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A B S T R A C T

Corona Virus Disease 2019 (COVID-19) has led to an increase in attacks targeting widespread
smart devices. A vulnerable device can join multiple botnets simultaneously or sequentially.
When different attack patterns are mixed with attack records, the security analyst produces an
inaccurate report. There are numerous studies on botnet detection, but there is no publicly
available solution to classify attack patterns based on the control periods. To fill this gap,
we propose a novel data-driven method based on an intuitive hypothesis: bots tend to show
time-related attack patterns within the same botnet control period. We deploy 462 honeypots
in 22 countries to capture real-world attack activities and propose an algorithm to identify
control periods. Experiments have demonstrated our method’s efficacy. Besides, we present
eight interesting findings that will help the security community better understand and fight
botnet attacks now and in the future.

. Introduction

The rapid development of the Internet of Things (IoT) and the Internet of Medical Things (IoMT) can provide fast, cost-effective,
nd safe solutions for many applications, such as drones and Smart City [1]. However, numerous vulnerable IoT devices are
ow-hanging targets with sensitive user privacy for botnet organizers to launch large-scale botnets [2].

Report [3] revealed that most botnets have no idle period. No sooner is one botnet extinguished than other botnets replace
t. The intense competition between attackers generates vulnerable devices (also called bots) destined to be involved in different
otnets sequentially or simultaneously. The captured attack records contain multiple botnet behaviors. Therefore, different botnet
ontrol periods separate the attack event sequence into temporal fragments. Besides, Internet users generate a massive amount of
egitimate traffic, which becomes a sanctuary for malicious online activities from being detected. Network administrators could not
ffectively recognize these botnet ‘‘landscape changes’’ or respond quickly in many defense situations. The above dilemma is defined
s the ‘‘temporal fragment problem’’ in Section 2.1.
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1.1. Limitations of current approaches

Many solutions have been proposed for botnet detection, broadly divided into two categories: Signature-based methods [4] are
ainly applied for large-scale analysis in practice. Feature-based solutions are widely explored in the academic community [5].

or instance, Li et al. [6] proposed a method that automatically detects unknown HTTP botnets with traffic features. They extract
eatures from multiple attack surfaces and train classifiers using machine learning-based algorithms. However, no one can prove
hether the selected features are enough for training.

As a remedy, Sun et al. [7] relieved the feature engineering burden by utilizing the historical events. They first established the
ttack model temporal based on an intuitive observation: bots tend to show time-related attack patterns within the same botnet.
heir prerequisite is that one bot can only be controlled by one botnet during the observation period. However, there is a growing
rend for multiple botnets contesting the same victim, which may mislead further security solutions.

.2. Challenge and motivation

Honeypot technology is widely used for modeling attacker behavior and reducing botnet attacks on IoMT and is an essential
otivation for this research. In the context of IoMT, devices can join several botnets simultaneously. Security analysts produce

naccurate reports when different attack patterns are combined with attack records. Botnet detection has been studied extensively,
ut no publicly available methods for classifying attack patterns based on control period information exist.

The above discussions provoke three urgent real-world research questions not addressed by prior work:
Q1: How to efficiently distinguish botnet attacks from legitimate traffic and relieve the burden of analysts from

umerous IoT botnet activities for their tremendous volume and diversity?
Q2: How to infer the botnet patterns in the perspective of control periods and evaluate the botnet analysis method when
ost of the attack records are unlabeled?
Q3: What statistical findings can be found from IoT botnet inferring results and the collected real-world attack records?
To fill these gaps, we develop a data-driven study to detect botnets with four objectives: The first goal (to answer Q1) is to

onstruct a set of honeypots that captures enough real-world attack activities. Our second goal (to further answer Q1) is to reduce
he massive noise records by proposing a noise data filtering algorithm based on attack density. Our third goal (to answer Q2) is to
nfer control periods and group similar attack patterns of IoT botnets so that administrators can better understand the relationship
nd botnet control structures. Our fourth goal (to answer Q3) is to reveal data-driven findings that help the security community
etter understand IoT botnet attacks now and in the future.

.3. Main contributions

In this paper, we investigate the threat of IoT device compromises in the masses and design three kinds of IoT-based honeypots
o present the well-collected attacks data collected in the wild. We propose a noise data filtering algorithm to reduce the massive
oise records based on attack density. In this way, the simplified attack data is initialized as session sequences of each bot. Then, we
nitially model the directly attack temporal information as Multivariate Hawkes Process. To infer different control periods of each
ot, we propose a dynamic sliding window-based control period inferring algorithm based on an intuitive hypothesis: botnets tend
to show time-related attack patterns. We first investigate the correlation between random variables’ distribution and the botnet
inferring result in the evaluation phase. We then design a set of controllable simulation experiments to verify the effectiveness of
our unsupervised learning method. Besides, we reveal data-driven findings that help the security community better understand IoT
botnet attacks now and in the future.

To our best knowledge, this is the first data-driven study focusing on IoT botnets from the perspective of a control period.
Corresponding to the three research questions mentioned above, our contributions to this work are as follows:

1. We design three kinds of lightweight honeypots to simplify the legitimate traffic distinction process. We release our well-
collected attack data in the wild (from March 2019 to September 2021) to the security community for further study after
publishment.

2. We propose a novel botnet inferring model that resolves the ‘‘temporal fragment problem’’ without the extra feature
engineering endeavor. To further verify the effectiveness of our unsupervised learning method, we present the distribution
patterns of our botnet inferring results and then design a set of controllable simulation experiments.

3. Based on the analysis results, we conclude eight interesting findings of the real-world IoT botnet attacks. Some highlights
include: (1) there is a wide difference in cyber threats from countries over the world; (2) weak passwords are the most
commonly exploited attack surface in IoT botnets; (3) observation shows that attackers tend to ensure a successful hit by
repetitive attempts; (4) scannings with TCP forwarding actions have DDoS intent; (5) most botnet organizers can achieve
their goals within 15 commands; (6) there is a high correlation between IoT cyberattacks and the COVID-19 epidemic; (7)
weak IoT devices are controlled by multiple botnets in turn or simultaneously; and (8) IoT botnet attacks are highly correlated
with bots under the same network segment.

The rest of the paper is organized as follows. Section 3 surveys the related works. Section 2 explains preliminaries. Section 4
explicates the attacker pattern model and the clustering algorithm. We evaluate our model and analyze the result in Section 5. In
2

Section 6, we present the conclusion and future research.
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Fig. 1. IoT botnet attack phase.

Fig. 2. Schematic diagram of temporal fragments. Each node represents an attack session.

2. Preliminaries

2.1. Temporal fragment problem

As defined in [8], an IoT botnet is a network of compromised IoT devices (called ‘‘Bots’’) under the control of a remote attacker
(also called ‘‘Botmaster’’). Multilayer command and control (C&C) is widely used for anonymity. Literature [4] summarizes the life
cycle of a botnet into five stages: initial infection, secondary injection, connection, malicious command and control, update, and
maintenance. Since the temporal information of the botnet attacks is our main focus, we provide a more macroscopical view by
dividing the IoT attack integrity into three stages (shown in Fig. 1).

The first stage is scanning. Hackers attempt to incorporate devices that meet the invasion conditions into a list to be hacked
through a wide range of port scans. The second stage is intrusion, in which attackers determine the common vulnerabilities and
exposures (hereafter CVEs) that can be exploited for privilege escalation and remote login via the information received in the first
stage. In the third stage, the attackers send tentative requests (such as Telnet sniffing) to confirm the connection and download the
malicious scripts. Depending on each host CPU architecture, the code will trigger the corresponding executable file and exploit
vulnerabilities in the device to turn it into a bot. These bots are then used in mining, performing DDoS attacks, propagating
maliciously, and compromising privacy.

The vulnerability of these bots on the public network makes it possible for anyone to access them, leading to competition among
attackers for resources. Different botnet control periods separate the sequence of attack events into temporal fragments.

Fig. 2 shows an intuitive schematic diagram of temporal fragments. During our observation period [0, 𝑇 ], given three bots
(controlled devices) which involved in three botnets. Given the control period of botnet 𝑏𝑡𝑖 and bot 𝑏𝑗 , 𝑏𝑗 is controlled by 𝑏𝑡𝑖 in
period [𝑠𝑡𝑎𝑟𝑡, 𝑠𝑡𝑜𝑝]. The bot fragment of this control period are defined as: 𝑓𝑖,𝑗 = (𝑏𝑗 , 𝑏𝑡𝑖, [𝑠𝑡𝑎𝑟𝑡, 𝑠𝑡𝑜𝑝]). We take temporal fragment as
the basic unit of botnets, based on the following intuitive observations: bots tend to show time-related attack patterns within
3
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the same botnet control period. In this paper, the term ‘‘attack pattern’’ refers to the temporal similarity of attack activities during
he control period of the same organization or individual.

.2. Attack pattern Hawkes process

The Poisson counting process is a statistical tool that has been proven to be greatly successful in modeling temporal events
ithout capturing interactions between events [9]. Hawkes process is a particular case of point process which models the time

ntervals of random events. Given that a Hawkes process consists of 𝐾 point processes (in this paper K bots) in the observation
period, 𝑇 are assumed as conditionally Poisson processes. Each bot includes a sequence of 𝑁 attack events which are networking
sessions essentially. An attack event is defined as (𝑡𝑛, 𝑎𝑛)

𝑁
𝑛=1, where 𝑡𝑛 denotes timestamp of attack 𝑛, and 𝑎𝑛 ∈ [1, 𝐾] denotes the

bot to which the 𝑛th attack event belongs. In total, each set (𝑡𝑛, 𝑎𝑛) represents an attack launched by an attacker 𝑎𝑛 at time 𝑡𝑛. More
pecifically, following [9], intensity function (1) is used to characterize a Hawkes Process of each attack event 𝑛.

𝜆𝑛(𝑡|𝑡𝑛 ∶ 𝑡𝑛 < 𝑡) = 𝜆𝑛(𝐻𝑡)

= 𝜆0𝑛 +
𝑁
∑

𝑚=1
ℎ𝑚,𝑛(𝑡 − 𝑡𝑚)

= 𝜆0𝑛 +
𝑁
∑

𝑚=1
𝐴𝑚,𝑛 ⋅𝑊𝑚,𝑛 ⋅ 𝑔𝜃𝑘,𝑘′ (𝛥𝑡)

(1)

where 𝐻𝑡 denotes the event history before 𝑡, 𝜆0𝑛 denotes the background rate of 𝑛, which is intuitively described as random events
that are not related to others. ℎ𝑚,𝑛(𝑡−𝑡𝑚) is the time decayed influence between 𝑚 and 𝑛, which can be decomposed by the product of
𝑚,𝑛,𝑊𝑚,𝑛 and 𝜃𝑘,𝑘′ . 𝐴𝑚,𝑛 is a binary adjacency matrix which is used to denote a directed edge from session 𝑚 to session 𝑛. A Gamma
rior on the weights, 𝑊𝑚,𝑛 is used to denote the weight of edge between 𝑚 and 𝑛. Then, 𝜃𝑘,𝑘′ denotes the time-decayed influence
etween attacker 𝑛 and 𝑚. Overall, 𝜆𝑛(𝑡|𝑡𝑛 ∶ 𝑡𝑛 < 𝑡) measures the probability for the occurrence of a new session with the given
istory 𝐻𝑡 based on random graph model. Therefore, we select 𝜆𝑛(𝑡|𝑡𝑛 ∶ 𝑡𝑛 < 𝑡) to quantificat the temporal similarity between two
ttack session sequences. Establishing and using such a probability model requires a series of complex integrals, which is intractable.
herefore, we adopt the Gibbs sampling procedure followed literature [9] for estimation. For completeness and clarification, we
implistically restate the posterior distribution of 𝑊𝑚,𝑛 in Eq. (2) and 𝜆𝑛 in Eq. (3).

Sampling weight matrix 𝑊𝑚,𝑛:

𝑊𝑝,𝑞 ∣ (𝑡𝑛, 𝑎𝑛)
𝑁
𝑛=1, 𝜃𝑝,𝑞 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼𝑝,𝑞 , 𝛽𝑝,𝑞),

𝑤ℎ𝑒𝑟𝑒

𝛼𝑝,𝑞 = 𝛼0𝑊 +
𝑁
∑

𝑛=1

𝑁
∑

𝑛′=1
𝛿𝑐𝑛 ,𝑝𝛿𝑐𝑛′ ,𝑞

𝛽𝑝,𝑞 = 𝛽0𝑊 +
𝑁
∑

𝑛=1
𝛿𝑐𝑛 ,𝑝

(2)

Sampling spontaneous attack rate 𝜆𝑛:

𝜆𝑛 ∣ (𝑡𝑛, 𝑎𝑛)
𝑁
𝑛=1,∼ Gamma

(

𝛼𝜆, 𝛽𝜆
)

,

𝑤ℎ𝑒𝑟𝑒

𝛼𝜆 = 𝛼𝑛𝜆 +
∑

𝑛
𝛿𝑐𝑛

𝛽𝜆 = 𝛽𝑛𝜆 + 𝑇

(3)

𝛿 denotes the Kronecker delta function, which has been proven to work on this issue [9]. We use the inverse-scale parameteri-
ation of the gamma distribution.

. Related work

Many endeavors have been done on Botnet analysis. We discuss the related works from three aspects according to our emphasis.

.1. Honeypot study

Critical infrastructure relies on networks in a digitized world. These sensitive infrastructures are highly attractive for botnet
rganizers, who are frequently a step ahead of defenders [10]. Honeypots are decoys that lure cyber attackers into users’ networks
o counterbalance this situation. Honeypots can be classified into Low-Interaction Honeypots, Medium-Interaction Honeypots, and
igh-Interaction Honeypots.

Low-interaction honeypot [11] has a very limited set of interaction rules available for a visitor. Previous research about low-
4

nteraction honeypot includes generating intrusion and detection signatures of known attacks. They feature lightweight deployment
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and update routines without offering the complete functionality of the original device. While not much information is available
about the 0 day vulnerability, the risk of compromising production systems by a successful honeypot attack is also low.

High-interaction honeypot [12] is a real, vulnerable device used to detect 0 day attacks. Due to high-interaction honeypots,
he system services can be crashed by malicious commands. Therefore, an extremely resilient monitoring system is necessary for
estructive readout.

Medium interaction honeypot [13] such as Cowrie provides a virtual file system with a fake shell to the attacker, which has
roved to be efficient in the collection of autonomously spreading malware. Medium interaction honeypot is an ideal environment
or tracking the state of IoT botnets because they try to combine the benefits of both Low-Interaction and High-Interaction Honeypots.
herefore, we developed a lightweight medium-interaction honeypot system by simulating vulnerable IoT-related targets with
idelity maintaining strategies. These strategies provide sufficient responses that known exploits await on certain services, ports,
r protocols that trick attackers into sending their corresponding payloads.

.2. Botnet detection

There are many methods proposed to detect a botnet. Signature-based methods are widely used for known botnets. For instance,
oesch et al. [14] proposed Snort, a lightweight network intrusion method by configuring a set of rules in advance. Snort is
onfigured to run on infrastructures for long periods without administrative maintenance.

However, their method is highly dependent on the signature base and is useless for unknown attacks. Some works focus on
achine-learning-based solutions employed to distinguish the botnet [15]. For instance, Li [6] proposed a method that automatically
etects unknown HTTP botnets with traffic-based features. Preliminary experimental results show that the method can accurately
etect botnets with low false-positive rates and automatically generate their signatures. Singh et al. [16] applied a random forest
odel to build a Peer-to-Peer botnet detection model in quasi-real-time. They provide a scalable implementation of real-time

ntrusion detection on open-source tools. PeerClean [17] utilizes the behavior-based features together with structured graph analysis.
heir effectiveness is more robust and distinguishable than the host-level connection mode. In the experimental stage, they evaluate
heir work on the real traffic records, and the results show that PeerClean achieves high detection rates with few false positives.
hese methods tend to find the botnet behavior patterns from specific fine-grained features, which may only be effective for specific
atasets.

As proved by Sun [7], bots that belong to the same botnet tend to launch temporally close attacks. Besides, the performance
f the above methods is highly related to the feature quality because one never knows whether the used features are enough in
he real world. As is well-known, detecting IoT attacks in the wild is an open issue because the real attack traffic will submerge in
assive production activities.

Instead of distinguishing and isolating the botnet from the legitimate network, we first develop a set of IoT-related honeypots
o collect the network events in the wild. Since our developed honeypots capture attacks with no actual or production value, any
ctivity or traffic to the honeypot can be interpreted as an intrusion, fileless attack, or a probing effort [18]. We then infer the
ttacker pattern and group structure based on the collected data.

.3. Attack pattern analysis

Classifying and clustering the attack behaviors is challenging due to the tremendous volume and diversity of collected honeypot
ata [19]. Attack pattern level study [20] can provide the researchers with a better understanding of emerging security trends.
tudy [21] utilized honeypots on a global scale to collect attack events within a framework for modeling and clustering attacker
atterns. The results of these models reveal different interaction patterns from honeypots. They evaluated the proposed methods in
large dataset, including 167 million attacks.

To our best knowledge, related works on control period analysis are lacking. For example, Sun et al. [7] combine a Bayesian
robabilistic graphical model and a graph-based clustering algorithm to identify latent influence between attackers. In this way,
hey could cluster the attacker activities and reasonably predict attacker behavior, detecting attacks based on previous behaviors
aptured by honeypots. The significant distinction between our work with them is that they lack the consideration of the botnet
ontrol period, which will cause incomplete analysis results. To help bridge this gap, we propose a data simplification method based
n attack density and present a dynamic sliding window-based matching algorithm to infer the control intervals.

. Attacker activities collection and modeling

Fig. 3 shows the workflow of our solution, including three steps: First, we develop worldwide scale honeypots for data collection.
econd, we remove the repetitive records to collect a noiseless and well-formatted dataset. In the last step, we divide the attack
equence of each bot by partial similarity of temporal influence. We then cluster the control period-based attack patterns into botnets.
5
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Fig. 3. Workflow of the framework.

Fig. 4. Overview of honeypot system.

4.1. Honeypot deployment and data collection

This section answers the Q1 raised in Section 1.2 by designing a series of honeypots and proposing a data simplification algorithm.
For convenience, we regard each network session as a single attack activity. Honeypots are decoys that lure cyber attackers into
the network so that researchers can detect, deflect, and study hacking attempts to gain unauthorized access. Typically, a honeypot
will present itself on the internet as a potential target for attackers, such as a server or other high-value asset, and it will inform
and notify the defenders if unauthorized access attempts are made. Honeypots detect intruders before damaging or stealing data
by taking proactive measures on the internal network. Traditional botnet capture methods include on-site forensics, user reporting,
and vendor exchanges. The traditional approaches are typically manual.

Due to this, we developed a lightweight medium-interaction honeypot system comprising four components: remote control
module, simulation module, log module, and IoT-based sandbox. We collect multiple attack features from our honeypots, including
attack time, weak password attempts, protocol, commands, etc. Fig. 4 shows the overall structure of the honeypot system.

The CPUs of today can operate at different speeds thanks to many technologies, including Dynamic Frequency Scaling (DFS),
Dynamic Voltage Scaling (DVS), and Voltage and Dynamic Frequency Scaling. We adopt DVFS to recommend suitable clusters
within the cloud network. We can approximate the power-frequency relationship with a nonlinear and each level of productivity
for Honeypots [22].

We formalized the honeypot service deployment process: The honeypots are sorted based on DVFS. We consider several virtual
machines (VMs) and PMs in the data center, including 𝑁 hosts. The initial VM is created on these hosts. 𝑄 is a set of 𝑚 vectors
6
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Table 1
Three types of honeypots.

Type Simulation target

Protocol-based

Universal plug and play
Server message block
Open network video interface forum (ONVIF)
Network time protocol (NTP)
SSH/Telnet
Transmission control protocol
User datagram protocol
Connection-less lightweight directory access protocol
GPRS tunnel protocol
Ubiquiti discovery protocol
Advanced device discovery protocol

Vulnerability-based CVE-2013-6117 (DHDVR)
Netis backdoor of 53413 port

Application-based

Domain name system (DNS)
OpenVPN
Mail
Microsoft SQL server (MSSQL)
MySQL
Redis
Memcache

(m denotes the resources per host). 𝑁 consists of hosts such as 𝑛𝑖, where 𝑞𝑖 = (𝑞𝑖1, 𝑞𝑖2,… , 𝑞𝑖𝑚) represents the Quality of Service
(QoS) values of the VM resources requested. 𝑊 = (𝑤1, 𝑤2,… , 𝑤𝑚) is the priority vector over the resources. The VM allocation unit
determines the 𝑅𝑖 classification value for each 𝑛𝑖 after receiving the priority vector. Also, we create the initial VM on the host and
have the appropriate amount of usability, with no more than two primary virtual machines created on it.

4.1.1. Simulation module
As discussed in Sections 2.1 and 3.1, the main attack surfaces in an IoT environment include obsolete versions of protocols,

vulnerable applications, and firmware. To this end, we design medium-interaction honeypots with corresponding vulnerability attack
surfaces. The simulation module is developed to obtain the trust of attackers. In general, we present three honeypots to simulate
different vulnerable IoT-related targets with fidelity maintaining strategies. Table 1 shows the details of each simulation type.

The protocol-based honeypots simulate the IoT-related protocols. For example, UPnP (Universal Plug and Play) includes a set of
network protocols (such as SSDP and SOAP) for home network discovery and device connection. Attackers first exploit the SSDP
rules by requesting the SOAP port 1900 for accessible URLs to remote login. Therefore, we adopt WSGI to parse the requests and
extract the ST field (used to store device type). We then recurrence the vulnerability of SSDP and SOAP to simulate UPnP. The
vulnerability-based honeypots simulate vulnerable devices by deploying the execution environment with exposed vulnerabilities. For
instance, CVE-2013-6117 is exposed on Dahua web-enabled DVRs. By default, these devices communicate with an administrative
service on TCP port 37777. To enhance the fidelity of honeypots, we simulate it by deploying the firmware of Dahua DVR of version
v2.608 in the QEMU virtual environment. In this way, attackers can send a set of crafted Proof Of Concepts (POCs) to trigger the
remote commands. Application-based honeypots utilize specific applications to attract IoT attacks. These honeypots can also capture
the unknown CVEs because they deploy real-world vulnerable applications with embedded web services.

Besides, we present several strategies to prevent hackers from identifying our developed honeypots: First, we customize the
QEMU configurations on each honeypot to ensure the hardware profiles (such as CPU and memory) similar to the real IoT devices.
Second, some attackers probe whether the current environment is virtual. For example, they use Linux commands such as dmidecode
-s system-product-name and dmesg ⏐ grep -i virtual to check the system attributes, which could expose the virtual machine information.
Therefore, we redefine aliases of these commands in /etc/profile to change the returned information. Third, we modify the system
files (such as /proc/cpuinfo and /etc/modules.conf ).

As we said, we have considered the simulation by deploying the firmware of Dahua DVR v2.608 on QEMU. Honeypots that are
application-based are used to attract IoT attacks. Due to the embedded web services in these honeypots, it is possible to capture
unknown CVEs. The following tasks have been considered:

• Through deploying an execution environment with exposed vulnerabilities, vulnerability-based honeypots simulate vulnerable
devices.

• On web-enabled Dahua DVRs, for example, CVE-2013-6117 is exploitable. A TCP port 37777 is used by default for
communication with administrative services.

• We simulate honeypots in QEMU using firmware of Dahua DVR v2.608 to enhance their fidelity.
7

• As these honeypots deploy real-world vulnerabilities with embedded web services, they can detect unknown CVEs.
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4.1.2. Log module
We assume that any connections to our honeypots are suspicious because the honeypot has no production value. Therefore, all

etwork traffic to and from the honeypots is recorded. To this end, we deploy an Apache server on each honeypot as a log module.
o prevent it from being controlled by attackers, the simulated service port is modified to a random idle port, and the Apache public
ort is modified to the default port of the simulated service. Any attempt to connect the public port will be sent to the simulated
erver and saved as log files. The local logs are sent to the remote server every 10 minutes for backup.

According to our observation, the log server stores at most 200,000 logs per hour for each honeypot to achieve a trade-off
between performance and efficiency. Specifically, we collect the system information (including CPU usage and memory usage),
suspicious process (removing the necessary processes of honeypot), and traffic information (captured by tcpdump commands).

4.1.3. IoT-based sandbox
Although we only focus on the temporal features of the attack activities, we build a sandbox environment called IoTBox in the

honeypot system to provide a dynamic analysis environment of the executable samples in future work. We implement it based on
Detux, an open-source project. We use the QEMU hypervisor to emulate various CPU architectures, e.g., x86, x86-64, ARM, MIPS,
MIPSEL.

To date, we can execute the file type of elf and exe. We implement a background program to record the system calls and runtime
traffic. The traffic information is saved into .pcap files.

4.1.4. Remote control module
Honeypots deployed on the public network risk being invaded by attackers. To avoid this, the remote control module implements

a communication monitoring mechanism to avoid becoming a new botnet incubator.
The communication monitoring mechanism sends heartbeat packets to the simulation module every 10 minutes to check honeypot

survival status. A heartbeat packet includes the timestamp, a honeypot’s IP source, and servers’ CPU usage. We assume a threat has
intruded on the honeypot if any exception occurs. The control module will terminate all active sessions and recover the honeypot
to the original version. Then, the suspicious IPs are added to our block list for 30 minutes (because most malware-based attacks
could finish in 30 minutes).

.2. Data preprocessing

There are two challenges in processing attack records. Firstly, the massive raw records can rapidly overwhelm security analysts.
econdly, many repeated and incomplete attack events are captured in the wild. According to our observation, 16.42% of attack
essions are incomplete due to network or unexpected interruptions. 74.88% of all are less informative bots (IPs) with less than 30
ccurrences. Therefore, we first integrate the captured data by standardizing the temporal and geographic information. We then
emove the bots with less than 1000 records.

Statistically, about 23% of attackers attempt to detect whether the host is controlled by other attackers and terminate other
ontrol processes. For example: an attack record discovered on February 2, 2021: ps -ef ⏐ grep -v ‘ssh’ ⏐ grep ’[M]iner’ ⏐ grep -v ‘perl’
awk’if ($3 == 1) print $2’ ⏐ xargs kill -9;/bin/busybox MIRAI. These behaviors indicate that a bot exhibits different attack patterns

rom organizations or individuals. Therefore, we treat the infected devices that access multiple honeypots as different bots.

Algorithm 1 Attack Event Simplification Algorithm
Require: raw attack log base 𝐵𝑅
nsure: simplified bot attack log base 𝐵𝑆
1: for all 𝑏𝑜𝑡 in 𝐵𝑅 do
2: s ← get the session sequence of 𝑏𝑜𝑡
3: L ← get the interval list of 𝑠
4: D ← fit the interval distribution of 𝐿
5: mean_duration ← get the mean value of 𝐷
6: model ← DBSCAN(eps = mean_duration, minPts = 1)
7: clusters ← model.fit(s)
8: for all c in clusters do
9: 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑐 ← get the centroid of 𝑐

10: add centroid to simplified sequence 𝑠′ of bot
11: add 𝑠′ to 𝐵𝑆
12: end for
13: end for
14: return 𝐵𝑠

According to our observations, 95% attackers launch numerous repeated attacks to ensure a successful hit at short notice.
herefore, all attack activities in a botnet are mutually density-connected. Besides, if an attack activity is density-reachable from
ome cluster activities, it is part of the cluster as well. We propose an improved DBScan algorithm shown in Algorithm 1 to simplify
8
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the attack events. This algorithm works as follows: The session sequence of each bot is translated from the raw data by aligning on
the timeline. We calculate the interval values between each adjacent session. Because network attacks are simultaneously affected
by multiple random factors (such as attack cost, device vulnerability, etc.), the attack interval follows a normal distribution. We fit
the session interval sequence to a normal distribution by Eq. (4) and compute its mean value 𝜇.

𝑓 (𝑥) = 1
√

2𝜋𝜎
exp

(

−
(𝑥 − 𝜇)2

2𝜎2

)

(4)

The DBScan algorithm determines whether the nodes are density-reachable by customizing the eps and minPts parameters. The
ps parameter is used as the distance threshold in neighborhood judgment. The minPts parameter is used to limit the minimum
ession number a cluster contains. We dynamically assign 𝜇 to eps and 1 to 𝑚𝑖𝑛𝑃 𝑡𝑠.

.3. Temporal feature modeling

After our botnet clustering endeavors, each cluster represents a botnet with a specific attack pattern, consisting of the bot
equence fragments (defined in Section 2.1) separated by control periods. Following the intuitive observations: bots tend to show
ime-related attack patterns within the same botnet. We propose a botnet clustering algorithm 2 based on control period
etection to address the Q2 raised in Section 1.2, including four steps:

The first step (lines 2–4) presents the initial cluster procedure. Following literature [7], we first train the Bayesian probabilistic
etwork model with Gibbs sampling for 1000 iterations to infer the model parameters, 𝑊 ,𝐴, 𝜆0𝑛 (defined in Eq. (1)). We then obtain
he latent influence between every two bots. Finally, we use the obtained intensity as the cluster weight to obtain the initial botnet
lusters. Two sequences are similar when the intensity value exceeds 0.95 (set by user). Note that the botClusters in the third line
ontains bots with the temporal close patterns.

The second step (lines 6–9) aims to simplify the burden of data analysis. To this end, we select a representative from each initial
luster. We used a high threshold to limit the tightness of each cluster in the first step. Therefore, the representative selected at this
tep can present the attack characteristics of the whole cluster. The first step’s clustering process ensures that each cluster’s bot is
ighly consistent. The intensity function (defined in Eq. (1)) quantifies the temporal relationship between two bots, which we use as
eights. We calculate the weight between every two bots in the same cluster. Finally, the maximum average weight bot is selected
s the cluster’s representative.

The third step (lines 11–21) aims to recursively mine the similarity among temporal fragments. We combine the representative
n pairs and find the combination with the longest matching period. To this end, we map this problem to the longest common
ontinuous substring (LCS) problem [23]. We adopt a dynamic sliding window strategy: The window size is initialized as X days,
nd the intensity value of each temporal subsequence window is recorded each time. The window expands Y days for each iteration
ntil the entire observation window is traversed. Then, the window is initialized as X and moves Y days along the time axis. In this
ay, we find the longest similar periods among all the similar subsequence pairs. Based on the referring result, we divide the attack
vent sequence of each bot in the cluster. When the length of a sequence fragment is less than Z minutes, we believe that the length
s not enough to express the long-term attack mode. The division procedure ends. After executing the third step, the algorithm will
ump to the second step (the fifth line) and repeat all the above procedures until there is no division sequence. Note that X, Y, and

are respectively initialized to 30, 10, and 50 in this case (or another value defined by network administrators).
The fourth step (lines 23–24) aims to recombine the mined fragments that should be time continuous. Since the above three

teps will be repeated multiple times, the continuous-time sequences may be separated. Whether two fragments can be recombined
s based on three rules: (1) if these two fragments belong to the same IP; (2) if these two fragments access the same honeypot; (3)
f there are no other cluster members between their timestamps in the timeline.
Computational concerns. Our proposed method consists of five parts: data simplification in Algorithm 1 and the four steps in

lgorithm 2. The first and fourth parts are serial relations, and the last four parts recursively according to the threshold condition
𝑋, 𝑌 ,𝑍). Since our proposed method is oriented to numerous and uncertain real attack records, only the approximate computational
omplexity is given here. Furthermore, assuming that the total data size is 𝑁 , the space complexity of our proposed algorithm is
pproximate 𝑂(𝑁).

According to the above algorithm description, the first part has the same complexity as DBSCAN, which needs to find the 𝑒𝑝𝑠
eighbors of a specified data from the database. The scanning process can be completed in log time through optimization strategies
such as R trees), and the time complexity reaches 𝑂(𝑁 log(𝑁)). The second part is to estimate the Hawkes process parameters

by Bayesian sampling. Assuming that the amount of data after simplification is 𝑁 ′, it has been proved in Reference 3 that the
time complexity can reach 𝑂(𝑁 ′ log𝑁 ′) after parallelization. In the third part, we here select a graph-based clustering approach
following [7] which is based on the influence weight matrix inferred by the attacker activity model. The links between the considered
attackers and the remaining ones need to be traversed through 𝑊 in the clustering process. The worst case is that every two attackers
are not in a cluster, and the complexity reaches 𝑂((𝑁 ′)2). In the fourth part, the algorithm generalizes the control period inferring
the problem as an LCS problem, and the time complexity of the attack sequence comparison for each window is 𝑁 ′ log𝑁 ′. Since the
number of windows is reduced to a constant 𝐾 by the constraint of the given threshold 𝑋, 𝑌 ,𝑍, the overall time complexity is still
𝑂(𝑁 ′ log𝑁 ′). In the fifth part, we need to recombine the attack time fragments that have been clustered. The number of clusters
and fragment lengths can be regarded as constants.

In summary, the approximate time complexity of our proposed method is defined in Eq. (5):

𝐹 (𝑁) ≈ 𝑂(𝑁 ⋅ log(𝑁)) + 𝑇 [2 ⋅ 𝑂(𝑁 ′ ⋅ log𝑁 ′) + 𝑂((𝑁 ′)2)] (5)

where 𝑇 is the complexity required for recursion. Experiment 1 shows that 𝑁 is an order of magnitude larger than 𝑁 ′, so 𝐹 (𝑁) is
9

approximately 𝑂(𝑁 ⋅ log(𝑁)).
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Algorithm 2 Dynamic Sliding Window-based Control Period Inferring Algorithm
Require: attack matrix seqIpMat,
nsure: the final fragment in the dictionary is tagged as part of a botnet fs final fragment result marked with botnet label in

dictionary fs
1: // Step 1: Attack Pattern Cluster Model
2: 𝐴,𝑊 ← train parameters of Bayesian model by Gibbs sampling with Eqs. (2) and (3)
3: 𝑏𝑜𝑡𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ← the Bayesian model can be used to obtain the cluster results
4: function InferFragment(botCluster)
5: // Step 2: Representative Selection
6: for all cluster 𝑐 in 𝑏𝑜𝑡𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
7: Find the bot 𝑏 in 𝑐 whose mean intensity value with other bots is the largest
8: 𝑎𝑑𝑑 𝑏 𝑡𝑜 𝑟𝑠
9: end for

10: // Step 3: Dynamic Window Sliding
11: for each two representatives combination (𝑏𝑖, 𝑏𝑗 ) in 𝑟𝑠 do
12: (𝑏𝑖.𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑏𝑗 .𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) ← get the sequences of (𝑏𝑖, 𝑏𝑗 )
13: (𝑓𝑖, 𝑓𝑗 ) ← get the longest similar subsequence pair of (𝑏𝑖.𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑏𝑗 .𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒)
14: add (𝑓𝑖, 𝑓𝑗 ) to fragment candidate list 𝑓𝑟𝑎𝑔_𝑐𝑎𝑛𝑑𝑖𝐿𝑖𝑠𝑡
15: end for
16: 𝑓𝑠𝑡𝑎𝑟𝑡,𝑠𝑡𝑜𝑝 ← find the longest fragment in 𝑓𝑟𝑎𝑔_𝑐𝑎𝑛𝑑𝑖𝐿𝑖𝑠𝑡 ∕∕[𝑠𝑡𝑎𝑟𝑡, 𝑠𝑡𝑜𝑝] is the period of 𝑓
17: if the length of 𝑓𝑠𝑡𝑎𝑟𝑡,𝑠𝑡𝑜𝑝 > 𝑍 then ∕∕𝑍 is the minimum value of fragment
18: divide 𝑟𝑠 based on time period [𝑠𝑡𝑎𝑟𝑡, 𝑠𝑡𝑜𝑝] as 𝑟𝑠𝑛𝑒𝑤
19: 𝑓𝑠 ← mark 𝑟𝑠𝑛𝑒𝑤 with botnet labels
20: InferFragment(𝑟𝑠𝑛𝑒𝑤)
21: else
22: // Step 4: Merge with Condition
23: 𝑓𝑠 ← merge fragments which are time contiguous
24: return fs
25: end if
26: end function

5. Results and findings

In this section, we first present a data-driven analysis of our observation period. By analyzing the experimental results, we present
ome interesting findings. We evaluate our method on a large-scale dataset. All experiments are run on an Intel(R) Xeon(R) CPU
5650 @ 2.67 GHz with four clusters of 128 GB memory.

.1. Dataset statistics and insights

In this section, we answer the Q3 raised in Section 1.2. To collect enough IoT botnet records for analysis, we developed 20
oneypots on 56 physical servers to continuously capture attack activities from November 2019 to September 2021, which will
e updated in the future. Due to the limited equipment resources, we deploy all types of honeypots on each server by docker
irtualization technology. In total, we deployed 462 honeypots distributed in 22 countries. To ensure that honeypots can collect
ttack activities worldwide, we deploy honeypots in Asia, Oceania, America, and Europe. The geographic attack distribution is
hown in Fig. 5.

According to our observation, our deployed honeypots are targeted by bots worldwide. For example, on average, each honeypot
aptured attacks from 162 countries in March 2020. China faces the most severe security threat globally, accounting for 23.5% of
ll bots, followed by America (11.4%), Brazil (7.6%), and Burma (5.1%). Finding 1: China faces the most cyber threats all over
the world, followed by America, Brazil, and Burma.

To exclude the inoffensive sniffing behavior from other security organizations, we search the bot IPs in VirusTotal and find that
86% of them have been marked as malicious. The rest of 14% benign traffic is removed from our collection. All IoT botnet attacks
perform weak password attempts as the first step of intrusion. Included among the hacked (and vulnerable) passwords are default
passwords used by manufacturers that give the appearance of IoT security layers. Table 2 shows the top 5 ranked username-password
combinations and the related devices.

According to our statistics, the actual outcome in these situations is a larger attack surface of poorly defended endpoints for
malicious actors to penetrate easily. Different botnets have precise requirements for the target device type. A clear target can
significantly reduce the cost of vulnerability exploitation. We observe that bots on the same network segment try specific username-
10

password combinations. For example, hosts under the 144.47.34.1/24 network segment only tried the password combination
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Fig. 5. Distribution of attacker countries. The black star in this figure represents the location where we deploy the honeypot servers.

Table 2
Top 5 ranked username-password attempts.

Rank Username-password Related target (Partial)

1 root-admin Zcom wireless
2 root- CellPlex, ADSL, AirStation, Equaliser4, Cyclades-TS800, Shiva, Juniper, Arkeia
3 root-default Micronet Access Point
4 root-vizxv Dahua DVR
5 root-t0talc0ntr0l4! ThinkPHP, Control 4

root/t0talc0ntr0l4! in January 2020, which is the default password of Control 4 smart devices. Finding 2: Weak password is the
primary attack surface for IoT attacks, providing essential guidelines for analysts to classify botnets.

39.5% of attack records are incomplete due to network reasons or unexpected interruptions. After removing the incomplete
sessions, we obtain over 768, 742, 999 attack sessions during the 22-month observation period. Besides, according to our observations,
72% of attackers launch numerous repeated attacks to ensure a successful hit at short notice. For example, we captured attack traffic
from 5.188.86.0 /23 on September 29, 2019. The attacker utilized 13 hosts on this network segment to launch 8,374,200 repeated
SSH access requests within 10 min, with a success rate of only 4%. The highest frequency reaches 4450 visits per second. Because
honeypots are not productive, we believe such behavior contains no DDoS intentions. Finding 3: The attackers of the Internet of
Things tend to perform repeated attacks in massive numbers to ensure a successful hit within a short period.

Based on the attack integrity discussed in Section 2.1, we observe that 95.7% of the complete attacks only performed scanning
behaviors. Among these scanning behaviors, 38% of them utilize our honeypots as redirectors to access another attack target by TCP
port forwarding. Most redirect targets have clear production value, including public facilities IPs, pornographic websites, official
websites of public platforms, etc. Therefore, we believe that this attack is a DDoS behavior with apparent benefits. A typical example
is that we captured 320,000 visits redirected to Yandex on June 21, 2021. In the same year, the attack was successively exposed [24],
which verified our findings impliedly. Finding 4: IoT scanning behaviors are often DDoS-driven. By tunneling TCP, IoT botnet
organizers expand DDoS attacks and avoid traceability.

After the bot logs into the honeypot, only 2.9% of them reach the command execution stage for further control. Among these
executed commands, after excluding more than 87% of repetitive command sequences and invalid commands containing only ‘‘shell’’
or ‘‘/bin/busybox’’, the length of 98% remaining commands are in [7, 15].

Besides, there are mainly two kinds of malware-related attacks. The first kind is to download samples directly from the C&C host
using the wget command. Most C&C servers are provided by well-known suppliers, such as AWS or Vultr. The second is the fileless
attack. Attackers send the base64 source code of malware to victims and then decrypt it before execution. Fig. 6 is an example of
this attack. Finding 5: With 15 Linux-based commands, most malicious attempts are implemented as automated scripts.

The COVID-19 began to spread in December 2019, coinciding with this paper’s observation period. In Fig. 7, we count the COVID-
19 case number and our captured attack activities over time. A hacker tries to monitor (and capture) all the system’s network traffic
during an attack analysis. The hacker can gather more information about the network by analyzing that traffic. In other words,
breaching users’ systems or cracking passwords is not a primary objective for a hacker.

Obviously, with the two epidemic outbreaks in 2020 December and 2021 March, the number of attacks reached a peak almost
simultaneously. These statistical results imply that the epidemic outbreak suddenly increased attack surfaces on government services,
online education, online shopping, and healthcare as the global workforce transitioned to a largely remote operations model, botnet
organizers. Not only did the number of attacks increase, but so did their speed and scale. As the global workforce transitioned to
a largely remote operations model, attackers get more opportunities to invade. Finding 6: A positive correlation exists between
IoT attacks and the trend of COVID-19.
11
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Fig. 6. An example of fileless attack.

Fig. 7. Comparison of trends in capturing attacks and COVID-19.

The captured data includes 2, 920, 862 different bot IPs, of which 66% accessed more than one honeypot. The most frequent bot
IP is captured by 104 honeypots in 5,295,301 sessions throughout the observation period. Therefore, without considering the control
period of different attackers, the botnet analysis will bring misleading results to researchers. Note that we treat bots controlled by
different botnets as different bots. Finding 7: The compromised IoT devices will be controlled in succession or simultaneously
by multiple botnets.

5.2. Evaluation of botnet inference

To evaluate our method and address the Q2 raised in Section 1.2 by the following perspectives with three experiments.
RQ 1: How effective is our proposed attack event simplification algorithm?
RQ 2: How does our performance compare with traditional methods?
RQ 3: Are there any representative random variables that can verify the effectiveness of our botnet analysis result?

Experiment 1 (RQ 1). The evaluation criteria in this set of experiments is the simplification rate 𝑟𝑇 defined in Eq. (6).

𝑟𝑇 =
∑𝑛=1

𝐶 𝑐𝑖
𝑁

(6)

here 𝑁 donates the total session number, 𝑇 donates the observation period (day), 𝐶 donates the cluster set of the algorithm result, and 𝑐𝑖
onates the removed session number of the 𝑖th cluster. Note that we manually verify that the sessions contained in 𝑐𝑖 are indeed duplicates
of data within a short period of time. Our honeypot distribution is relatively geographical dispersive. Therefore, the IPs captured by more
than one honeypot tend to be controlled by multiple botnets. Besides, analyzing large-scale data has a tremendous computational burden on
the server. Therefore, we filter out IPs captured by only one honeypot whose cumulative attack number is less than 5000. In this way, we
obtain 200, 094, 875 attack sessions that meet the above conditions to evaluate our algorithms.

We use Algorithm 1 to filter repetitive attacks within a short period. Note that this procedure cannot be simply achieved by
de-duplication because our goal is to remove the extra repetitive behaviors of the attacker in a short period to ensure a successful
hit. Therefore, to avoid undermining the integrity of attack behaviors, we treat those not repeated in a short period as different
12
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Fig. 8. Comparison of four experimental examples of algorithm 1. The red bar is before simplification processing, and the blue side is after processing.

Fig. 9. Comparison between attack cumulative counts of clusters in the initial step and the final result.

attacks. After simplifying the records, we removed 87% of repetitive attack sessions. Furthermore, manual verification shows that
𝑟100 reaches 97%. Manual validation shows that the filtered records are identical password attempts or port scans within 3 s. Similar
behaviors separated by a longer interval (such as identical password attempts over 10 min) are preserved. We randomly select the
attack sequence of 4 IPs (partial) and present the experimental results in Fig. 8.
Answer: Experimental results show that the algorithm reduces the noise data by 87%, without destroying the original attack patterns.

Experiment 2 (RQ2). How does our performance compare with traditional methods? In this experiment, we evaluate in two ways: (1)
by intuitively observing the distribution of attack counts of different botnets in the results. (2) by evaluating the classification accuracy of
simulated experiments in a controlled environment to verify the unsupervised real-world scenarios clustering effectiveness.

After data simplification, we conduct our proposed algorithm 2 on the well-organized dataset. Due to limited computing
resources, we verify the effectiveness of our algorithm by randomly selecting data from a honeypot. The final cluster result is
the botnet referring result, consisting of bot fragments.

In the first step of our algorithm, we initially divided 128,737 attack sessions into 47 clusters through the Hawkes model. Since
we select representatives of each cluster to represent the attack pattern of each botnet, the division of the control period of the
representative bot can offer a significant guide for other bots in the cluster. After 11 iterations of segmentation, we successfully
clustered these fragments into 121 clusters. Statistically, 89% of bots exist in different botnets. 74% bots are divided into less than
10 temporal fragments by different control periods. A Dutch bot (5.188.86.165) has 21 temporal fragments, which is the most. Fig. 9
shows the comparison of five examples’ cumulative counts. The figure shows that our method presents botnet inference based on the
existing cluster results of the traditional method. The other cluster botnets exhibit significantly different cumulative count growth
rates.

Since the captured attack data is unlabeled, we design a set of controllable experiments to verify the effectiveness of our
unsupervised learning method. According to the distribution of captured records, we design the following five random variables
to simulate the uncertainty in the real-world attack behaviors of different botnet volumes for 30 days: (1) DCnt: attacks number
launched per day; (2) DuAt: duration of each attack (minute); (3) VstFre: number of visits in a second per attack (every hundred
times) (4) CelPro: the cancel probability of each visit; (5) Delay: delay time per visit (seconds). The attributes of the five simulated
botnets are shown in Table 3. Note that the value range can be changed according to different user needs.

We assume that the control periods of different botnets are not overlapped in this experiment. Therefore, we randomly remove
the overlap activities and initialize the starting timestamp to Unix time. Fig. 10 shows five simulated botnets’ activities on timeline.
13
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Table 3
Simulated botnet properties.

Scale DCnt DuAt VstFre CelPro Delay

A 1000 [24, 48] [30, 60] [10, 90] 0.1 [1, 2]
B 1000 [4, 8] [10, 60] [1, 3] 0.6 [1, 10]
C 100 [0, 2] [30, 60] [5, 10] 0.3 [0, 1]
D 10 [0, 2] [30, 60] [5, 10] 0.3 [0, 1]
E 10 [0, 1] [30, 60] [5, 10] 0.3 [0, 1]

Fig. 10. Simulated botnet activities.

Fig. 11. Comparison result in controlled experiments. Different colors indicate different botnets.

In this way, all attack records in this controlled experiment are assigned known botnet labels. Experimental results show that
ur final clustering accuracy can reach 92%. As a comparison, the traditional method can only cluster the entire controlled host to
et a macro-similar result without distinguishing different botnet control periods. Therefore, their description of the botnet attack
atterns is inaccurate. The cluster results shown in Fig. 11 demonstrate that our algorithm can distinguish most control periods.
nswer: Comparison result shows that the traditional work can effectively distinguish macroscopically attack patterns. However, our
lgorithm presents a more fine-grained inference from the perspective of the control period. Due to the objective of removing the attacker’s
xtra repetitive behavior in a short amount of time, this procedure cannot be accomplished through de-duplication scripts. When a behavior
oes not repeat in a short period, it is treated as a different attack. Furthermore, Attacks increased in both number and speed, as well as in
cale. As most of the global workforce is now conducted remotely, attackers have more opportunities to infiltrate.

xperiment 3 (RQ3). Are there any random variables that can prove the effectiveness of our botnet analysis result?

In this set of experiments, we measure the clustering effect by comparing the patterns of several variables in different clusters.
14

hese variables can be used as essential guidelines for botnet identification because they meet the following two conditions:
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Fig. 12. The cumulative attacks number distribution of botnet clusters (Partial).

Fig. 13. Session interval of bot (Partial).

1. The same random variable results in different distributions across two different botnets;
2. The same random variable results in highly similar distributions across two different hosts employed by the same botnet.

We observe numerous bots on the same network segment in each cluster, and the attacks of these bots are almost all repetitive
behaviors. We randomly select one bot in each network segment to present in the following figures to show the results clearly. We
enumerate the distribution of outcomes for the following four variables:

Cumulative number of attacks is used to represent the total number of a bot attacking a honeypot in a period. Fig. 12 shows
the cumulative attack number of eight clusters.

The slopes of monotonically increasing broken lines represent attack frequency changes over a while. The experimental results
show that different clusters have intuitively distinct distribution patterns. The attack frequency change rate of bots in the same
cluster is the same in the same period. Besides, different control periods for the same IP also show significantly different patterns.
For example, the attack frequency of 45.227.255.204 when controlled by Botnet 8 12(h) is slower than when it is controlled by
Botnet 7 12(g).

Session Interval of Bot indicates the compactness of the bot’s attack in the same botnet, which is defined as follows: (1) assume
Session A and Session B on host H belong to the same botnet. (2) Session A ends at time 𝑡1, while session B starts at time 𝑡2. (3)
𝑡2 − 𝑡1 is a random variable, defined as the Session Interval of Bot. Fig. 13 shows the distribution of Session Interval of Bot of eight
clusters.

The experimental results show that the period for bots in the same network segment to be occupied is consistent, implying that
the attacker uses similar methods to control after invading the devices under the unified LAN. Different network conditions result
15

in different distribution patterns. Besides, different controlled periods of one bot show different variable distributions.
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Fig. 14. Session count of bot (Partial).

Fig. 15. Control duration of bot (Partial).

Session Count expresses the adequacy of the botnet’s utilization of bots. We can intuitively believe that bots with more sessions
onsist of more behaviors. Fig. 14 shows the distribution of the Session Count of Bots.

Experimental results show that some attackers launch more sessions to achieve their goals, such as botnet 2 in Fig. 14(b). The
istribution of this variable in each network segment still shows apparent regularity, implying that the attacker’s intrusion strategies
end to traverse the available devices under the entire LAN.
Control Duration of Bot represents the control time of each bot under their botnets. Since our observation period is long enough

22 months), our experimental results can be considered to cover most of the botnet’s life cycle. The results show that most botnets
ontrol bots for 1–70 days.

The results shown in Fig. 15 indicate a gap in the ability of different botnets to control bots. As mentioned earlier, botnet
rganizers have competitive relationships in the face of attractive and fragile devices. Therefore, this variable can be an essential
uide for botnet tracking and classification.
nswer: Clustering results show that the same variable (Cumulative number of attacks, Session Interval of Bot, and Control Duration of
ot) results in different distributions across two different botnets. Furthermore, the same variable results in highly similar distributions across
wo different bots controlled by the same botnet.
inding 8: IoT botnet attacks toward different LANs present different patterns.

. Conclusion and future work

IoT botnet attacks are frequently launched in the real world. With the outbreak of COVID-19, attackers tend to organize
ifferent botnets that target the same victim host competitively or cooperatively. Furthermore, monitoring and analyzing large and
16
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complicated networks is still challenging. This study presents a data-driven study to analyze IoT botnet and attack patterns. To this
end, we first deploy 462 honeypots and simplify the burden of large-scale data processing. Besides, we propose a recursion-based
novel algorithm, which identifies botnets based on control periods. Experimental results show that our method outperforms the
traditional method to infer the control period based on the temporal features. Furthermore, we reveal eight exciting findings that
can provide a critical guideline for botnet analysis. The limitation of this study is that the overlapping control period might affect the
accuracy. Therefore, fine-grained solutions should be designed to identify the attacks in an unsynchronous manner in future work.
Our data-driven research mainly focuses on producing new findings based on a control period perspective rather than a real-time
system. Therefore, our next step will consider system throughput, utilization, overhead, and sensitive analysis.
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