Q < 0.0001) (Fig. 5). Prokaryotic
defense system (ko02048), antimicrobial resistance (ko01504),
and CAMP resistance (ko01503) genes were significantly corre-
lated with Phascolarctobacterium faecium (Q < 0.0001), Bacteroides
thetaiotaomicron (Q < 0.0001), Bacteroides dorei (Q < 0.0001),

Parabacteroides distasonis (Q < 0.0001), Barnesiella intestinihominis
(Q < 0.0001) and Alistipes onderdonkii (Q < 0.0001).

Machine learning analysis for the diagnosis of PD
We trained random forest classifiers with bacterial composition
(oral, genus level; stool, species and genus level) and function
(gene and pathway level). The random forest classifier using gene
markers from whole-genome shotgun metagenomic sequencing
had the highest area under the curve (AUC) for discriminating PD
patients from HCs (0.88, 95% CI 0.87–0.90), followed by the
classifiers using functional pathways (AUC= 0.83, 95% CI
0.82–0.85) and species-level taxa (AUC= 0.81, 95% CI 0.79–0.82)
from shotgun sequencing (Fig. 6). The most commonly used
functional features in the classifier were genes involved in arginine
and glutamate biosynthesis, which is consistent with the results of
the functional analysis (Supplementary Fig. 6). The classifier using
genus-level data from shotgun sequencing had an AUC of 0.81,
higher than that using genus-level data from 16 S rRNA gene
sequencing (AUC= 0.74, P < 0.0001). Combining the gut and oral
microbiome did not significantly improve the discriminatory
performance compared to the gut microbiome alone (AUC=
0.73 vs. 0.74, P= 0.63).

DISCUSSION
In the present study, we investigated the connection between the
oral and gut microbiome in PD patients, and found that oral
Lactobacillus, which was more abundant in PD patients than in
HCs, was positively correlated with opportunistic pathogens in the
gut. We also identified distinct taxonomic and functional

Fig. 4 Gut microbial functional profiles based on shotgun sequencing. a, b Comparison of gut microbial functional profiles between
patients with Parkinson’s disease (PD) and healthy controls in a pathway-level, and b gene-level.
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signatures associated with PD. Microbial gene markers for
glutamate and arginine biosynthesis were downregulated in PD
patients compared with HCs, while antimicrobial resistance genes
were upregulated in PD patients. A random forest classifier using
the functional gene markers from shotgun metagenomic sequen-
cing was superior to one based on taxonomic markers from 16 S
rRNA gene sequencing at distinguishing PD patients from HCs.
The oral microbiome from patients with PD had a distinct

taxonomic composition compared with healthy controls. Oral
Lactobacillus had the highest LDA score in PD patients than in HCs,
and it did not show a significant correlation with confounding
factors, including disease duration and dysphagia. In the previous
four studies that investigated the oral microbiome in PD and in
this study, the one common oral bacteria consistently increased in
PD was Lactobacillus14,28–30. The other oral bacteria showed
variability among studies; for example, Capnocytophaga was
decreased in PD in the study of Pereira et al.28, but it was
increased in PD in this study. However, the mechanism by which
oral Lactobacillus affects the pathogenesis of PD remains unclear.
Commensal bacteria in the oral cavity include Streptococcus,
Fusobacterium, Haemophilus, and Prevotella species, while oral
Lactobacillus is abundant in dental caries32. Oral pathogens could
affect systemic disease through local and systemic inflammation33,
or they could reach the stomach from the oral cavity and colonize
the intestine34. Interestingly, it was hypothesized that Lactobacillus
reuteri might increase the release of alpha-synuclein into the
enteric nervous system by increasing the firing rate of mesenteric
afferent nerve bundles35,36.
Oral bacteria are poor colonizers in a healthy digestive

system13,14. However, oral-associated microbiota were found in
the gut of patients with inflammatory bowel disease, colon cancer,
and liver cirrhosis12,15,16. We can assume that in pathological
circumstances, oral pathogens can colonize the gut, or dead
bacteria could affect gut microbiota growth by acting as a
nutritional source13,14. In this study, we found that the increase in
oral Lactobacillus was associated with an increase in gut
pathogens, but only in PD, not in healthy controls. Oral
Lactobacillus could migrate to the gut and alter the intestinal
environment to promote the colonization of pathogens, as it may
do in gastrointestinal disease12,15,16. This implies an oral-gut
microbiome connection in pathological conditions involving
damage to the enteric nervous system and decreased

gastrointestinal motility, as is found in PD. The oral microbiota is
an attractive diagnostic and therapeutic target because it is easily
accessible and modifiable. Additional studies are required to
elucidate the association between oral bacteria, especially
Lactobacillus species, and the pathogenesis of PD.
Oral Lactobacillus and stool Lactobacillus did not show a

significant association in either PD or HCs. This might be explained
by the fact that the main Lactobacillus species in the oral cavity
and the intestine are different, even though Lactobacillus is a
facultative anaerobe that could survive in the intestine. For
example, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus
fermentum, and Lactobacillus salivarius are oral Lactobacillus
species most commonly found in healthy young people32, while
Lactobacillus paracaesei, Lactobacillus ruminis, and Lactobacillus
casei are gut lactobacillus species most commonly observed in
healthy older adults37. Because stool Lactobacillus was higher in
PD, and it showed a significant correlation with disease severity,
oral and stool Lactobacillus would be expected to show some
correlation when using species-level analysis.
The microbiome is an ecosystem in which numerous bacterial

taxa exist, and it maintains stability and resilience through
functional redundancy23,38,39. Although current approaches to
studying the PD microbiome are based on determining the
bacterial composition, the function of the ecosystem may not
change in responses to differences in the bacterial composition.
This is reflected in the result of the random forest classifier in the
present study, which showed that gene markers and functional
pathways had better discriminating performance than taxonomic
composition. Therefore, functional approaches are important
when investigating the effect of the microbiome on systematic
diseases.
We indirectly compared the function of the oral microbiome

using 16 S rRNA gene sequencing between patients with PD and
healthy controls, but the results were not statistically significant
after adjusting for multiple comparisons. Beta-glucoside operon
transcriptional anti-terminator showed higher trends in the oral
samples of PD. It is produced by many species in the oral
microbiome, and Lactobacillus has high beta-glucosidase activ-
ity40,41. Orally secreted beta-glucosidase was associated with
halitosis and dental biofilm, possibly mediated through a volatile
organic compound.

Fig. 5 Network analysis showing the correlations between gut bacterial species and function. a, b Network analysis of the 20 selected
species and associated functional pathways. The nodes between functions were eliminated and only the edges that have significant
correlations are shown. The minimum R value cut-off was 0.35. The red color represents species or functions that were less prevalent in
Parkinson’s disease (PD) patients, and the blue colors represent those that were more prevalent in PD patients.
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Whole-genome shotgun metagenomic sequencing enabled
precise functional analysis of the gut microbiome in PD patients,
which is not possible using traditional 16 S RNA sequencing data.
Gut microbial genes in PD patients were related to high
consumption and low production of glutamate and arginine,
which were also the most frequently used features in the random
forest classifier. Decreased glutamate in the serum and stool
samples of patients with PD has been observed in previous
studies25,42,43. Intestinal cells use glutamate to produce energy
and protect the mucosa through glutathione, and decreased
glutamate may thus contribute to mucosal damage. In addition,
glutamate in the gut environment reduces inflammation by
inducing the differentiation of naïve T cells into regulatory
T cells44. Arginine reduces gut inflammation and pathology, and

is important for normal brain function45. The upregulation of
antimicrobial resistance genes observed in PD patients suggests
prior infection and the use of antibiotics, and this is consistent
with a previous finding that the use of antibiotics increases the risk
of PD46. CAMP is an essential defense system for the host against
infection47. The upregulation of CAMP resistance genes in the gut
microbiome of PD implies increased antimicrobial peptide
secretion and inflammation in the host. The gut inflammation
promotes alpha-synuclein aggregation in the enteric nerve, or
conversely, the accumulation of alpha-synuclein may provoke
inflammation and dysbiosis48. Therefore, our data showed
functional alteration of the gut microbiome in PD, which could
contribute to the pathogenesis of PD.

Fig. 6 Discriminating Parkinson’s disease from healthy controls based on the oral and gut microbiome. a Receiver operating characteristic
curve of random forest classifier using shotgun or 16 S rRNA gene sequencing. b Comparison of each classifier. Boxplot centerline represents
the median (50th percentile). The top and bottom hinges represent 75th and 25th percentiles, respectively. The upper and lower whiskers
correspond to the highest and lowest data points. n.s: not significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Shotgun metagenomic sequencing detected PD-associated micro-
bial species that were not found by 16 S rRNA gene sequencing. The
PD-associated microbial species included pathogenic or proinflam-
matory species, such as Alistipes onderdonki, Bacteroides dorei, and
Parabacteroides merdae. Alistipes onderdonkiwas found in the stool of
patients with multiple system atrophy, suggesting its role in α-
synucleinopathy49. Bacteroides dorei was associated with weight loss
and autoimmune disease, and Parabacteroides merdae was enriched
in colorectal cancer50. In addition, we found a significant species-
level difference in the Prevotella genus between PD patients and HCs
using shotgun sequencing. There are more than 40 species in this
genus51. In previous studies, Scheperjans et al. found that the
Prevotellaceae family was decreased in PD52 and Petrov et al. found
that Prevotella copri was decreased in PD53. On the other hand,
Wallen et al. reported that the Prevotella_9 genus, including
Prevotella copri, was decreased in PD, but the less common genus
Prevotella was increased in PD54. Therefore, the analysis accuracy
depends on the phylogenetic resolution. We found that Prevotella
copri was less abundant in PD patients than in HCs and it was
associated with decreased arginine and glutamate metabolism. To
date, little is known about whether Prevotella copri significantly
affects the pathogenesis of PD. Prevotella is usually abundant in the
stool of healthy Asian people, and it benefits the host by helping to
digest a high-fiber diet55. The role of Prevotella copri in PD in
association with amino acid metabolism requires further investiga-
tion, especially in Asian populations.
By directly comparing the discriminatory ability of shotgun and

16 S rRNA gene sequencing, we found that shotgun metagenomic
sequencing performs better at discriminating PD patients from HCs.
Previous studies have investigated the gut microbiome in PD
patients using 16 S rRNA gene sequencing25, and only a small
number of recent studies have used shotgun metagenomic
sequencing for PD24,56. One study found a mean AUC of 0.92 when
discriminating PD patients from HCs using gut metagenomics-
derived gene markers24, which is comparable to our maximum AUC
of 0.88. We found that gene markers and functional pathways
determined using shotgun sequencing had better discriminatory
performance than the taxonomic composition, which might be
explained by the high levels of functional redundancy in the
microbiota23,38,39. In addition, the taxonomic composition derived
from shotgun sequencing showed better discriminatory perfor-
mance than the taxonomic composition derived from 16 S rRNA
gene sequencing. These results support the superiority of shotgun
metagenomic sequencing over 16 S rRNA gene sequencing for
identifying relevant changes to the PD-associated gut microbiota.
The present study has some limitations. First, although our 16 S

rRNA gene data revealed significant differences in the oral
microbiome between PD patients and HCs, shotgun metagenomic
sequencing was performed only on stool samples. Because the
gut microbiome showed better discriminating performance for PD
than the oral microbiome, whole-genome shotgun metagenomic
sequencing was performed on the gut microbiome, considering
the cost-effectiveness. Further studies using shotgun metage-
nomics are therefore required to identify the oral microbial
functions and species-level composition. Second, we did not
investigate the metabolites associated with the identified gut and
oral microbiota. To support the results of our functional analysis
on the significant alterations in glutamate and arginine metabo-
lism, these metabolites should be investigated in stool samples.
In conclusion, the present study identified a distinctive

connection between the oral and gut microbiota, which might
lead to functional alterations of the PD-associated microbiome.

METHODS
Study participants
In this case-control study, we prospectively enrolled patients with PD using
the UK PD Society brain bank clinical diagnostic criteria57 and their spouses

as HCs at Asan Medical Center from 2019 to 2020. The patients’ spouses
were selected as HCs because they share common environmental factors.
The exclusion criteria were as follows: (1) participants with inflammatory
bowel diseases; (2) participants with a history of acute inflammatory or
infectious disease within one month prior to participation; (3) participants
using antibiotics, steroids, or immunosuppressants; (4) participants who
underwent surgery on their gastrointestinal tracts or oral cavity; (5)
participants using artificial nutrition; (6) participants who had undergone
deep brain stimulation; and (7) participants diagnosed with PD dementia.

Ethics
This study was approved by the Asan Medical Center Institutional Review
Board (2019-0929) and was performed in accordance with the relevant
guidelines and regulations, including the Declaration of Helsinki. All
participants provided written informed consent at study enrollment.

Clinical evaluation
We assessed the baseline characteristics of the cohort, including age, sex,
and body mass index. Diet was assessed using a semi-quantitative food
frequency questionnaire58. Irritable bowel syndrome and constipation
were assessed using the ROME III diagnostic criteria59. Dysphagia was
assessed using a swallowing disturbance questionnaire60, and olfactory
function was assessed using a scent survey for screening (SSS) test61.
Motor function was assessed using the Unified PD Rating Scale (UPDRS)
and Hoehn and Yahr (H&Y) stage in the medication-off state.

Preparation of oral and stool samples
Oral swabs and stool samples of patients with PD and their spouses were
collected for microbial community analysis. For the oral swab samples, the
buccal area was swabbed with an eSwab kit (COPAN Diagnostics Inc.,
California, USA). A stool sampling kit (CJ Bioscience Inc., Seoul, Korea) was
used to collect stool samples. Conventional 16 S rRNA gene sequencing
was performed for both the oral and gut microbiome. Because we found
that the gut microbiome showed better performance when discriminating
PD from controls than the oral microbiome, whole-genome shotgun
metagenomic sequencing was only performed on the gut microbiome,
considering the cost-effectiveness.

16 S rRNA gene sequencing, taxonomic profiling, and
functional profiling
The V3-4 hypervariable region of the 16 S rRNA gene was amplified with
primers 341 F and 805 R using the direct PCR method. Libraries were
prepared using an NEBNext Ultra II FS DNA Library Prep Kit for Illumina
(New England Biolabs, Ipswich, MA, USA). The prepared DNA libraries were
sequenced by CJ Bioscience Inc. (Seoul, Korea) using the Illumina Miseq
platform (Illumina, San Diego, CA, USA) with 2 × 300 bp kits.
The paired end raw 16 S rRNA sequences data were uploaded to the

EzBioCloud and processed using a web-based EzBioCloud microbiome
taxonomic profile tool (https://www.ezbiocloud.net/contents/16smtp).
High-quality sequence reads were assigned to “species group” at 97%
sequence similarity using the PKSSU4.0 database. The prediction of
functional biomarkers of the oral microbiota was performed using the
PICRUSt with EzBioCloud MTP server62.

Whole-genome shotgun metagenomic sequencing
Whole-genome shotgun metagenomic libraries were prepared using the
NEBNext Ultra II DNA Library Prep Kit and the NEBNext Multiplex Oligos for
Illumina (New England Biolabs, Ipswitch, USA), according to the
manufacturer’s protocols. Fragment size and DNA concentration in the
final library were checked using a Bioanalyzer system (Agilent Technolo-
gies, Santa Clara, USA) before sequencing using an Illumina NovaSeq 6000
platform (2×150 bp read length) at Macrogen (Seoul, Korea).

Taxonomic profiling of shotgun metagenomics data
A Kraken2 database63 containing bacterial and archaeal species repre-
sented in the EzBioCloud database was generated64. For each species, 92
core genes were extracted using the UBCG pipeline65. The total core gene
length for each species was stored for further downstream analysis. A
Kraken2-compatible taxonomic structure was constructed using EzBio-
Cloud’s taxonomic system, and the core gene sequences were converted
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into FASTA files using a numerical identifier matching the taxonomic
structure file. Finally, the database was compiled with the Kraken2-build
command using a k of size 35 and default parameters.
The potential presence of bacterial and archaeal species for each raw

metagenomic sample read was initially surveyed using the pre-built
Kraken2 core gene database66. After acquiring a list of candidate species, a
custom Bowtie2 database was built, utilizing only the core genes from the
species found during the first step to reduce the search space and obtain
accurate coverage and depth metrics. The raw sample was then mapped
against the Bowtie2 database using the very sensitive option and a quality
threshold of phred33. Samtools was used to convert and sort the output
BAM file. Coverage of the mapped reads against the BAM file was obtained
using Bedtools. To avoid false positives, reads that mapped to a given
species were only quantified if the total coverage of their core genes was
at least 25% according to an in-house script. Finally, species abundance
was calculated using the total number of reads counted, and normalized
species abundance was calculated using the total length of core genes per
species.

Functional profiling based on shotgun metagenomics data
Functional annotations were obtained by matching each read against the
KEGG database67 using DIAMOND68. An initial database file was built from
the KEGG fasta file containing the ortholog amino acid sequences using
DIAMOND’s makedb command with the default parameters. Then,
DIAMOND was executed using the blastx parameter, which converts each
metagenomic read into multiple amino acid sequences by generating all
six open reading frames and then matching these against the pre-built
KEGG database. If a read had multiple KEGG hits, the top hit was used.
After quantifying all of the KEGG orthologs, minpath was used to predict
the presence of KEGG functional pathways69.

Machine learning for discriminating PD
Using the 16 S rRNA-based sequencing data for the oral and gut
microbiome and the whole-genome shotgun sequencing data for the
gut microbiome, we developed a random forest classifier for discriminating
PD from HCs, using custom python scripts employing the Scikit-learn
package70. We trained random forest classifiers with the bacterial
composition (oral = genus level; gut = species and genus level) and
function (gene and pathway level). The model was trained 20 times using a
5-fold cross-validation method, and the average area under the receiver
operating characteristic (ROC) curve was calculated.

Statistical analysis
We compared the baseline demographics, dietary intake, and clinical
symptoms between PD patients and the HCs using a χ2 test, Student’s t-
test, and Mann–Whitney U test, where appropriate. Significance was set at
a P value less than 0.05, and all P values were 2-tailed. The species richness
was assessed using Chao1, and diversity indices were calculated using the
Shannon matrix. The beta-diversity was calculated using the Bray-Curtis
metric. The significance of beta-diversity was assessed using PERMANOVA
with QIIME271. In the diversity analyses, all features were used.
To examine the taxonomic and functional differences between PD and

HC, we performed LEfSe analysis72, which uses effect size to measure
phenotypic differences in metagenomic data, as well as statistical
significance. Features with less than 0.01% relative abundance in the data
were excluded from the analysis to avoid obtaining biologically mean-
ingless results. In addition, we performed beta-diversity and LEfSe analyses
to compare the microbiota between patients whose H&Y stage was less
than 3 (mild PD) and patients whose H&Y stage was 3 or more (severe PD).
The variation in each taxonomic profile and function between PD

patients and HCs was analyzed using a Mann–Whitney U test. The
Benjamini–Hochberg method was used to adjust for multiple testing.
Statistical significance was set at an adjusted P value (Q-value) of 0.05.
Since the oral microbiome could affect the gut microbiome15, the
correlation between the oral and gut microbiome composition was
determined using linear regression analysis. We imposed a centered log-
ratio transformation on the relative abundance data using the ‘phyloseq’
and ‘microbiome’ R packages73–75.
Canonical correspondence analysis (CCA) was performed to identify the

bacterial taxa associated with the clinical symptoms of PD. In CCA, we used
three demographic features (age, BMI, and disease duration), three drugs
that can affect the microbiota (COMT inhibitor, amantadine, and dopamine
agonist), and the clinical symptoms of PD (Bristol stool scale indicating

stool firmness, IBS symptoms, dysphagia scale, olfaction, H&Y stage and
UPDRS). The top 20 strains from LEfSe analysis were used in the analysis.
CCA was performed using XLSTAT software (Addinsoft, Paris). Linear
regression analysis was also conducted to highlight the clinically mean-
ingful and statistically significant correlation from the CCA.
Network analysis was performed using the top 20 pathway level functions

and the top 20 species level taxa based on the LDA Score. Network maps
were generated between bacterial species and functional pathways using
QIIME2 SCNIC and visualized in Cytoscape version 3.8.276. Hierarchical all-
against-all association testing was performed to find multi-resolution
associations between the bacterial taxonomic and functional profiles77.
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