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Abstract

This paper introduces new methods of modeling and analyzing social networks that emerge in 

the context of disease spread. Four methods of constructing informative networks are presented, 

two of which use. static data and two use temporal data, namely individual citizen mobility 

observations taken over an extensive period of time. We show how the built networks can be 

analyzed, and how the numerical results can be interpreted, using network permutation-based 

surprise analysis. In doing so, we explain the relationship of surprise analysis with conventional 

network hypothesis testing and Quadratic Assignment Procedure regression. Surprise analysis 

is more comprehensive, and can be without limitation performed with any form(s) of network 

subgraphs, including those with multiple nodal attributes, weighted links, and temporal features. 

To illustrate our methodological work in application, we put them to use for interpreting networks 

constructed from the data collected over one year in an observational study in Buffalo and Erie 

counties in New York state during the 2016–2017 influenza season. Even with the limitations in 

the data size, our methods are able to reveal the global (city- and season-wide) patterns in the 

spread of influenza, taking into account population mobility and socio-economic factors.
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1. Introduction

The need to understand and control the transmission of communicable diseases has been an 

acute challenge, presented to society by the dangers of epidemic outbreaks of potentially 

deadly viruses such as the 1918 influenza virus, H1N1 virus of 2009, and the currently 

active Ebola and COVID-19 viruses [1,13,22,25]. Viruses such as influenza, or flu, that 

activate seasonally offer an opportunity for observational research, as their resurgence is 

periodic.
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Empirical studies that take a detailed view on disease propagation present an invaluable 

source of knowledge about the predictors of epidemics, particularly in densely populated 

areas. However, such studies are extremely rare due to high costs and resource needs.

Indeed, while hospitals and doctor offices track both the number of patients treated and the 

severity of proliferating viruses, preparation for and management of an epidemic requires an 

understanding of how the day-to-day behavior of potential patients affects their propensity 

of catching a virus. In order to back up any policy-making insights with real world, up-to-

date empirical evidence, there is a need to track the dissemination of contagious diseases 

before they reach an epidemic level, and also, the need for methods that enable statistically 

valid analyses of complex datasets. On the data side, federal funding agencies, and in 

particular NIH, have begun to support large-scale data collection endeavors, capable of 

capturing individual mobility-based trends in disease transmission. However, given the high 

complexity of such datasets – longitudinal nature coupled with the obvious “network” type, 

– special analysis approaches are needed to fully unlock their potential to generate insights, 

both predictive and policy-making oriented ones.

Social network analysis offers a set of modeling and methodological approaches that can 

help study the transmission of flu-like illnesses. The network perspective on events and 

behavior can be useful at the individual level (individual-centric) as well as the spatial 

level (location-centric), to capture the relationship between disease spread and human 

mobility [3,6,9,28]. However, as this science is still fairly new, it keeps offering room 

for further innovation with each newly explored application and with the added data 

complexity-dependent challenges.

This paper enriches the methodological toolbox for complex temporal data analysis, in 

particular in social network analysis, to allow one to reveal evidence-based insights about 

the correlations between the dynamics of disease spread over city regions and the socio-

economic descriptors of these regions.

Our contributions take place in three areas, with the main methodological advances 

rooted in the creative uses of network formation and permutation testing principles. 

First, given the travel paths of individuals, we present four ways for building/defining 

network links, two of which construct links temporally. Second, we explain and expand 

permutation-based network hypothesis testing methodology, called surprise analysis, to 

allow for simultaneously testing multiple network hypotheses, on both static and temporal, 

directed and undirected weighted networks featuring multiple attributes. This new type of 

multi-hypothesis testing capitalizes on seeing which hypotheses hold at the same time, 

thus allowing for interesting and convincing interpretations of results. Lastly, we illustrate 

how these methods can be used to evaluate the impact of population mobility-based and 

socio-economic factors on influenza proliferation.

In addition to extensive methodological explorations, where we present new, application-

oriented data processing – network-building – methods, and statistical analysis methods 

in theory, we also showcase the applied potential of these methods through working with 

a recently collected real-world dataset. Specifically, we use the data from a large-scale 
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observational study conducted in Erie and Niagara counties in Western New York during 

the 2016–2017 influenza season. The collected high-resolution, i.e., individual-level, data 

on the transmission of flu-like illnesses and human mobility, achieved through sophisticated 

tracking coupled with population surveys, were post-processed to inform the construction 

of a weighted attributed network of Census block groups. Both the observed travel patterns 

and publicly available Census data were used to express the relationships between a set 

of Census block groups within the city of Buffalo, NY. We report the insights from the 

analyses of a number of static networks, as well as a series of time-periodic networks that 

comprehensively elucidate the global patterns of an epidemic influenza proliferation through 

a city within a full influenza season.

More specifically, our statistical analysis focuses on income and illness indicators as they 

relate to mobility patterns. We gathered Census data of block group income levels, as 

well as race and health insurance information. These data, coupled with the survey data, 

allow us to explore relationships between block group level attributes and travel to assess 

disease dissemination in Erie and Niagara counties in Western New York. An example 

of a hypothesis we test is, “The frequency of travel tends to be greater between block 

groups with the same level of illness.” Hypotheses in this form enable us to explore the 

relationship between human mobility and block group attributes to infer their effect on 

disease propagation.

This paper is structured as follows. Section 2 provides a review of relevant 

literature, specifically literature pertaining to epidemics and pandemics, dissemination of 

communicable diseases, permutation testing, and surprise analysis. Section 3 details the 

data processing methodology, which is divided into two parts: data manipulation and 

network-building. Section 4 presents our analytical methodology developments, focusing on 

surprise analysis. Section 5 presents the results from our illustrative explorations, organized 

by methodology type with surprise analysis at the core, and followed by interpretative 

discussions. Section 6 concludes the paper, offering directions for further research.

2. Literature review

Influenza-like illnesses affect a vast majority of people, across many countries and social-

demographics. In order to mitigate the harmful effects of such illnesses, both active and 

passive research studies in the United States continue to be conducted at the transnational, 

national, and state levels. Datasets created by the Census Bureau, Sentinel Surveillance 

System and individual research project surveys allow for flu-like illness spread to be 

evaluated as a network process. A number of methods to analyze the dependencies between 

processes on networks, and network node and edge characteristics fall under a broad 

umbrella of permutation-based analysis. Here, permutation or re-sampling of network 

elements can enable hypothesis testing, regression modeling and more ad-hoc types of 

analysis exploiting the concept of surprise. This prompts a review of the following topics: 

epidemics and pandemics, dissemination of communicable diseases, permutation-based 

analysis, and surprise analysis. Thus, this section is divided into four parts: Section 2.1 

provides a overview of the literature on epidemics and pandemics, Section 2.2 covers 
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dissemination of communicable diseases, Section 2.3 reviews permutation testing, and 

Section 2.4 describes the roots of surprise analysis.

2.1. Epidemics and pandemics

A lack of intervention and control over the dissemination of communicable diseases 

throughout a community can lead to the occurrence of epidemics, which can lead to 

pandemics if proper measures are not executed. Throughout history, we have witnessed 

a multitude of fervent disease spread cases at both the epidemic and pandemic levels, which 

has deservedly attracted much research attention. Most notable have been the influenza 

pandemics of 1918 and the H1N1 virus in 2009, the Ebola epidemic in Africa, and 

COVID-19 coronavirus pandemic in 2020 [1,13,22,25]. Historical, biological, chemical, and 

statistical studies have been conducted to better understand pandemics of the past (how they 

spread and what causes them) to inform future policy and intervention protocol in order to 

prevent similar disasters.

A study by Smith et al. [25] reveals that three of the most recent pandemics may have 

resulted from a sequence of reassortments among viruses previously found in humans and 

viruses that originate in the fauna, namely, in birds and swine [25]. Smith et al. conclude 

that pandemic level viruses are forming in stages through reassortment for years, before 

their existences come to affect people. They propose taking preventative measures to protect 

human society from such diseases. In the same vein, Gomes et al. perform a statistical 

analysis of the most recent Ebola epidemic and create projections for disease spread in 

Africa as well as other countries that have yet to be affected [13].

The objective of the above mentioned studies is to inform policy makers on the potential 

value of intervention protocols. There is much value in enriching this body of work, as it is 

foundational for preventive efforts.

2.2. Dissemination of communicable diseases

The dissemination of communicable diseases is studied both passively and actively, with the 

investigative efforts taking place at the state, national, and international levels. Such studies 

consider geographic, socio-demographic, and temporal factors as they relate to human 

interaction and mobility.

At the national level, observational studies on the effect of mobility in the spread of disease 

have been conducted worldwide, e.g., in China [28] and France [4]. In an observational 

(aka. passive, non-experimental) study, Charaudeau et al. use data from the French Census 

to explore the affects of mobility on the spread of flu like illnesses [4]. Home and work 

locations as well as travel times are used to describe mobility patterns. They find that the 

peak flu season cases are clustered in densely populated areas and that commuter travel 

flows are highly correlated with the spatial spread of disease. However, their work does not 

consider socio-demographic factors and their effects. Similarly, Zhong and Bian observe the 

effects of mobility and human interaction on the dynamics of an epidemic in Midwestern 

China [28]. They adopt a social network analysis approach for analyzing these dynamics at 

the level of residential units rather than working with individual travelers.
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Lee et al. compare flu spike surveillance systems at the state and county levels, accounting 

for functions of climate-related and socio-environmental factors including humidity, 

pollution, and population density over large spatial zones [17]. They find that state 

surveillance models underestimate the disease proliferation in counties that are at high 

risk; meanwhile, the same indicators are overestimated in counties that are at low risk for 

epidemics. They speak in favor of surveying the flu spread at finer spatial scales in future 

work, so as to better understand the mechanisms of flu propagation.

In another relevant work, Cauchemez et al. model the spread of the H1N1 virus through a 

social network to analyze the effect that classroom relationships have on the spread of the 

virus in schools [3]. They find that students are likely to pass the disease onto classmates 

of the same sex and within the same grade, however, only one in five students transfer the 

illness to those members of their households that are above the age of 18. As schools are 

a hotbed for disease spread, understanding how these human interactions affect the spread 

allows for potential control and mitigating interventions in the future.

The purpose of studying the dissemination of communicable diseases is to express and 

quantify the dynamics of human interaction, mobility patterns, and disease spread at specific 

geographic levels. As suggested by Lee et al., there is an opportunity to study these 

dynamics at a finer spatial scale. Collecting detailed data at this scale may open new doors 

for supporting policy-making.

2.3. Permutation-based analyses on networks

Due to the complexity of data that reflect the impact of social mobility and interactions on 

disease spread, special attention must be paid to the analytical methods permitting static and 

longitudinal analyses of network data. This section delves into the review of the key idea 

most commonly used for traditional social network analysis – permutation-based analysis.

The fundamental analytical method that deserves to be discussed first is permutation-based 

hypothesis testing, or simply permutation tests. Permutation tests are resampling- or 

randomization-based methods used when distributions of variables under study are unknown 

and potentially dependent.

Fig. 1 displays an example “Observed Network” and two example permutations based on it. 

Network permutation can be performed on the nodes or the edges; a Node-Based Permuted 

Network and an Edge-Based Permuted Network are shown in Fig. 1. The buildings are 

nodes (also referred to as actors) and they are connected by edges (also referred to as 

links). In a practical sense, a network can be viewed as a neighborhood, in this case 

a small one, with only four buildings (nodes), two residential and two corporate. The 

buildings are connected by a set of roads (edges). The car shapes on the roads represent 

the characteristics of travel between buildings; technically, numerical characteristics are 

typically referred to as edge weights. To understand how permutation testing is done, 

consider the Node-Based Permuted Network, it has the same set of four nodes, but they are 

now (co-)located differently. The roads, or edges, remain fixed, as do the edge weights. The 

Edge-Based Permuted Network also has the same set of nodes and edges as the Observed 

Network, however, the edge weights (car shapes of respective colors) have been shuffled 
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and redistributed across the edges. Note, in edge-based permutation, the structure of the 

network, i.e., the placement of the nodes and edges, remains constant. This allows us to 

analyze network dependencies and the likelihood of links forming between any two nodes.

The illustrative example in Fig. 1 is helpful for conceptual understanding of key terms used 

to discuss permutation testing. If we ignore the cars on the edges in the Observed Network, 

it becomes a binary weighted network. A binary weighted network is one where edges are 

binary weighted, that is, either present (weight of 1) or not present (weight of 0). A pair 

of nodes connected by a link is referred to as a dyad or dyadic structure. Focus on the 

top left and right nodes of the Observed Network: they are connected by an edge, forming 

a dyad. A dyad is one type of subgraph. A subgraph of a particular type, with all attributes 

fixed, is referred to as a feature. Note that the use of terms “subgraph” and “feature” is 

ubiquitous in probabilistic graphical modeling for social network analysis [10] but is not as 

widespread in statistical analysis of networks. The three dyad-based features one can define 

in the Observed Network are: (1) residential building connected to a corporate building, 

(2) residential building connected to a residential building, and (3) a corporate building 

connected to a corporate building. We may use the counts of instances of a particular feature 

in a network to analyze different subgraphs that may have practical meaning. For example, 

the count of the residential building to corporate building feature is three, the count of the 

residential building to residential building feature is one, and the count of the corporate to 

corporate building feature is zero. In permutation testing, the counts of each feature in the 

Observed Network are compared against the aggregate of the corresponding feature counts 

of the Permuted Networks.

In network-based permutation testing, where the dependence is induced and implicitly 

expressed by the observed structure of the network in the data collected, the edge- and/or 

node-based labels are reshuffled to produce multiple permutations (which can be thought 

of as permuted “clones”) of the original network, to test whether the count of a selected 

subgraph-based feature in the original network is extreme, i. e., too high or too low, 

compared to the same counts in the permuted networks. The verdict of a test states whether 

an outside-of-average, or surprising, observation is statistically significant to claim the tested 

effect and support the hypothesis that implies this effect.

The other permutation-based method, widely used for multivariate analyses and 

implemented in the most popular software for social network analysis UCINET, is called 

Quadratic Assignment Procedure (QAP) regression [8,16,21]. QAP regression employs 

permutation logic to test the significance of the inferred regression coefficients. Both 

permutation tests and QAP regression are traditionally performed on nodes, links or dyads 

within a single observed (aka. original) network. Note that, being more complex than a node 

or a link, a dyad is itself a special case of an even more complex general network element – 

subgraph.

The level of significance to use and number of permutations to be executed in QAP are at 

the discretion of the researcher. North et al. suggest performing at least 10
α  permutations, 

where α is the desired level of significance, in order to control precision [23].
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To report a few relevant use cases, Lusseau et al. perform edge-based permutation tests to 

explain group formation among the actors embedded into a network with weighted edges. 

More specifically, they analyze clustering effects in certain animal species [19]. Croft et al. 

conduct edge-based, as well as node-based, permutation tests for describing animal social 

behaviors [7]. Similar to Lusseau et al., they strongly argue for the use of weighted networks 

for describing relationships, as it is difficult to confidently assign an edge weight of zero 

within a binary weighted network. Thus, any analyses performed on networks with binary 

weighted edges should be interpreted with caution.

Bavaud et al. develop a way of using permutation testing for explaining spatial auto-

correlation in weighted networks [2]. They employ this method to analyze the effect that 

linguistic barriers have on the migration patterns of Swiss cantons. The regions they study 

vary in size and economical value, so they introduce an extension to standard permutation 

testing that can capture such differences and their effects. They incorporate an auxiliary 

variable that provides information on multiple spatial attributes. This single value variable 

is applied to each given node or region, providing rich information about the region, 

e.g., the number of cars per inhabitant, or average income over a certain spatial area. 

Their investigations provide insights into system dynamics based on multiple attributes and 

maintain the simplicity of single attributed permutation testing.

These developments provide a foundation for the analysis of multiple nodal attributes within 

weighted networks that can be used as a launch pad for similar studies with temporal 

aspects. Note also that permutation testing can be used as a stand-alone method, or in 

conjunction with other tools for statistical analysis.

2.4. Surprise analysis

Surprise analysis is a permutation-based tool which can be used to test multiple hypotheses 

simultaneously. Surprise analysis can be viewed as a generalization of the idea of 

permutation-based network hypothesis testing to the effect that multiple subgraph-based 

features defined on the same network are analyzed simultaneously. The concept of surprise 

analysis was introduced by Leskovec et al., in 2010 [18] and further extended by Guo 

et al., in 2011 [14]. The metric “surprise” is formally defined as the number of standard 

deviations by which the count of a studied feature differs from the count expected from 

purely random (re)shuffling. However, when using surprise analysis to test hypotheses, 

rather than to just make observations, it may be advantageous to transform the metric to be 

akin to a p-value. When performing surprise analysis, approximately 10,000 permutations 

are aggregated and compared to the counts in the Observed Network. Looking again at 

the Node-Based Permuted Network example in Fig. 1, we see that the count of the feature 

residential building to residential building is one in the Observed Network, and zero in the 

Permuted Network. Though this is a small network with only four nodes and four links, it 

provides a context for what it means to compare counts between observed and permuted 

networks.

Indeed, network label reshuffling can be applied to many network structure elements 

including nodes, edges, and node/edge labels. Traditional statistical tools consider one 

structure at a time, e.g., taking a dyad as a subgraph of interest. Meanwhile, surprise analysis 
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can be used to analyze subgraphs of more diverse forms, using pre-defined features on these 

subgraphs; the latter can be complex structures such as attributed triads. To recap, surprise 

analysis goes beyond the binary determination (hypothesis verdict) adopted in traditional 

analysis of statistical significance in hypothesis investigations or analysis of relationships 

between dependent and independent network-based variables, e.g., as is the case with QAP 

regression. Importantly, surprise analysis enables the testing of multiple hypotheses at once 

and reports how strong a particular effect is, instead of just stating if the effect exists or 

not at a pre-selected level of significance. For example, if standard hypothesis testing were 

used to analyze the dyadic features in the Observed Network of Fig. 1, it would require 

three separate tests, one for each of the features previously described. However, surprise 

analysis enables us to analyze all three features with the same set of permutations and not 

have to state any hypothesis in advance. At a larger scale, the number of features increases 

exponentially as the number of nodal attributes increases, all of which can be analyzed 

in an application of surprise analysis. Thus, surprise analysis provides a more holistic 

outlook of the processes/relationships that the studied networks express, and produces more 

comprehensive insights than those acquired through other, more traditional methods such as 

individual hypothesis-based permutation tests.

Because our paper will advance and apply surprise analysis in a new context, it is worth 

looking at its prior use case in greater detail. In their original work [18], Leskovec et al. use 

surprise analysis to analyze the triads (a triad is a structure consisting of three connected 

nodes) formed by humans within signed networks, which is a special and practically useful 

case of weighted networks [11]. Leskovec et al. evaluate the evidence in support of Heider’s 

Balance Theory and of their own newly proposed Status Theory for explaining the formation 

of signed ties between actors that socially interact with each other. They use surprise 

analysis to determine the likelihood of appearance of particular triads in trust networks, and 

then, propose a theoretical explanation to their observations. The analyses are conducted 

with the excerpts of large online social networks, namely, Epinions, Slashdot, and Wikipedia 

[5, 14,15]. They take a network, and analyze the counts of different triad types in the 

network, in comparison to the counts of these triads in the permuted variations of the same 

network. The surprise analysis does this for all the types of triads at once, and reports the 

levels of positive/negative surprise detected. By tracking both undirected and directed triads, 

Leskovec et al. find weaknesses in the Heider’s Balance Theory and motivate their newly 

proposed Status Theory.

While the work of the Leskovec’s group focuses on finding the right theory to explain 

network observations, the “surprise analysis” research direction can be generalized, e.g., 

expanded from triads to any subgraphs of interest, including attributed dyads, attributed 

triads, etc., to detect complex dependencies. One could employ surprise analysis to analyze 

the nodal attributes within subgraphs together with the edge-based attributes. One could 

use surprise analysis to analyze networks with temporal aspects as well, and the temporal 

dimension could be applied to detect a deeper meaning implied by both the attributes and the 

network structure. This paper seizes the opportunity to investigate the promise of these new 

forms of surprise analysis.
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3. Advances in network building methodology

Before any analytical inquiries can be conducted, a key step is to determine how to 

transform unprocessed data into a network which can be analyzed. Individually collected, 

i.e. unprocessed, survey or tracking data may imply a network structure, but how exactly to 

extract it leaves much room for creativity.

In this section we demonstrate how to manipulate a data structure to obtain a network, 

depending on how the unprocessed information is interpreted: network nodes are clearly 

defined and methods for edge construction are described. Indeed, we show multiple ways to 

achieve it, with each method having its own pros and cons.

To more precisely explain what is meant by “unprocessed data”, think of an outcome of an 

observational study (i.e., a data collection exercise) that comes in the form of individual trip 

records. Referring to a set of pre-indexed “from/to” locations, the recorded data thus reflect 

the daily movement of travelers over multiple days or over more granular time windows.

Links between actors in a network can be defined based upon acquaintance, information/

disease spread, travel between locations, etc. In this section, we present four approaches 

for constructing links within both static and longitudinal networks. An example of the data 

structure from which networks can be derived is displayed in the table in Fig. 2. The data 

consist of user ID’s, origin locations, destination locations, and time period designations 

(detailed temporal information becomes available if movement of travelers is captured over 

multiple time periods, e.g., on each day). Consider the travel of the subject with user ID “2”: 

within one time period, they travel from Home to Point 1, Point 1 to Work, Work to Point 
2 and finish by returning to Home. This produces a travel path for each user, as depicted as 

Network I in Fig. 2.

Given an original observed travel path of an individual, four types of directed links can 

be defined en route to creating a local network for this individual. Per conventional 

terminology, a local network is comprised of one focal actor node and the adjacent nodes 

(those within 1-hop away) around it [24]. More simply, a local network is comprised of a 

focal actor node, that is the central node, and its incoming/outgoing links. We call these 

four types of local networks, respectively: “star” network, “home-work” network, “temporal 

network based on paths”, and “temporal network based upon time periods”. Fig. 2 provides 

a table with example data and the corresponding travel path of user 2, with the four types 

of directed links that can be derived from these data. Additionally, the local networks for 

multiple individuals can be overlaid to create a larger network that contains weighted links 

between two locations that are traversed by multiple users. In this case, edge weights could 

be integer or between 0 and 1: an integer edge weight represents the amount of subjects 

traversing between two locations and a decimal edge weight represents the proportion of all 

travel that occurs between two locations. Thus, location-centric data can inform the creation 

of several different networks. The main focus of the methodology here is on constructing, 

i.e., defining, links between actor locations.

Fig. 2 contains a table with an example dataset, an original travel path (Network I) of user 

2, and four local networks derived from Network I. Each of the four networks derived 
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from Network I has its own advantages as different network types emphasize different link 

types. Network II is referred to as the star network. The star network builds links from the 

home location to each of the locations that are traveled within the original path. Given the 

original path in Network I, creating links using the star network approach produces three 

edges, all with the generative node Home. The advantage to using Network II is that all 

generative nodes are Home, which places the emphasis on a subject’s home location, as it 

is presumably the geographic location in which they spend the most time. Network III is 

termed the home-work network, in which links are built between each of the Home and 

Work locations that are traversed. In this case, the observed path informs the creation of a 

single directed link within the home-work network. Network III is advantageous because it 

focuses on the travel between only a subject’s home and work locations, which is where the 

greatest proportion of travel occurs. Network IV is a temporal network based upon paths 

such that one link is created between each locale traversed within the original path. This 

temporal network approach creates four directed links. The advantage of using Network IV 

to create links is that it captures all travel, similarly to Network II, however, unlike Network 

II, the links are created based upon the sequence of travel. Lastly, Network V is a temporal 

network based on time periods that creates n separate networks where n is the number of 

time periods. Within each of the networks, links are created similarly to the star network, 

using the home location as the origin of each directed pair. Network V is advantageous as 

it incorporates a temporal element allowing for time periods to be visualized and analyzed 

separately as opposed to in aggregate. To recap, four distinct methods of creating links can 

be applied to produce different meaningful networks from one local network of recorded 

travel of one individual.

By overlaying a multitude of local networks, a larger network containing the information 

of multiple individuals can be created. Thus, larger weighted networks can be built using 

each of the four methods outlined above. The weighted networks are then used for statistical 

analyses, as described in the following sections.

4. Analytical methods with disease spread-based networks

In social network analysis, statistical tests analyze the number, i.e. the count, of specific 

network structures. These structures, termed subgraphs, are comprised of nodes and links 

and may take different forms. In this Section 4, we will be mainly concerned with dyadic 

structures. An example of a dyad is shown in the Observed Network in Figure ??: to simplify 

the presentation we disregard empty dyads and say that the nodes labeled 1 and 2 form 

a dyadic subgraph, whereas nodes 2 and 6 do not. A subgraph with particular values of 

random variables, e.g., nodal attributes, involved in it is referred to as a feature. Features 

are used to conduct hypothesis testing on subgraphs. For example, they are useful for 

capturing pairwise agreements or (dis)similarities (homophily) between nodes. The concept 

of defining features on a dyadic subgraph is further illustrated in part (c) of Fig. 4. The 

remainder of this section explores the use of analytical methods—permutation testing, 

hypothesis testing, and QAP regression—on mobility-based social networks.
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4.1. Network-based hypothesis testing

Hypothesis testing on networks, though very similar to standard hypothesis testing, is 

conducted through permutation testing. Permutation testing is a resampling method for 

social network analysis that allows one to quantitatively assess the prevalence of a certain 

pattern within a network. In this resampling method, either nodes (or nodal labels) or edges 

(or edge labels) are reshuffled multiple times to test whether the frequency of appearance of 

a feature of interest in an observed network significantly deviates from its expectation per 

the distribution of the same frequencies across permuted networks.

Most useful for our application – mobility-based network data – is an extension of 

permutation testing at the nodal level. In order to conduct a nodal permutation test, a large 

number of possible network realizations (node rearrangements) are taken in aggregate to 

create the distribution of the count of appearance of a pre-defined feature in them. Fig. 1 

provides an example of an Observed Network and a single node-based permutation of that 

network. As stated, our application makes use of mobility-based network data, so consider 

a neighborhood with four buildings connected by four roads, this can be represented as 

a network with four nodes and four edges. Notice that the nodes, or buildings, in the 

Node-Based Permuted Network are not in the same position as the buildings in the Observed 

Network, this is because the nodal labels have been shuffled, or permuted. However, the 

edges maintain the same structure. Permutation testing allows us to test whether the node 

relationships/connections in the Observed Network exhibit a pattern that is unlikely to have 

occurred at random.

Our method incorporates weighted edges and multiple nodal attributes into permutation 

testing, as well. Fig. 3 demonstrates a single permutation of an Observed Network with 

multiple nodal attributes and weighted edges. Similarly to Fig. 1, the edge structure of the 

network following a permutation remains the same, including the weights on the edges, 

represented by cars in the previous example. The sets of nodal attributes, termed nodal 
bundles, are permuted: each bundle is kept together as a unit and is uniformly randomly 

placed into a “placeholder”. Placeholder here is best described as a node circle in a graph, 

without any object/node label in it; placeholders are not shuffled while their contents are. 

Fig. 3 shows how network elements are denoted using only mathematical notations (and 

no pictures). To understand it in the same context as Fig. 1, imagine that each node is a 

building filled with people. Buildings are shuffled with all the people inside, the people are 

not moved individually. As such, each building is treated as a single piece: this is how nodal 

bundles work. A single nodal attribute, a1 for example, cannot be permuted alone, it must be 

permuted as part of the nodal bundle A, containing the set of attributes {a1, …, an}. In the 

context of Fig. 1, a1 could represent an attribute of the people within the buildings, such as 

level of illness. This attribute is attached to the building, or node, and permuted with it. In 

the case of Fig. 3, a1 is a single attribute in the nodal bundle A, so it is permuted as a group 

with the other attributes in A. Within the Observed Network, the placeholders of nodes A 
and C are connected; this is one type of a dyadic subgraph, for which the network-based 

hypothesis testing, as well as the methods described in the following subsections, come 

useful.
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To better understand network hypothesis testing we will explore two possible testing 

templates, demonstrated in Figs. 5 and 6. Setting the stage for these structures and those 

illustrated in Sections 4.2 and 4.3, we will consider an example network dataset. The data 

consists of nodes which represent geographic locations, more specifically Census block 

groups, and network edges establishing travel between two nodes. Table 1 presents the 

attributes of the dataset which provide the basis for hypotheses.

Fig. 4 gives an example of a dyadic subgraph with nodal attributes and weighted undirected 

edges. Fig. 4 (c) gives an example of one of the four possible features that can be defined on 

this subgraph. Importantly, edge weight is not considered part of the definition of a feature. 

Take variable Mi as the ‘income’ level designation at location (node) i (a low ‘income’ 

level is represented by a small money bundle ($), a high ‘income’ level is represented by 

a large money bundle ($$)). The edge weights will represent travel frequencies between 

location pairs, and will determine the contribution of each appearance of the same feature in 

a network. The sum of these weights will first be taken in the Observed Network, and then, 

compared against the distribution of these sums across multiple permuted networks. As is 

typical for the binary edge weights, we will still refer to the sum of non-binary weights as 

“feature count”. An in depth example of how feature counts are tallied is provided in Fig. 

7 in Section 4.2, but for context consider part (c) of Fig. 4. Part (c) represents a feature 

with the attribute ‘income’. To determine the count of this feature within the network, each 

instance of a low ‘income’ level node connected to a high ‘income’ level node is counted, 

and the final tally is referred to as the “feature count”. The feature in Fig. 4(c), defined on 

the subgraph in Fig. 4(b), can be useful for testing different network hypotheses, e.g., the 

hypothesis: “In the original (observed) network, travel tends to occur at a lower frequency 

between locations with differing (polar) levels of average income”.

The idea of permuting information “bundles” on networks is used widely both to conduct 

hypothesis testing and QAP regression on networks. Using a defined testing structure, we 

are able to construct sixteen possible setups to use for hypothesis testing, surprise analysis, 

and QAP regression. Generalizing the example given in this section, any testing structure 

must contain the following four components: network-based variables of interest (node- 

and/or edge-based, binary or real), a hypothesis, a subgraph (suitable to provide hypothesis-

driven evidence), and analysis type (network hypothesis test or network regression). Sections 

4.2 through 4.3 explore the use of permutation testing on networks with specific testing 

structures.

The attributes introduced in Table 1 provide context for the two testing setups displayed 

in Figs. 5 and 6. Both of the templates employ a permutation based approach. The first 

template is based on a weighted, undirected subgraph, which incorporates nodal and edge-

based attributes, specifically ‘median income’ level and ‘illness’ level, as shown in Fig. 

5. This structure can be used to test a variety of hypothesis; one hypothesis that can be 

tested is, “The greater the frequency of travel between two block groups in the same income 

bracket, the more likely it is that the two block groups exhibit the same ‘illness’ level”.

The second set up is based on a weighted, directed subgraph with the single nodal attribute 

S, level of ‘illness’, as shown in Fig. 6. A sample of a hypothesis that can be tested on this 
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subgraph is,“The greater the frequency of travel from one block group to another, the more 

likely it is that the two block groups exhibit the same level of illness”.

The weighted, attributed subgraphs displayed in Figs. 5 and 6 are templates for a multitude 

of possible hypotheses, however, standard hypothesis testing only allows for a single 

hypothesis to be tested at a time. The following section illuminates a method, surprise 

analysis, which enables the simultaneous test multiple hypotheses which can be drawn from 

the set of features derived from each subgraph template which provides more robust results 

and deeper insights.

4.2. Surprise analysis

Surprise analysis allows us to test multiple hypotheses at once, without having to a-priori 
focus on any one in particular, by looking at all the features based on the same subgraph of 

interest. In particular, it facilitates an in-depth exploration of how attributes that are part of 

a nodal bundle interact with one another in affecting disease spread. For example, an analyst 

might want to use surprise analysis to evaluate how common it is to observe specific patterns 

in travel between multiple geographic locations that are characterized by certain average 

‘income’ levels and ‘illness’ levels (the latter measured at a particular point in time, e.g., 

during the same week).

Continuing with the example dataset introduced in Section 4.1, the logic of surprise analysis 

will be explained in reference to Fig. 7. Fig. 7, the bottom left, shows four features defined 

on a directed dyadic subgraph, with the (trivial) nodal bundles comprised of only one 

attribute S (‘illness’ level). The Observed Network contains six nodes in total, three of which 

represent a low level of ‘illness’ (S = 1) at these locations, visually depicted by a figure of a 

person, the remaining three nodes represent a high level of ‘illness’ (S = 2) at the respective 

locations, depicted by a person in a hospital bed. The Permuted Network (b) in Fig. 7 is 

one example permutation of the Observed Network (a). The edge structure remains constant 

(i.e., node placeholders do not move), but node bundles are shuffled. Of course, the number 

of nodes with each particular value of S in the network remains the same upon shuffling, 

that is, in both the Observed Network and the Permuted Network there are three nodes 

representing a low level of ‘illness’ and three nodes representing a high level of ‘illness’. 

The table in Fig. 7 contains the counts of each feature within the two networks; note that 

the feature labeled 1→2 represents the directed dyad in which the generative node (one 

from which the directed edge emanates) has attribute value S = 1 and the receptive node has 

attribute value S = 2, representing travel from a block group with a low level of ‘illness’ to a 

block group with a high level of ‘illness’. As exhibited in the table, the count of each feature 

became different in the Permuted Network, compared to the Observed Network, as a result 

of the performed permutation.

The goal of surprise analysis is to determine if the count of any feature(s) within the 

original real-world network significantly differs from the expected value of the feature(s). 

The expected count for each feature is calculated by permuting the observed network 

thousands of times and building the empirical probability mass function of the counts over 

all these permutations. Determining the significance of the extremity is done by calculating 

the proportion of permutations in which the observed count is less than the permuted count. 
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Mathematically speaking, this is calculated as P
T . Note that P is the number of Permuted 

Networks in which the count of a specified feature is less than the corresponding feature 

count in the Observed Network, and T is the total number of permutations performed. 

For example, suppose we concentrate on the ‘illness’ feature 1→2, and, in some observed 

network let this feature count equal 200. Suppose 10,000 permutations are performed, in 

1200 of these permuted networks the feature count is less than 200, then the proportion less 

than is calculated as P
T = 1, 200

10, 000 = 0.12. If the feature proportion is less than or equal to 0.20 

(think of this as the conventional p-value), then the feature in the original network is said 

to appear significantly less often than expected; as usual, it is up to the analyst to set the 

critical significance level. On the other hand, if we wanted to determine if a feature appears 

significantly more often than expected, then the proportion less than would be considered 

significant if it was greater than 0.8, capturing the right tail of the permutations-based 

distribution of the feature count.

In addition to this type of evaluation, which is typical for conventional hypothesis testing, in 

surprise analysis we can also compute how many standard deviations separate the original 

observed feature count from its mean; both the mean and standard deviation are taken for 

the distribution of the respective feature count across multiple permutations. This enables us 

to establish the extremity of observation – surprise – for every feature within the original 

network. The power of this methodology is illustrated in the practical example in Section 5.

4.3. QAP regression

QAP regression is useful when analyzing dyadic datasets or the relationship between nodal 

pairings – dyads – in a network. For instance, this method would be useful in answering 

the question, “How does travel intensity between a pair of block groups explain (affect) the 

similarity in their illness levels?”. As usual, regression analysis works to explain a part of 

variation in a dependent variable through the observable values of a number of independent 

variables, including temporal variables. We first define a unit of analysis – namely dyads 

– and determine the dependent variable, which can be edge-based or, for larger subgraphs, 

node-based. When a dependent variable is edge-based it means the dependent variable is on 

the edge, as shown in Fig. 8, and in these cases the structure being evaluated is a dyad. When 

the dependent variable is node-based it means the dependent variable is on the central node, 

as shown in Fig. 10, in this case the structure consists of a node and all its adjacent nodes. 

The following four examples displayed in Fig. 8 through 10 are a sample of templates for 

QAP regression. Again, the context for these setups is provided by Table 1.

The first two setups are tested using QAP regression for edge-based dependent variables. 

The first template, displayed in Fig. 8, is based on a weighted, undirected subgraph with 

edge-based attributes. The attribute bundle contains the variables S, M, and F. The following 

hypothesis can be tested using this setup, “Illness index similarity is dependent upon travel 

frequency, income similarity indication, and flu shot similarity indicators”.

The second setup adds a temporal element to the edge-based attributes. Fig. 9 illustrates 

a weighted, undirected subgraph with a temporal ‘illness’ level attribute and weight. The 

temporal element is based upon time periods within the study and allows us to test 
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hypotheses such as, “Illness index similarity is dependent upon travel frequency so many, e. 

g. 2, time periods ago”.

The third and fourth QAP regression setups are used to test hypotheses with node based 

dependent variables. Both setups incorporate the nodal attributes, ‘illness’ level (S), ‘median 

income’ (M), and rate of flu shot reception (F) and test the hypothesis, “Illness level of a 

block group is dependent upon the incomes and flu shot rate of the block groups between 

which there is travel.” However, the third setup features a subgraph with undirected edges 

and the fourth setup features a subgraph with directed edges, shown in Fig. 10. Both setups 

can be used to test a variety of hypotheses, including those with a temporal element.

QAP regression enables nodal and edge based inference. Methodological approaches which 

allow for incorporating temporal elements are useful when analyzing longitudinal datasets, 

as demonstrated in the illustrative example in Section 5.

5. Illustrative results: a case of flu spread in Western New York

This section provides an in depth example of the use of the methods detailed in Sections 3 

and 4. The case data preparation involved organizing the survey responses and identifying 

links for network building, and calculating the values of attributes for each of the actors 

that were used to create networks, as shown in Section 3. These data were then used to 

conduct hypothesis tests, surprise analysis, and QAP regression. The section is divided 

into subsections based on the methodology that was implemented. A variety of tests were 

performed on different network types in order to demonstrate the versatility of permutation 

testing and surprise analysis.

5.1. Data preparation

An observational study was conducted in Erie and Niagara counties in Western New York 

during the 2016–2017 influenza season. Over 2000 people were recruited to participate 

in the study and respond to surveys. Participants filled out an initial survey that gathered 

general demographic data, including home and work place addresses. Following the initial 

survey, they used a smart phone application to complete a weekly questionnaire concerning 

their health status, as well as the status of other members of the household, and their 

mobility.

Concurrently, GPS records were collected from iPhone users. iPhones detect locations and 

distance traveled between previous location and current location, thus, the GPS locations 

captured via iPhone would track every new location to which a participant traveled. Since 

the iPhones record location every time a participant moves 500+ meters, many of the records 

were retrieved during travel. In order to eliminate such points, the notion of a (visited) 

place was introduced. A place is defined as a GPS location in which the time spent by a 

study participant meets or exceeds 30 min. Amount of time spent was calculated by finding 

the difference in time between two consecutive GPS records for the same participant. All 

records of the locations that did not meet the requirements to be a place were eliminated.
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Each set of place coordinates was mapped to their Census block group ID. Additionally, 

the self reported home and work locations were assigned their corresponding block group 

ID. Geographically, a block group spans 2–2.5 miles in diameter. Since GPS locations for 

iPhones are accurate within 500 m, the entire geographic span will be contained within a 

single block group.

Every week the participants filled out a survey with questions concerning their travel and 

health status. Their responses were used to calculate attributes for the block groups. There 

were five attributes obtained from the survey information: P, R, F, G, and S, described in 

Table 2. The attributes R, F, G, and S were calculated to be continuous factors, but were then 

encoded to be categorical variables in the set {1, 2}. The values corresponded to a bin in 

which the continuous factor belonged, illustrated in Table 3.

Additionally, the Census collects data and a multitude of it is publicly available at the block 

group level. Census data was collected from the American Factfinder on median household 

income, race, and health insurance status.

As shown in Table 3, the continuous range of each variable is split into two categorical 

bins using the average value as a cut-off point, or threshold. Researchers must decide 

the number of levels of each attribute, the number of levels is dependent upon the data 

being analyzed. For our purposes, each attribute has two possible levels, creating a binary 

designation. This decision was made for three reasons: (1) using the average value for an 

attribute as the threshold is a natural way to create levels and makes the distinction between 

levels easily interpretable (i.e. above average or below average), (2) our data are sparse, 

so if we were to include more than two levels for each attribute, then there would not be 

enough subjects per block group at each level for robust analysis, and (3) the number of 

possible features increases exponentially as the number of levels increases. For the purposes 

of our application, using only two levels is advantageous, however, we acknowledge that the 

number of levels and determination of thresholds may affect the results.

5.2. Hypothesis testing and QAP regression

The network building methodology of Section 3 was implemented to create a series of 

networks based on the data obtained from the observational study outlined in Subsection 5.1.

Test Set-Up 1: Standard Hypothesis Testing and QAP Regression.—To start, we 

construct a star network (see Network II in Fig. 2) in which links are created between the 

home location and each place a subject visited. The star network includes all visited places 

whilst emphasizing subjects’ home locales. Of immediate interest to us is the relationship 

between frequency of travel and a subset of key attributes as it provides in-depth insight 

on our data to inform the next step of analysis. For example, making use of the attribute 

S (‘illness’ level), one can formulate the hypothesis, “The frequency of travel tends to be 

greater between block groups with the same level of illness.” Other hypotheses may explore 

the relationships between frequency of travel and the following attributes: ‘illness’ level (S), 

‘median income’ level (M), ‘gender’ (G), and ‘flu shot’ reception (F), as shown in Table 4.
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Test 1 Results.—Standard network hypothesis testing and QAP regression are utilized 

to test the six hypotheses in Table 4. The hypotheses that tested to statistically significant 

outcomes turned out to be, “The frequency of travel is likely to be greater between block 

groups with the same level of illness”, and “The frequency of travel is likely to be greater 

between block groups in the same income bracket.” However, when we implemented QAP 

regression to analyze the dependence of ‘illness’ (S) and ‘income’ (M) similarity, separately, 

upon frequency of travel, the produced results were not significant.

Test 1 Observed Insights.—There is evidence to support the hypotheses that there tends 

to be a higher volume of travel between block groups with the same level of ‘illness’ 

or between block groups belonging to the same income bracket. In a practical sense, the 

trends are justified by the nature of disease propagation. We would expect that two block 

groups with a high frequency of travel between them would have similar levels of ‘illness’. 

Furthermore, it would be unlikely for there to be a high volume of travel between a block 

group with a low level of ‘illness’ and a block group with a high level of ‘illness’ because 

the disease would spread between the two block groups. Additionally, the majority of travel 

occurred between subjects’ home and work locations, thus we would expect to see high 

volumes of travel between block groups with a similar level of ‘income’. If a subject resides 

in a high ‘income’ block group, then it is more probable that they work in a high ‘income’ 

block group, this logic follows for subjects residing in low ‘income’ block groups. These 

results demonstrate a need for policy intervention targeting high need areas. Specifically, 

we see a high volume of travel between block groups with the same level of ‘illness’, 

thus these block groups would be good locations to intervene, for example, by employing 

contact-tracing policies. Similarly, we see frequent travel between block groups with the 

same level of ‘income’. Since there is more travel between these block groups, it would 

make them attractive targets for relevant health insurance campaigns or subsidy programs.

However, there is not sufficient evidence to support the claim, “Illness similarity is 

dependent upon frequency of travel”, nor to determine the relationship between income 

similarity and frequency of travel. These findings provoke further exploration using surprise 

analysis.

5.3. Surprise analysis

The insights discussed in Section 5.2 motivate our use of surprise analysis as this method 

provides a more holistic view on the dependencies between the network structure and 

attributes of interest. To extend our analysis to another network type, we reorganize the data 

to build the “Home-Work” network (Network III in Fig. 2). Travel between home and work 

locations was observed to remain constant throughout the study, thus the element of time is 

inconsequential for Network III. The results from the hypothesis testing and QAP regression 

suggest two contradictory outcomes: (1) that there is interdependence of travel frequency 

and level of ‘illness’ as well as level of ‘income’, and (2) that similarity of ‘illness’/’income’ 

levels between block groups is not significantly dependent upon frequency of travel between 

them.

Burris et al. Page 17

Socioecon Plann Sci. Author manuscript; available in PMC 2022 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Test 2 Set-Up: Network III with Single-Attributes Nodes.—Surprise analysis allows 

us to more deeply analyze the interdependence of multiple nodal attributes. As demonstrated 

in Fig. 11, we are able to differentiate between the four possible features derived from a 

dyadic subgraph with signed, directed edges and nodal attributes ‘illness’ and ‘income’. We 

now build a network where an edge labeled with (+) signifies travel from a block group with 

a low ‘income’ or ‘illness’ level to a block group with a higher level of ‘income’ or ‘illness’, 

respectively. Similarly, an edge labeled with (−) signifies travel from a block group with a 

high level of ‘income’ or ‘illness’ to one with a lower level. If the two block groups have the 

same label, the edge is labeled with (0).

In order to test at once multiple hypotheses of the form “The frequency of travel tends to 

be greater between block groups with the same level of illness” via surprise analysis, all 

possible features with nodal attribute ‘illness’ must be defined. Fig. 11 depicts all possible 

features involving ‘illness’ and ‘income’ nodal attributes. We conduct surprise analysis 

by aggregating the outputs from 10,000 network permutations, and tallying the counts of 

features produced from dyadic subgraphs with ‘illness’ and ‘income’ nodal attributes in Fig. 

11.

Test 2 Results.—The results for the surprise analysis applied for analyzing directed dyads 

with ‘illness’ and ‘income’ nodal data are shown in Tables 5 and 6, respectively. Each table 

displays the Observed Value, Expected Value, and the Proportion Less Than (proportion 

of permuted networks with counts less than the observed value) numbers for each of the 

four features. The Expected Value of each feature is the aggregate of the counts of that 

feature across all permuted networks. If the Expected Value is greater than the Observed 

Value, the feature appears more than expected in the permutated networks, and vice versa 

for features in which the Expected Value is less than the Observed Value. In the tables, the 

column labeled 1→2 contains the results for the features representing travel from a low 

‘illness’/’income’ level block group to high ‘illness’/’income’ level block group. Note that 

the values in the Observed Value row are highlighted indicating that the observed value is 

less than the expected value (red) or the observed value is greater than the expected value 

(green).

Table 5 displays the surprise analysis results for the directed dyads with ‘illness’ level nodal 

data. There are four features deserving discussion; of these, features 1→2 and 2→2 have 

expected values greater than their respective observed values, while features 1→1 and 2→1 

appear more than expected in the observed network. In the observed network, features 1→1, 

1→2, and 2→1, had observed counts which significantly differed from the expected counts.

Table 6 displays the results for the surprise analysis test employed to analyze directed dyads 

with ‘income’ nodal data. Here, features 1→2, 2→1, and 2→2 have the observed counts 

that were greater than their corresponding expectations, whereas the count of feature 1→1 

is less than its expected value. However, none of the four features have counts which differ 

significantly between the observed and permuted networks.

Test 2 Observed Insights.—Our quantitative analysis shows that the subjects in the 

study traveled to block groups with a lower level of ‘illness’ more frequently than they 
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traveled to block groups with higher levels of ‘illness’. Recall that all these destinations are 

workplace locations (this is how Network III is constructed). There is significantly more 

travel to block groups with a low level of ‘illness’, which could mean workplace locations 

are in regions with a low level of ‘illness’. This could be because some workplace locations 

are in non-residential block groups. Similarly, the counts of features 1→2 and 2→2 in 

the observed network are less than their corresponding expected values, which suggests 

that subjects tend to travel to block groups with high ‘illness’ levels less often. In other 

words, since the destinations are workplace locations, this provides evidence to support the 

notion that workplace locales are located in non-residential, low ‘illness’ level block groups. 

Though many workplaces are located in non-residential, less densely populated areas, they 

are traveled to frequently. Gibson et al. conducted a study examining distance traveled to 

receive care at a mobile clinic and found that the vast majority of people who visited these 

clinics traveled five miles or less for care [12]. Our study identifies high traffic areas, and 

thus, these geographic areas would be prime locations for mobile clinics as people are 

traveling to these places already.

Test 3 Set-Up: Network III with Multiple Nodal Attributes.—So far, we looked 

separately at the features produced from the dyadic subgraphs with nodal attributes ‘illness’ 

and ‘income’. However, to understand how these attributes interact, it is desirable to work 

with features that simultaneously include both the attributes. Surprise analysis, unlike 

standard network hypothesis testing, enables the testing of features with multiple nodal 

attributes, as shown in Fig. 12.

In Fig. 12, similarly to Fig. 11, M represents the block groups’ ‘income’ level and S 
represents the block groups’ ‘illness’ level. The edges are labeled such that the top value 

indicates the ‘income’ status difference between the nodes and the bottom value indicates 

the ‘illness’ status difference between the nodes. To better understand Fig. 12, consider one 

feature, specifically the feature in row one, column two. The generative node has attributes 

M = 1 and S = 2 signaling that the block group it represents has a low ‘income’ level and 

a high ‘illness’ level. The receptive node has attributes M = 1 and S = 1 signaling both 

a low ‘income’ level and a low level of ‘illness’. Both the generative and receptive nodes 

have a low ‘income’ level resulting in the top value of (0) in the edge label. However, the 

‘illness’ level for the generative node is high, and for the receptive node it is low, resulting 

in the bottom value of (−) in the edge label. The other fifteen features can be interpreted in a 

similar fashion.

Test 3 Results.—The results of the surprise analysis conducted with the sixteen features 

in Fig. 12 are shown in Table 7. The feature {12}→{11} represents the feature in row 

one, column two of Fig. 12, as described in detail above. Similarly to Tables 5 and 6, 

Table 7 contains the Observed Value, Expected Value, and Proportion Less Than for each of 

the sixteen features with significant results highlighted in grey. The counts of three of the 

features are significantly extreme. Two of the three features, {11}→{12} and {12}→{12} 

have counts that are lower than expected in the observed network, whereas there is a higher 

prevalence of feature {12}→{21} in the observed network.
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Features with multiple nodal attributes can be divided into single-attributed sub-features. 

This allows us to interpret the interaction between the attributes and to analyze the 

contribution of each attribute individually. Figs. 13 and 14 demonstrate how features with 

multiple attributes can be broken down into single-attributed sub-features.

Fig. 13 exhibits the breakdown of feature {11}→{12}, which is occurs in the observed 

network much more often than could be expected at random. Examining the values of the 

‘income’ and ‘illness’ attributed features in Tables 5 and 6, we find that the observed counts 

for these features is less than the corresponding expected values, and that the observed count 

of the ‘illness’ attributed feature differed significantly from the expected value. Similarly, 

the ‘income’ and ‘illness’ sub-features of the remaining two features with extreme counts, 

{12}→{12} and {12}→{21}, coincide, signaling that if the count of the complete feature 

is extreme, then both of its ‘income’ and ‘illness’ sub-features occur less or more often than 

expected.

In a contrasting manner, a majority of the features which do not occur with significant 

frequency are comprised of ‘income’ and ‘illness’ sub-features in which one is less prevalent 

and one is more prevalent in the observed network, as displayed in Fig. 14. Additionally, 

its ‘income’-attributed sub-feature occurs more than expected whereas its ‘illness’-attributed 

sub-feature occurs less than expected in the observed network.

The evaluation of these two features provides support for the notion that in order for a 

feature consisting of multiple attributes to have extreme counts, it is necessary for the 

representation of the sub-features to coincide. In the same vein, this means that one attribute 

cannot determine the representation of a feature containing multiple attributes.

Test 3 Observed Insights.—The quantitative results for Test 3 can be explained by 

closely examining the results we gathered in Test 2. Test 2 provides sufficient evidence 

to support the claim that there is a higher volume of travel to destinations with a low 

‘illness’ level. Additionally, there is some evidence to support the notion that there is less 

travel between two block groups with a low ‘income’ level. Keeping this in mind, when we 

analyze the results in Table 7 we see a similar pattern form. On the whole, there is more 

travel between block groups with a low ‘illness’ level and less travel between block groups 

with a low level of ‘income’, these results are consistent with those found in Test 2. Of 

the results displayed in Table 7, only two features produced surprising results, {11}→{21} 

and {21}→{21}. The first feature represents travel from a low ‘income’ and ‘illness’ block 

group to a high ‘income’, low ‘illness’ block group. The second feature represents travel 

originating in a high ‘income’, low ‘illness’ block group to a high ‘income’, low ‘illness’ 

block group. In both cases, we would expect there to be a higher volume of travel as both 

block groups have low ‘illness’ levels. However, the difference between the observed and 

expected counts in these instances were insignificant.

Test 4 Set-Up: Exploration of Single-Attributed Temporal Networks.—So far we 

have demonstrated how surprise analysis can be implemented to analyze static networks, 

however, as the data were collected through a longitudinal study, methods to evaluate 

temporal networks are of particular interest. The temporal network based upon time periods, 
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Network V, builds links in the same way as the star network (Network II), i.e., home 

locations serve as origin points of all travel, however, to construct this network, the GPS 

records were divided into two-week periods which created fourteen networks corresponding 

to specific time periods. Fig. 15 shows the four types of directed subgraphs that can be 

created using the nodal attribute ‘illness’, in this new context. Each network is labeled with 

the first week from which the data were derived, i.e., Week_0 contains the travel data from 

week 0, the start of the study, and week 1. Note that networks Week_14 and Week_16 
contain the travel data from the peak period of the influenza season.

Test 4 Results.—Surprise analysis was implemented to evaluate the biweekly temporal 

networks present in Fig. 15. The results are displayed in Tables 8 and 9. The Observed and 

Expected Value of each of the four features across all fourteen networks are provided in 

Table 8. Observed values highlighted in red indicate features whose observed counts are less 

than the expected counts and values highlighted in green indicate features whose observed 

counts are greater than the corresponding expected counts.

Table 9 displays the Proportion Less Than results for each of the fourteen temporal 

networks. Similarly to Table 8, highlighted cell values indicate extreme observed counts 

of corresponding features. Note that the majority of the features across all fourteen time 

periods occur with frequency that is significantly different from the expectation based upon 

10,000 permutations.

Test 4 Observed Insights.—Examining the results in Table 8, an interesting pattern 

reveals itself, specifically if we focus on features 1→1 and 2→2. In the first seven time 

periods, feature 1→1 consistently has observed values which are less than the expectation 

and feature 2→2 consistently has observed values which are greater than expected. One 

interpretation of this pattern is that participants had a high rate of illness during the first 

half of the study, but still chose to travel. However, the travel between block groups with 

a low level of ‘illness’ occurred less than expected, presumably not because they did not 

travel, but because the general rate of illness was higher during this time. These results also 

illuminate specific time periods when policy intervention would be most helpful, i.e., prior 

to the peak and decrease in travel. This is because the best preventative action for influenza 

is flu shot, which is proactive rather than reactive. The results gathered from the fourth 

test break down the influenza season into biweekly periods, which allows policy makers to 

visualize the peak of the season as well as travel patterns. This may informs intervention 

timing, and recommend locations to target based on frequency of travel, so as to protect the 

largest number of patients.

In network Week_14, none of the feature counts are extreme. Week_14 contains the travel 

information from the beginning of the peak of influenza season, thus subjects are just 

starting to fall seriously ill, so the frequency of travel between block groups with a high 

rate of illness begins to fall as people refrain from traveling. In Week_16 we see that the 

features 1→2, 2→1, and 2→2 have extreme observed counts. Interestingly, travel between 

low ‘illness’ block groups occurs more than expected whereas travel originating from a high 

‘illness’ block groups occurs less than expected, presumably because seriously ill people are 

not traveling. In Week_18 we see a spike in the travel between block groups with high levels 

Burris et al. Page 21

Socioecon Plann Sci. Author manuscript; available in PMC 2022 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of ‘illness’, which shows that a large fraction of the studied population likely remained ill, 

however, as the subjects chose not to travel in the prior weeks they could no longer remain 

home, which produced a higher rate of travel between ill block groups.

In the other networks we built, feature 1→1 consistently has significantly higher counts 

than expected and features 2→1 and 2→2 consistently have significantly lower counts 

suggesting that the ‘illness’ level of block groups has decreased as travel between block 

groups with a low level of ‘illness’ has increased. These networks contain the travel data 

from after the peak of the influenza season so we would expect there to be a lower level of 

‘illness’ and a higher rate of travel between healthy block groups. The data analysis supports 

these expectations.

As demonstrated throughout this section, surprise analysis enables the testing of a multitude 

of hypotheses at once providing more robust and deeper insights than hypothesis testing. 

Similarly to QAP regression, surprise analysis permits analysis of networks with temporal 

elements. This methodological approach incorporates the attractive characteristics of both 

hypothesis testing and QAP regression and allows us to test a myriad of hypotheses at once.

6. Discussion and conclusion

Monitoring of travel environment becomes more and more valuable resource for collecting 

data about population mobility patterns in general [26,27] and decease spread in particular 

[9,20]. The contributions of this paper to the use of social network analysis with city-limits 

mobility data are both methodological and practically informative. First, we illustrate 

how surprise analysis allows for creatively analyzing static and longitudinal networks, by 

studying subgraphs with multiple nodal or edge-based attributes simultaneously, which is 

not possible with conventional network hypothesis testing. Second, we specify multiple 

ways to construct both directed and undirected weighted networks from travel data. Finally, 

these developments feed into the detailed analysis of complex data to shed insights into 

the dynamics of large-scale flu spread over time, as a function of population mobility and 

socio-economic indicators.

Note that the socio-economic indicators, or variables, used were transformed from 

continuous to categorical variables. The continuous range is split into two categorical bins 

using the average value as a cut-off point, or threshold. Using averages is a natural way 

to create levels; it also creates easily interpretable categories, i.e., below average or above 
average. However, the choice of cut-off point(s), as well as the number of bins, is at the 

discretion of the researcher. Using two levels effectively creates a binary designation and 

limits the number of possible features. As the number of levels increases, the number of 

possible features increases exponentially. Thus, two levels were used to keep the number of 

features manageable and possible to visualize. We acknowledge that the determination of a 

threshold(s) may affect the results, thus future researchers must pay special attention to how 

they make these decisions.
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There are many methods that could be employed for construction of networks. In this paper, 

we introduced four different methods for building links with mobility data, including two 

link definitions that account for a temporal element.

Permutation testing is a popular method in social network analysis. Using surprise analysis 

produces results than presents a more holistic picture of the variable dependencies, 

compared to standard testing individual hypotheses in a one-by-one manner.

Last but not the least, the methods we presented enable the analysis of networks containing 

weighted edges and nodes with multiple attributes.

It is important to note that in any predictive analysis, such as the analysis explored in 

this paper, one has to be cautious about unobservable covariates. Unobservable covariates 

are those which have an effect on the measured response, or dependent variable, and may 

be correlated with the independent variable. If these covariates are ignored or incorrectly 

estimated, it can lead to spurious results. The type and effect of unobserved covariates varies 

depending upon the data being analyzed. Researchers have to independently consider the 

observed and unobserved variables in their data to ensure accuracy when implementing the 

methods outlined in this paper.

Combining the data processing and analytical methodology efforts will allow researchers 

to perform more robust analysis on similar networks. Our investigations confirm that it is 

possible to produce meaningful insights from building individual-centric networks where 

all subjects residing within one geographic unit are treated as a single network actor, 

block group in our analysis. Given a dataset with a greater level of representation within 

each geographic unit, these methods could of course enable further, deeper exploration of 

associations.
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Fig. 1. 
An example of an Observed Network, a Node-based Permuted Network, and an Edge-Based 

Permuted Network. Each network is comprised of residential/corporate building nodes, 

linked together by roadways, and the colored car shapes represent edge characteristics/

weights.
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Fig. 2. 
The table presents an example dataset that demonstrates the structure from which Networks 

of types I through V can be constructed. This particular dataset form contains information 

on subjects and their travel patterns. The five networks represent the types that can be built 

from the dataset. Types of networks: Network I – original path of travel, II – links with home 

locations used as origin points, III – home to work links, IV – temporal links with each point 

in the original path creating a new origin point, and V – temporal links based upon time 

periods with home locations used as origin points. Note that the node labels “H”, “W”, “P1”, 

and “P2” correspond to the locations Home, Work, Point 1 and Point 2, respectively, in the 

table.
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Fig. 3. 
(a) The Observed Network contains nodal bundles A, B, …, E with attributes {1, 2, …, 

n}, and edge weights wij for nodes i and j. (b) The Permuted Network is an example of 

one permutation of the Observed Network. It maintains the same structure as the Observed 

Network, but the nodal bundles are reshuffled.
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Fig. 4. 
(a) A schematic network structure. (b) An example of a dyadic subgraph structure with 

nodal attributes Mi indicating the ‘income’ level of actor i and edge weight wij for edge eij. 

(c) An example of a feature type which can be derived from the subgraph in (b). This feature 

represents the frequency of travel in both directions (the link is undirected, with no attribute 

on it) between two nodes with differing ‘income’ levels.
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Fig. 5. 
A hypothesis testing template of a dyadic subgraph with an undirected weighted and 

attributed edge and nodal attribute. This subgraph has nodal attribute S (‘illness’ level), 

edge weight wij and edge attribute M (‘income’ level).

Burris et al. Page 30

Socioecon Plann Sci. Author manuscript; available in PMC 2022 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
A hypothesis testing template of a dyadic subgraph with a directed weighted edge and nodal 

attribute. This subgraph has nodal attribute S (‘illness’ level) and edge weight wij.
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Fig. 7. 
Features can be used to quantitatively describe the structure of a network. Four examples 

of possible directed features with the nodal attribute ‘illness’ level, (S), are given. Once one 

generates a permutation (a Permuted Network) of an original Observed Network, both these 

networks can be described by the counts of the defined features, as shown in the table.
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Fig. 8. 
A QAP regression template of a dyadic subgraph with edge-based dependent variable. This 

subgraph undirected and weighted with an attributed edge. Specifically, the edge attributes 

are S, W, and F, as described in Table 2 and edge weight W.
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Fig. 9. 
A QAP regression template of a dyadic subgraph with edge-based dependent variable. This 

subgraph is directed and weighted with a temporally attributed edge. Specifically, the edge 

attributes are S, W, and F, as described in Table 2 for time period t and edge weight W.
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Fig. 10. 
QAP regression setups: (a) under Setup 3, the unit of analysis is an undirected subgraph 

with the dependent variable in the central node and the independent variables in the adjacent 

nodes; (b) under Setup 4, the unit of analysis is an directed subgraph with the dependent 

variable in the central node and the independent variables in the out-neighbors of the central 

node.
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Fig. 11. 
(a) The four possible features derived from a dyadic subgraph with signed, directed edges 

and nodal attribute S = 1 for a low level of ‘illness’ and S = 2 for a high level of ‘illness’. (b) 

The four possible features derived from a dyadic subgraph with signed, directed edges and 

nodal attribute M = 1 for a low ‘income’ level and M = 2 for a high ‘income’ level.
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Fig. 12. 
The sixteen possible features derived from a dyadic subgraph with signed, directed edges, 

and nodal attributes S and M that can take the values 1 or 2 to represent a low or high level, 

respectively. The edge tuple contains signs indicating status determined by the node attribute 

M on top and S on bottom.

Note that it is possible to use the same method even with the features comprised of 

both ‘income’ and ‘illness’ attributes, to analyze the ‘income’- and ‘illness’-based features 

simultaneously, however, this may not be advantageous. Evaluating multiple attributes 

individually by performing surprise analysis on combined features produces muddy results. 

For example, the ‘illness’ feature 1→1 would be split across four features: {11}→{11}, 

{11}→{21}, {21}→{11}, and {21}→ {21}. Unless the goal is to study how ‘income’- and 

‘illness’-based features interact, it is best to test them separately.
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Fig. 13. 
The leftmost dyadic feature consists of a nodal bundle with attributes S and M and directed, 

signed edges. This displays how a ‘income-illness’ feature with an extreme observed value 

can be broken down into its respective income and ‘illness’ sub-features to demonstrate how 

the attributes interact with one another.
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Fig. 14. 
The leftmost dyadic feature consists of a nodal bundle with attributes S and M and directed, 

signed edge. This displays how an ‘income-illness’ feature that is not extreme can be broken 

down into its respective ‘income’ and ‘illness’ sub-features to demonstrate how the attributes 

interact with one another.
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Fig. 15. 
An example of features present in a network with the structure of Network V in Fig. 2. 

Week_0 through Week_26 are networks constructed from time periods of two weeks. Each 

network has four possible features. The features are directed, signed, dyads with node 

attribute S, ‘illness’.
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Table 1

Descriptions of Census block group nodal attributes F, S, and M which are used in the testing setups illustrated 

in Figs. 5, 6, and 8 through 10.

Attribute Description

F Percentage of block group who received the flu shot

S Average percentage of all participants within a block group who reported having symptoms during the survey

M Median income of the block group
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Table 2

Description of all attributes obtained from the survey and Census data. These attributes represent nodal 

information for Census block groups. Census data from: https://factfinder.census.gov/faces/nav/jsf/pages/

index.xhtml.

Attribute Description

Survey

P Number of participants residing in the block group

R Percentage of block group who reported taking reactionary measures

F Percentage of block group who received the flu shot

G Percentage of block group who identifies as male

S Average percentage all participants within a block group reported having symptoms during the survey

Census

M Median income of the block group

E Predominant race(s) within the block group

I Percentage of the block group over the age of 18 who are insured

There are a total of eight attributes collected from the survey and Census data, however, R, E and I were excluded from testing as all block groups 
had values too similar to warrant analysis. The remaining five attributes – P, F, G, S, and M, – were used in the analyses explored in the remainder 
of the paper.
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Table 3

Categorical encoding for the continuous survey attributes described in Table 2.

Categorical Value Continuous Range

1 0 < x ≤ X
2 X < x ≤ max(X)
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Table 4

Results from a series of hypothesis tests and QAP regression analysis on Network II from Fig. 2. Two of the 

hypotheses produced significant results for a significance level of α = 0.10. Note that in column 3, the labels 

“Level 1” and “Level 2” refer to the illness/income measure being at a low or high level, respectively.

Hypothesis Approach Result

The frequency of travel tends to be greater between block groups with the same level of 
illness.

Hypothesis Testing 
(Homophily)

Level 1: p = 0.0954
Level 2: p = 0.0228

The frequency of travel tends to be greater between block groups within the same 
income bracket.

Hypothesis Testing 
(Homophily)

Level 1: p = 0.0614
Level 2: p = 0.1382

The frequency of travel tends to be greater between block groups with the same gender 
distribution.

Hypothesis Testing 
(Homophily)

Not Significant

The frequency of travel tends to be greater between block groups with the same 
percentage of flu shot reception.

Hypothesis Testing 
(Homophily)

Not Significant

Illness similarity is dependent upon frequency of travel. QAP – Edge Based Not Significant
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Table 5

The observed and expected values for the ‘illness’ based features presented in Fig. 11 and their respective 

p – values. Given a significance level of 0.2, features 1→1, 1→2, and 2→1 had a prevalence that was 

significantly extreme in the observed network. The values highlighted in medium grey produced significant 

results.

1 → 1 1 → 2 2 → 1 2 → 2

Observed Value 749 326 421 198

Expected Value 690.0542 391.4836 389.3635 223.0987

Prop. Less Than 0.8485 0.0934 0.8100 0.2309

Socioecon Plann Sci. Author manuscript; available in PMC 2022 July 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Burris et al. Page 46

Table 6

The observed and expected values for the ‘income’ based features presented in Fig. 11 and their respective p 
– values. Given a significance level of 0.2, none of the features in the observed network had a prevalence that 

was significantly extreme.

1 → 1 1 → 2 2 → 1 2 → 2

Observed Value 357 430 423 484

Expected Value 384.2575 421.6094 421.1001 467.033

Prop. Less Than 0.2798 0.5585 0.5194 0.6303
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Table 9

The results of the surprise analysis test on the temporal networks displayed in Fig. 15 for 10,000 permutations. 

There are many significant results for significance level α = 0.20. Significant results are highlighted in red and 

green to represent feature counts which are less than or greater than the expected value, respectively.

Prop. Less Than

Feature 1 → 1 1 → 2 2 → l 2 → 2

Week_0 0.0112 0.0014 0.0242 1.0000

Week_2 0.0003 0.0027 0.8007 0.9982

Week_4 0.0343 0.0147 0.9704 0.8966

Week_6 0.0000 0.0010 0.6394 0.9999

Week_8 0.4215 0.1361 0.9580 0.4345

Week_10 0.0191 0.0720 0.9498 0.9150

Week_12 0.0077 0.0620 0.8672 0.9909

Week_14 0.3705 0.5118 0.5392 0.6275

Week_16 0.7449 0.8022 0.1873 0.1810

Week_18 0.0084 0.0207 0.1630 0.9989

Week_20 0.9920 0.3603 0.0066 0.0947

Week_22 0.9892 0.3108 0.0066 0.2218

Week_24 0.9891 0.5031 0.0328 0.0014

Week_26 0.9212 0.7157 0.0631 0.0179
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