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Abstract

Natural metalloproteins perform many functions — ranging from sensing to electron transfer 

and catalysis — in which the position and property of each ligand and metal, is dictated by 

protein structure. De novo protein design aims to define an amino acid sequence that encodes 

a specific structure and function, providing a critical test of the hypothetical inner workings of 

(metallo)proteins. To date, de novo metalloproteins have used simple, symmetric tertiary structures 

— uncomplicated by the large size and evolutionary marks of natural proteins — to interrogate 

structure-function hypotheses. In this Review, we discuss de novo design applications, such as 

proteins that induce complex, increasingly asymmetric ligand geometries to achieve function, as 

well as the use of more canonical ligand geometries to achieve stability. De novo design has been 

used to explore how proteins fine-tune redox potentials and catalyse both oxidative and hydrolytic 

reactions. With an increased understanding of structure-function relationships, functional proteins 

including O2-dependent oxidases, fast hydrolases, and multi-proton/multi-electron reductases, 

have been created. In addition, proteins can now be designed using xeno-biological metals or 

cofactors and principles from inorganic chemistry to derive new-to-nature functions. These results 

and the advances in computational protein design suggest a bright future for the de novo design of 

diverse, functional metalloproteins.

TOC summary

This Review describes the de novo design of metalloproteins, which perform numerous functions 

essential to life. By understanding, the relationship between the symmetry of the protein structure 

and the metal active site, we can design novel, functional metalloproteins from scratch.

Introduction

Metalloproteins perform diverse functions that are essential to life, including electron 

transfer,1 transition metal ion transport/storage,2 gas sensing/transport3 and the catalysis 
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of difficult transformations.4 This impressive range of functions is performed with the 

limited toolbox of earth-abundant metals and biosynthetically accessible ligands. Given 

these limitations, the ability of proteins to control not only the primary coordination 

environment, but also the secondary and tertiary structure at the metal site is critical to 

success.5 De novo protein design can provide insight on all three levels of structure and 

allows us to build a knowledge base that should let us reproduce, or even surpass, the 

achievements of nature.6–11

Successful de novo design of metalloproteins requires an understanding of the relationship 

between the secondary and tertiary structure of the protein and the desired primary structure 

around the metal center. There is a push and pull between these factors: the protein 

superstructure can enforce a coordination geometry on the metal ion12 or the coordination 

preference of the metal ion can enforce its geometric preference on the protein tertiary 

or quaternary structure.13 De novo protein design can elucidate this push and pull,14 

and recapitulate the structural and functional properties of many metal centers seen in 

nature.7,15–17 Thereby, designers are now able to generate proteins using metal ions and 

metallocofactors not found in nature.

Different metalloprotein functions pose distinct challenges to the protein designer. The 

simplest designs are for structural sites, which serve to increase the thermodynamic stability 

of a protein. To achieve maximal stabilization, these sites tend to have coordinative 

saturation and idealized geometries with strong metal–ligand bonds.18 Similarly, highly 

stable ligand geometries are also often found in allosteric sites that respond to metal 

ion binding, such as Ca2+. A second challenge is the design of proteins that function in 

multiple states. These include electron transfer proteins, which tune redox potentials and 

minimize changes to the coordination geometry between different redox states – thereby 

lowering the reorganization energy, and tuning the electron transfer rate.19,20 Similarly, 

ligand binding proteins, such as those involved in O2 transport or small-molecule sensing, 

facilitate active site access for small molecules, feature vacant or labile ligand sites, and 

balance the energetics of the bound and unbound state.16 A final level of complexity is 

observed in catalysts that bind to and act on substrates such as small organic molecules.21 

In this case, a cavity must be introduced near the active site to accommodate the substrates, 

which is energetically destabilizing and requires a highly stable underlying tertiary structure. 

Stability can be achieved by precise positioning of polar residues within the binding site, 

which aid catalysis and binding. Moreover, the protein must be protected against undesired 

modification by strongly reactive species formed during turnover. Nonetheless, natural 

proteins commonly use these features to achieve a many challenging transformations with 

high regio- and stereo-selectivity, and de novo design is now beginning to scratch the surface 

of nature’s skill set.

Metalloprotein design

When beginning metalloprotein design, it is first necessary to have a clear vision of the 

function you wish to explore. The desired function leads to a proposed metalloprotein active 

site with appropriate geometric constraints and ligands. These constraints can be sourced 

informatically from databanks, such as the Protein Data Bank (PDB)22,23 or the Cambridge 
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Crystallographic Data Centre (CCDC ).24 Alternatively, they can be derived from quantum 

mechanical calculations on the metal site, which include its full ligand geometry and bound 

substrate(s).25 Here, a protein scaffold is selected that is capable of precisely positioning 

each ligand in the desired geometry. This entails: 1) identifying a protein tertiary structure 

capable of positioning sidechains appropriately and 2) stabilizing the fold and active site 

ligands in the appropriate geometry.

There are generally two distinct methods to achieve the appropriate tertiary structure: 

selection from a large library of natural proteins or to build the tertiary structure from 

scratch using mathematical parameterizations or fragment assembly. With respect to the 

first approach, we refer the reader to appropriate reviews on this subject.26–33 We focus 

on the second approach, de novo design, which most critically tests our understanding 

of both structure and function. Furthermore, some cofactor targets might not fit into any 

natural protein tertiary structure. For example, nature does not provide scaffolds that are 

appropriate for highly elongated cofactors with covalently linked multi-porphyrin or other 

porphyrin-cofactor assemblies; however, they can be accommodated in elongated helical 

bundles.34,35

Once a library of tertiary structures has been selected, a search is performed to identify 

sites that can precisely position the ligands in the desired geometry. This can be done in a 

forward direction — all the rotamers of the desired ligating residues at each possible site 

of the tertiary structure are scored against: a function that incorporates the energy of the 

rotamer; the agreement with the geometric constraints; and the spatial positioning of the 

metal ion.36,37 Candidates for convergent binding sites can be further filtered to ensure there 

are no steric clashes and the desired geometry has been achieved. An alternative approach is 

to begin with the metal ion geometry and build backwards to find positions where ligating 

sidechains can attach to backbone atoms in low-energy rotameric configurations (referred to 

as rotamer interaction fields).38,39 This approach is akin to the “inside-out” design approach, 

in which an idealized transition state geometry, known as a theozyme, is defined using 

density functional theory (DFT). An exhaustive search of known backbones (that is, PDB or 

parameterized coiled coils) is then performed to assess which backbone best accommodates 

the amino acid side chains necessary to stabilize the theozyme.40

Irrespective of the method employed, it is important to check that the site does not have 

accessible geometries that are lower in energy than the desired one. This consideration 

is particularly important for sites that bind metal ions in somewhat distorted or unusual 

geometries, which represents one aspect of the general approach of negative design. 

Wherein, not only the desired outcome needs to be stabilized, but also the undesired states 

destabilized.41–43

Even with the discussed constraints, the number of possible metalloprotein structures is 

large. This presents exciting opportunities for the designer, particularly as computational 

power increases. However, it also presents significant challenges to search and score the 

conformational space for plausible designs. Thus, most designs have emphasized the use 

of parameterizable protein backbones, which have structures that can be specified with 

a limited number of adjustable parameters (Box 1). Parametric approaches can identify 
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pools of hyperstability on the conformational landscape and allow for interrogation of 

the fundamental relationship between the metal ion and protein structure. Coiled coils 

and helical bundles are particularly easily parameterized, so it is not surprising that most 

work on the de novo design of metalloproteins has focused on these classes of tertiary 

structures.44

Coiled coil fundamentals

The straightforward parameterization (Box 1)45,46 and inherent symmetry47 of coiled 

coils allows the interplay between the protein and metal center to be explored without 

the complexity and ambiguity of more complex and irregular tertiary structures.48 The 

parameterization and symmetry of coiled coils has been reviewed elsewhere,49–51 so will 

only be described briefly here.

The most commonly observed coiled coils in nature52,53 have left-handed superhelical twists 

and are defined by a repeating seven-residue geometric repeat, (abcdefg)n (Fig. 1a–b).54 The 

sidechains of the a- and d-positions project towards the central axis of the bundle – they tend 

to be apolar and drive the assembly through hydrophobic interactions along the cylindrical 

core (Fig. 1a–b).41,55–58 However, the a and d positions can also harbor polar residues 

that serve as metal ligands in both natural and designed proteins. The e- and g-residues 

are generally partially buried at the helix-helix interfaces, where they can form stabilizing 

interactions with each other. The more exposed residues at the b-, c-, and f-positions often 

define the solubility properties.59 In metalloproteins, the e- and g-residues also frequently 

feature polar residues that form second-shell interactions with primary ligands at the a- and 

d-positions. The association state and topology (parallel vs. antiparallel) of the bundle is 

defined by a variety of features that include but are not restricted to: steric packing of a-, 

d-, e- and g-positions;60,61 buried H-bonding62–64 and metal-binding interactions at a- and 

d-positions; exposed salt bridges between residues at e-, b-, c- and g-residues;65–67 and the 

presence or absence of loops connecting the helices.68–70

If the helices are arranged in a parallel orientation, the idealized bundle symmetry is Cn 

(in which n is equal to the number of helices, Fig. 1c). The two most important adjustable 

parameters are the radius (R0), which affects the inter-helix distance, and the α-helical phase 

(φ1), which controls the twist of the individual helices relative to the super helical axis of 

the entire bundle. Additional parameters include the superhelical frequency (ω0) and pitch 

angle (α). In idealized coiled coils, the superhelical frequency is a constant defined by the 

difference between the alpha-helix geometry (100 degrees per residue) and the repeat of 

the coiled coil, and the pitch angle, which is a function of the radius and the superhelical 

frequency. Both of these parameters can be varied in the design of coiled coils that deviate 

from ideality. In parallel coiled coils, the interior facing a- and d-residues lie in alternating 

layers (Fig. 1a), in which planar arrays of metal-binding residues form (primarily Cys, 

His, Asp, and/or Glu, Box 2) and project from either of these two positions. The a- and 

d-positions differ in the orientation of their side chains and thus, the extent to which they 

pre-arrange the metal binding site. The Cα-Cβ vector of an a-position points toward the 

helical interfaces (Fig. 1g), and, thus, the Cβ-Cγ vector in the lowest energy rotamer points 

towards the center of the coiled coil to fill the cavity. Conversely, the d-position has the 
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opposite characteristics; its Cα-Cβ vector points towards the center of the bundle, while 

the Cβ-Cγ vector of the preferred rotamer points towards the helical interfaces resulting in 

significantly longer Cγ-Cγ’ distances (Fig. 1f).53 Thus, the introduction of, for example, a 

cysteine at an a- vs. a d-position is inequivalent with respect to the preorganized geometry 

for metal binding (see below).

The sidechains in antiparallel coiled coils pack into layers composed of residues from both 

a- and d-positions, which allows the design of more diverse metal coordination sites. For 

example, antiparallel four-helix bundles tend to place two a- and two d-residues at the 

corners of a square or rectangle (Fig. 1b). Idealized helical bundles with anti-parallel chains 

have Dn symmetry (where n is half of the number of helices, Fig. 1d) and two additional 

degrees of freedom (beyond R0 and φ1): the superhelical phase (Δφ0) and the Z-offset 

(ΔZoff), which again provides opportunities for diversification of the metal-binding site. The 

super helical phase controls the placement of the helices relative to one another about the 

super helical axis, and ΔZoff controls the position of Cα of one heptad position relative to its 

counterpart on an adjacent helix (that is, a vs a’), allowing helices to be slid up or down the 

Z-axis to attain better packing or metal-ligand interactions.

We emphasize the bundle symmetry because it defines the set of possible coordination 

geometries. In homomeric coiled coils, the idealized coordination geometry must contain 

a common symmetry element that is coincident with the approximate symmetry of the 

underlying alpha-helical bundle (Fig. 1e–f). For example, a metal lying on the C3-rotation 

axis running down the bundle of a three-stranded parallel coiled coil could occupy either 

a coordinatively saturated trigonal planar geometry, a tetrahedral geometry with one vacant 

site, or an octahedral geometry with ligands from two layers (Fig. 1e). The exact geometry 

will be determined by the metal ion, ligand choice, and ligand placement. In some cases, 

the protein fold will enforce a certain geometry on the metal center (entatic state),12 and, in 

other cases, the metal coordination will enforce a fold on the protein (allostery).13

Finally, it is noteworthy that, while many natural and designed helical bundles are far 

more asymmetric than a coiled coil, the overall rubric of the heptad repeat is often helpful 

to analyze helix packing and the local environment around the binding site. Moreover, 

although the 7-residue repeat of ideal left-handed coiled coils only have two interior-

facing residues (a and d), whose projection is restrained by the structure of the coil, the 

structure can be deliberately varied through insertions and deletions within a single heptad 

repeat.71–74 Greater diversity could also be achieved by using alternative ideal helical bundle 

geometries.54,75 Other, largely untapped idealized bundles include a right-handed structure 

with 11-residues per repeat (that is, three α-helical turns per repeat), which results in 3 

geometrically distinct, inwardly focused layers, and straight bundles with 18 residue repeats 

with five distinct internal layers.49,51,76,77

Examples in Nature

Biology has also exploited coiled coils extensively for the formation of metalloproteins 

that illustrate many of the above principles. These examples illustrate three tiers of de 

novo metalloprotein design difficulty: 1) structural stabilization, where the metal ion plays 
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an energetic role in assembly of the secondary, tertiary, and/or quaternary structure of 

the protein; 2) functional metal sites, in which the metal centre is capable of performing 

function beyond binding, such as electron transfer or small molecule binding, which require 

the protein to stabilize a particular, often non-preferred geometry at the expense of structural 

stability; and 3) catalytic active sites for organic transformations, in which binding sites for 

both the metal and an organic substrate must be carefully designed to achieve the desired 

reactivity.

A simple example involves the modification of bundles resembling classical parallel coiled 

coils. In the C4-symmetric K+ ion channel KCa3.1 (PDB: 6D42, Fig. 2a), a metal binding 

site is generated by the introduction of histidines at an a-layer. This placement generates 

a square planar (locally C4v) metal binding site that can be occupied by Cu2+, thereby 

inhibiting K+ conduction. In this case, the preferred coordination geometry of the metal 

center structurally stabilizes this His4 motif.

Since the symmetry of a bundle is consistent with any coordination geometry that contains 

the appropriate symmetry element, multiple distinct binding sites can be introduced (Fig. 

1). An illustration of this principle can be seen in the structure of the head and neck 

domain of the UspA1 protein (PDB: 3NTN, Fig 2b–2c).78 The presence of histidine residues 

at adjacent a- and d-positions of a parallel, three-helix bundle generates an octahedral 

coordination site for a nickel ion with the C3-axis going through the Ni ion and down the 

center of the bundle (Fig. 2b). Further down that same axis, a chlorine atom rests above 

the plane formed by three H-bonded asparagine residues at d-positions (Fig. 2c). One can 

readily envision a similar approach being used to generate a tetrahedral metal site with the 

threefold axis (and empty coordination site), again, running down the center of the bundle. 

Indeed, this approach has been used to great effect in de novo designed metalloenzymes (see 

below).

To achieve functional metalloproteins, deviations from the ideal symmetry frequently 

observed in structural metal sites is often necessary. For example, many natural heme-

containing helical bundles, such as cytochrome b in the cytochrome bc1 complex, have 

a specific structural motif.79–81 These electron transfer proteins contain one (or more) 

heme cofactors that are ligated by two His residues, which are located at d-positions 

on two pseudo-C2 symmetric (Fig. 2d) helical hairpins that may be the product of gene 

duplication.81 In each hairpin, one helix contains a ligating His, while the other can contain 

a Thr or Ser residue to accept a H-bond from the N∂ of the ligating His. This interaction 

helps lock the imidazole ring in the desired ligation geometry, and presumably also 

contributes to tuning the redox potential. In addition, Gly residues can be found following 

the Thr/Ser where the heme ring approaches the helix — these small residues are important 

in heme packing and overall function.82,83 Taken together, these motifs are responsible for 

tuning the redox potential of heme cofactor(s) and controlling electron transfer rate. To elicit 

functions such as gas sensing or C-H bond activation, nature has perturbed the symmetrical 

ideality of the binding site. Not only must there be an open (or labile) coordination site on 

the heme iron, but often the helical bundle tertiary structure must be considerably altered. 

Many catalytically functional 4-helix bundle heme proteins have a more asymmetrically 

positioned binding site, while others adopt a drastically different tertiary structure (that 
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is, globin-fold or PAS domains) to accommodate both a unique metal ligand sphere and 

substrate accessibility.84 From a design standpoint, this presents a challenge in building 

more advanced function in a helical-bundle scaffold.85

Non-heme diiron proteins are also commonly found in four helix bundles and demonstrate 

helical asymmetry as a strategy to introduce function.86,87 Many non-heme diiron proteins 

feature a similar, approximately C2V-ligand set of two histidines and four carboxylates. 

In bacterioferritins, which are used for iron storage, we see near ideal D2 symmetry 

of the bundle (Fig. 2e, PDB: 4AM2).88,89 However, although the coordination geometry 

is the same in enzymes such as soluble methane monooxygenase (sMMO) and toluene 

monooxygenase (TOMO),90 a bulge near the diiron center site lowers the helical symmetry 

(Fig. 2e, PDB: 6VK5).91,92 This destabilizing pi-bulge is essential to function as it fine-tunes 

the geometry and dynamics of the protein,93,94 and widens the helix–helix interface to 

facilitate access to the metal center for an organic substrate. This helical distortion is 

demonstrated by trapping reactive intermediates in a crystal state, thus elucidating the 

mechanism of toluene oxidation in TOMO (Fig. 2e, PDB: 5TDT).

In this review, we focus on de novo designed metalloproteins that provide insight into 

important structure–function relationships. The simplicity of their folds should help the 

reader appreciate the logic of de novo metalloproteins and provide a springboard for new 

investigators to participate in the nascent field of functional metalloenzyme design.

Three-helix de novo metalloproteins

One of the earliest and most illustrative examples of de novo metalloprotein design produced 

a model of the heavy metal binding protein MerR. This natural metalloprotein features 

an unusual trigonal planar ligation to Hg95 that could be reproduced in a parallel three 

helix bundle. This work illustrated the delicate interplay between protein fold, which can 

impose a geometry on a protein (entatic state), and metal preference, which can impose 

a conformation on the protein (allosteric assembly). The initial designs were based on the 

previously constructed CoilSer protein,96,97 which features four heptad repeats (Leua-Lysb-

Alac-Leud-Glue-Gluf-Lysg). Charge complementary Glu and Lys residues at the interfacial e- 

and g-positions encourage trimerization at neutral pH; a low pH disrupts these interactions, 

which leads to dimerization. The Leu residues at a- and d-positions form the hydrophobic 

core, while other residues were selected to improve solubility and helicity. The introduction 

of a coordinating ligand at either the a- or d-position facilitates the formation of buried metal 

coordination sites in peptides termed Tri-peptides.15 These designed scaffolds exemplify the 

first tier of design, that is structural metal binding sites where the metal controls assembly 

and stability.

Mercury has a very strong intrinsic preference to form a linear, two-coordinate geometry 

with soft thiolate ligands; the addition of a third ligand is generally unfavourable in 

aqueous solution unless enforced by a preorganized protein scaffold.95,98 In theory, protein 

folding could generate a high local concentration of thiolate ligands that are spatially pre-

arranged in a trigonal planar fashion (Fig. 1 and Fig. 3a–c). Computational modeling of C3-

symmetric coiled coils demonstrated that cysteines placed at a-positions form an appropriate 

Chalkley et al. Page 7

Nat Rev Chem. Author manuscript; available in PMC 2022 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



binding site, while those in d-positions diverged.98 Subsequent crystal structures of the a- 

and d-substituted apo-peptides confirmed these conformational predictions (Fig. 3a–b).99 

Consistent with the computational predictions and the crystal structures, “Tri”-peptides with 

cysteines at the a-position bind Hg2+ in a trigonal planar geometry when there is a 3:1 

peptide:Hg ratio. However, at lower peptide:Hg ratios or in conditions that favour dimer 

formation (that is, low pH), two-coordinate Hg species were observed.98 Similar species 

also occur using the peptide Tyr-Gly-Gly-(Iled-Glue-Lysf-Lysg-Ilea-Glub-Alac)4 (termed IZ-

peptide), which contains a cysteine substitution for isoleucine at the a-position of the third 

heptad, to affirm the generality of this result.100

On the other hand, Tri-peptides with cysteines at the d-position generate solely two-

coordinate Hg2+ ligation under all conditions.101 Furthermore, the introduction of a 

noncanonical D-cysteine at the a-position prevents trigonal coordination of Hg2+ (Fig. 3c), 

which is consistent with our previous discussion on the importance of the Cα-Cβ vector 

directionality; the D-amino acid essentially converts an a-site into a d-site (Fig. 1g–h).102 

These results all suggest that the free energy of protein folding (derived primarily from the 

burial of hydrophobic residues in the interior of the coiled coil) is sufficient to enforce this 

unfavourable geometry on the metal center. Consistent with this expectation, the rate and 

extent of trimerization is altered by peptide length, with longer peptides showing faster and 

more extensive trimerization. This finding is consistent with a greater expected free energy 

of folding deriving from the increased number of salt bridges and extent of hydrophobic 

burial in the longer peptide.103

These studies illustrate important fundamental features of metalloproteins; the structure 

is determined by a balance between the free energy of protein folding and metal ion 

ligation (determined by the favourability of the coordination number and geometry). These 

energies can be similar in magnitude and, depending on the context, can result in either 

protein-enforced metal geometry (entatic state) or metal-enforced protein fold (structural 

stabilization and allosteric assembly).104 Thus, As3+, unlike Hg2+, strongly prefers three 

soft, anionic ligands, which enables Tri peptides with three cysteines at either the a- or 

d-position to form trimers even at low pH. In this case, the free energy of metal-ligand 

binding is sufficiently large to compensate for: 1) an energetically unfavourable Cys rotamer 

required to adopt a trigonal geometry at the d-position, and 2) unfavourable electrostatic 

interactions within the trimer at low pH.

When the geometry of the metal binding site is not fully consistent with the protein packing, 

the free energy of metal ligation can play a dominant role to force an unexpected geometry 

on the bundle. One striking example is a homotrimeric peptide with a Cysa-X-X-Cysd-Glue 

in which the Glu at the e position, which would ordinarily be at an exterior-facing location, 

has moved into the interior of the protein to bind a Cd2+ ion, inducing a several-residue 

break in helical conformation (Fig. 3f–g). A similar Hisa-X-X-Hisd-Glue motif was shown 

to assemble a tri-Cu+ site in a parallel three-helix bundle with the preferred tetrahedral 

geometry of Cu+ accommodated by recruitment of a second Glu ligand from another 

bundle.105 These findings show how peptides can be used as multivalent ligands that 

assemble to create binding sites that are not always fully anticipated, just as coordination 
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chemists have long used designed ligands to assemble multimetallic complexes in either an 

empirical or programmatic manner.106–108

The balance between folding free energy and metal-ligand binding free energy can also be 

used to drive large predetermined conformational changes in protein folding upon metal 

addition. Negatively charged Asp residues can be introduced into a canonically hydrophobic 

layer (d-position) of a parallel three helix bundle, to break the helix and form a loop 

stabilized by an N-capping interaction with the Asp residues. However, this shorter bundle 

can be switched to a more extended bundle motif by the addition of Ca2+, which stabilizes 

the interior-facing Asp residues by metal coordination.109 These results demonstrate that 

designers can use structural metal sites to select a desired fold through the choice of metal 

ion, as biology does in proteins such as calmodulin and related EF-Hand proteins.110

As noted in Figure 1e, a particular fold symmetry (for example, antiparallel bundle 

in D2) is consistent with any coordination geometry (for example, square planar) that 

contains a common symmetry element (for example, a C2 axis down the center of the 

bundle). This principle is well-illustrated by Cd2+ binding studies.111–114 Cd2+ prefers a 

tetrahedral geometry and, as a consequence, both trigonal planar (CdS3) and tetrahedral 

(CdS3(OH2)) coordination modes, which both contain a C3-axis, are observed in the parent 

Tri-peptide.111–114 By lessening the steric bulk in the hydrophobic layers adjacent to the 

metal binding site or even in remote layers, a void is created which results in increased 

occupancy of water in the protein interior and a complete conversion to the intrinsically 

preferred tetrahedral geometry, at the expense of backbone stability.115 In this way, we can 

start to see that both the ligands and the hydrophobic core are critical to facilitate the entry 

of potentially reactive substrates, a prerequisite to catalysis.

Using the full pallet of protein ligands, it is possible to engineer a wider variety of 

functions. Early work demonstrated that the introduction of a single histidine layer into 

the hydrophobic core of a protein could also generate trigonal binding sites akin to those 

in native metalloproteins.116,117 Binding of an apical water at these C3-symmetric sites can 

also generate a pseudo-tetrahedral metal center similar to the active sites of Zn2+-containing 

carbonic anhydrase118 and Cu nitrite reductase.119 Therefore, de novo metalloenzymes in 

non-native folds can recapitulate the activity of native enzymes, if the primary coordination 

sphere is appropriately recreated (Fig. 3d–e).19

Histidine has a longer side chain than cysteine, therefore a larger superhelical radius 

(R0) is necessary to accommodate this ligand. The expanded radius worsens the packing 

of the hydrophobic core resulting in weak metal-ligand binding.116,117 An additional 

tris-thiolate Pb site can be introduced as a structural metal site to stabilize the overall 

fold to allow crystallographic characterization.120 Nonetheless, in the crystal structure, 

increased B-factors (a measure of atom mobility, Fig. 3d) are observed for one helix in 

the tris-histidine binding site, which suggests local dynamics. The increased flexibility near 

the Zn2+ site may be critical to enable catalysis given the lack of an obvious substrate 

pocket in the hydrophobic core. These de novo metalloenzymes are capable of both carbonic 

anhydrase and ester hydrolase reactivity with observed rates within an order of magnitude 

of the natural protein. Although, an elevated pH is required (optimal at 9.5), a potential 
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consequence of an absent secondary coordination sphere. Thereby, as the enzymatic activity 

is only minimally perturbed by the relative or absolute placement of these sites within 

the coiled coil, it suggests that the activity is largely dictated by the primary coordination 

sphere.121

Related peptides with a histidine layer, but without a structural metal site, were used 

to model Cu nitrite reductase.122 Unlike the native enzyme — in which the primary 

coordination sphere is generated by histidines that are on loop regions — the predictable 

secondary structure of the coiled coil motif allows for systematic variation of local 

residues.123 Thorough studies were performed on the effect of exterior charged residues,124 

of proximate steric bulk,125 of histidine methylation,126 and of helical distortions on 

catalytic activity.74 Although, only relatively minimal improvements in catalytic activity 

were observed, these studies demonstrate the potential of high symmetry scaffolds for 

interrogation of fundamental structure-function relationships. Moreover, they illustrate key 

design principles to control the function of designed metal binding sites.

Three-stranded parallel coiled coils are also amenable to the generation of octahedral 

binding geometry. Substitution of the Ile with His at adjacent a- and d-positions in the third 

heptad of their IZ-peptide allows the coordination of divalent first row transition metals.127 

Peptides can also be designed with similar symmetries to bind xeno-biological metals 

with biomedical applications.44 The introduction of Asp and Asn mutations at adjacent 

a- and d-positions on the five-heptad repeat (Ilea-Alab-Alac-Iled-Glue-Asnf-Lysg) produce 

a pseudo-octahedral, C3-symmetric, tri-anionic binding site (Fig. 4a) suitable for selective 

coordination to oxophilic trivalent lanthanide ions (for example, Tb3+, Gd3+).128 A helical 

position and steric bulk in the hydrophobic core has a significant effect on hydration and, 

in turn, on the physical properties of the lanthanide ions.129–131 These lanthanide-bound 

coiled coils have significant potential for application in imaging technologies and translate 

the discussed principles of symmetry and coiled coil formation for the preparation of new-

to-nature metalloproteins with novel applications.

An alternative geometry, the domain-swapped dimer (DSD), allows for the self-assembly of 

three-stranded coiled coils and has been adapted for the de novo design of metalloproteins. 

The original designed protein (PDB: 1G6U) features two domains each consisting of a 

long straight helix and a short straight helix connected by a loop. Dimerization results in 

the two short helices arranged such that their N-termini come together at an interface and 

pack against the two longer helices, creating two abutting three-helix bundles related by 

a C2-axis orthogonal to the helical bundle axis.132 This two-fold symmetry can generate 

metalloproteins with two metal sites at well-controlled distances (Fig. 4b). In particular, the 

introduction of four Cys residues on each peptide allows for the coordination of two 4Fe-4S 

clusters whereby the Cys placement controls the inter-cluster distance, which, in turn, effects 

the electronic coupling and the redox properties.133,134 The replacement of one of the Cys 

with Leu or Ser causes selective formation of a 3Fe-4S cluster135 that mimics the inactive 

state of aconitase.136

All of the systems discussed thus far have been homooligomers; however, the ability 

to fine tune such designs are inherently limited, because any change in sequence is 
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necessarily propagated on each element. While such high symmetry is useful for the 

construction of metalloproteins, particularly for generating idealized binding sites, the 

introduction of asymmetry is often highly beneficial to function. One solution is to 

develop heterooligomers. However, careful design is necessary to avoid the entropically 

favourable formation of statistical mixtures. Work on non-metal containing scaffolds suggest 

that electrostatics could be used to encourage heterotrimerization.137,138 In addition, a 

complementary packing arrangement in which a large tryptophan would preferentially pack 

against two small residues (that is, Ala) can overcome the entropic penalty of selectively 

forming A2B heterooligomers (Fig. 4c).139 An approach that was exploited in trimeric coiled 

coils featured the non-canonical amino acid, γ-carboxy-glutamate, bound to Eu3+.140

Recently, specific heterooligomeric Tri-peptides have been developed that form by packing 

Leu against Ala in the layer above or below the tris-Cys binding site. Quantum mechanical/

molecular mechanical calculations suggest that hetero-oligomerization is not only stabilized 

by the energetics of knobs-into-holes packing (Fig. 4d), but also by the formation of a cavity 

that allows the penetration of water molecules into the interior that can then H-bond with 

the Cys ligands. Thereby, a metalloenzymatic site was introduced into these heteroligomers 

to further study Zn carbonic anhydrase mimics. The asymmetry now allows comparisons 

of catalytic performance between systems that are mono-, di-, and tri-substituted in the 

secondary coordination spheres. Consistent with the native enzyme, the best catalytic 

performance is observed when a single Thr is introduced.141 This work shows the power 

of asymmetry to achieve function in de novo metalloenzymes.

A more general approach to achieve asymmetry is to loop secondary structure elements into 

single-chain proteins. This topology renders the entire sequence independently designable. 

Moreover, well-chosen loops can enhance the stability of the desired fold, potentially 

mitigating the destabilizing effects of introducing polar residues or cavities into the 

hydrophobic core. However, to connect two helices with short loop sequences they must be 

antiparallel to one another. Therefore, a parallel, C3-symmetric bundle is no longer possible. 

Indeed, the helix-loop-helix-loop-helix motif are only pseudo-Cs (that is, with a σH mirror 

plane and no other symmetry elements relating the ligating atoms) if the chirality of each 

helix and the loops themselves is omitted; thus, the looped systems are truly C1 symmetric, 

and their sequence design space is consequently far larger, which makes the design more 

reliant on computation than the symmetric systems discussed previously.

Alpha-3d is a de novo designed, 73 residue protein consisting of three helices and 

two loop regions and was one of the first structurally characterized de novo proteins 

(Fig. 4d).142 A tris-Cys heavy metal binding site could also be introduced into this 

protein through mutations of three hydrophobic residues to Cys.143 Consistent with the 

lower protein symmetry, the metal centre, Hg, adopted an approximately Cs-symmetric, 

T-shaped geometry;144 the loops provide additional flexibility to the design of coordination 

geometries. The introduction of a fourth Cys into alpha-3d, in this case originating from one 

of the loops, allows a pseudo-tetrahedral site to form that can bind Fe. This protein mimics 

the active site of rubredoxin and indeed closely matches the spectroscopic parameters for 

the native protein. However, this non-native fold does not provide the extended H-bonding 

network observed in the native beta-hairpin loop environment. Thereby, the redox stability 
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of the construct is reduced, again emphasizing the importance of the secondary coordination 

environment on function.145 As expected, fully asymmetric binding sites can now also be 

designed. In particular, a partially functional red-Cu site (two His and one Cys ligand) can 

be recapitulated in a non-native fold.146–148

Functional 4-helix metalloproteins

The de novo design of four-helix bundles has greatly impacted our understanding of natural 

metalloproteins and has set a strong foundation for the development of novel functions. 

Four-helix coiled coils are prevalent in nature as dinuclear metal and heme-binding sites. 

Many native dinuclear metalloproteins, with otherwise low sequence homology and diverse 

functionality, feature a Glua-Xxxb-Xxxc-Hisd motif in which two copies of this motif 

are incorporated in a four-helix bundle with approximate D2 symmetry.149,150 The low 

sequence homology, diverse function, and relatively high symmetry of the fold provided an 

excellent test of de novo design to produce well-structure, functional metalloproteins from 

scratch. Proteins can now be designed that model the cofactor environment in dinuclear 

metallonenzymes, such as ribonucleotide reductase (RNR), TOMO, and MMO, which 

feature Glu/Asp and His ligands in four-helix coiled coils.17

The first design, DF1 (Due Ferri 1), consisted of the self-assembly of two non-covalently 

associated helix–turn–helix motifs to form a four-helix bundle.150 On each helix–turn–helix, 

two Glu residues were placed at a-positions and one His was placed at a d-position (Fig. 5a, 

although DF1 was not originally designed as a coiled coil, the heptad nomenclature is useful 

to illustrate approximate positions of sidechains). These residues provide a Glu4His2 binding 

environment around two metal ions (Fig. 5b) reducing the D2 symmetry of the bundle to 

C2. Additionally, an Asp residue was placed in an intermediate g position as a second-shell 

H-bond to the His ligand. Along with these polar residues, the adjoining hydrophobic core 

was packed as tightly as possible to maximize the stability of the bundle and had polar 

residues at exterior positions.150 This protein was stable and well-folded; however, it did not 

allow access for substrates other than the dimetal cofactor. Therefore, a Leu residue — that 

sterically prevents cofactor access — was mutated to either Ala or Gly to open a channel to 

allow binding of small substrates to the di-Mn or di-Fe centers. However, these mutations 

lowered the amount of solvent accessible surface area that was buried upon folding, which, 

in turn, destabilized the protein.151 These data demonstrated that in both designed and native 

metalloenzymes other elements of the protein must stabilize the inherently destabilizing 

elements necessary for function.

The active sites of metalloproteins are generally fully asymmetric, as required for 

function. One approach to the de novo design of less symmetric proteins is to generate 

heterotetramers. A combinatorial approach can assess the effects of mutations on the oxidase 

activity of the diiron protein with a model substrate, such as 4-aminophenol.152 In this 

reaction, the diiron site alternates between the diferric and diferrous states, to oxidize the 

substrate and reduce O2 to peroxide, in a mechanism analogous to that for manganese 

catalases.153 To avoid formation of misassembled heterotetramers, a fully automated design 

algorithm was developed to consider favourable interhelical interactions, and interactions to 

destabilize other potential topologies termed “negative design.” Negative design is now a 
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frequent consideration in the de novo design of proteins,43,154–157. Often “positive” design is 

engaged in the initial design, and the ability of the polypeptide to adopt any alternative folds 

is tested at the end of the design process using ab initio folding prediction calculations.158 

These in silico experiments give a glimpse of a polypeptide chain’s folding preference 

derived in their apo-form. However, in cases where an explicit design criterion is to stabilize 

one tertiary structure over an alternative, these assessments can be built into the design 

process. A clear example is the design of the four-helix, antiparallel Zn2+-H+ transmembrane 

antiporter, Rocker.156 The high symmetry D2 version of this fold would generate a stable 

di-Zn2+ protein and prevent ion flux. In contrast, a design that preferred the lower-symmetry 

C2-state would allow for two symmetric energy wells, in which each well only had a single 

coordinated Zn2+, with the D2 state now a high-energy intermediate. In this way, Zn2+ could 

flow along a concentration gradient through the bundle and across the membrane. Thus, 

the two symmetry states are defined by different backbones and by different metal-binding 

constraints, whereby the favourability of the D2 vs the C2 state for a given polypeptide 

sequence could be assessed by molecular dynamics free-energy calculations.159

As discussed for three-helix bundles, symmetry can also be lowered by generating a single 

chain version of the protein (DFsc; DF single chain). By adding loop motifs, DFsc, such 

as the aforementioned heterotetrameric DF proteins, is suitable for ferroxidase reactivity, 

such as the oxidation of 4-aminophenol to the iminequinone.160 However, the loops instill 

considerably greater stability and, along with extending the helical chains, compensate for 

the destabilizing Gly mutations that are critical for substrate access. During design, it is 

important to consider the incorporation of an extended, well-packed hydrophobic core and 

appropriate loops to better stabilize the desired functional region of the metalloprotein.

Ultimately, a fully asymmetric binding site was designed by introducing a third His ligand, 

to mimic the active site of AurF.161 This substitution decreased ferroxidase reactivity and 

turned on aniline hydroxylation, akin to the native protein.162 These data provided evidence 

that these de novo designed enzymes are operating by the same rules that dictate the 

reactivity of native metalloenzymes supporting the contention that they can be used to 

discover fundamental structure–function relationships.

There has also been significant progress in the design of proteins that bind a variety of 

metal ion clusters120,163–165 that are structurally and functionally different from the diiron 

site featured in the DF proteins. In particular, several groups have adopted the well-known 

Cys-Xaa-Xbb-Cys (CXXC) binding motif, which is found in several unrelated proteins, 

to generate de novo designed ferrodoxin models166–169 that recapitulate the C2-symmetry 

of the natural active site first identified by Dayhoff in the 1970s.170 A related approach 

binds a Ni2+-(μ2-S•Cys)-[Fe4S4]2+ cluster in an attempt to model the A-cluster in carbon 

monoxide dehydrogenase.171 Moreover, a short heterochiral peptide with alternating L- 

and D-amino acids that uses the CXXC motif can form 4Fe-4S clusters that show robust, 

reversible electron transfer.172 This same CXXC motif has also been adapted to form other 

metalloclusters, including a multinuclear Cu+ binding site in four-helix bundles.173,174 In 

addition, by combining a CXXC motif with an HXXH motif on the two neighboring 

helices a binuclear, purple copper site can form that mimics the CuA site in cytochrome c 

oxidase.175 Designs also include four helix bundles that coordinate 4Fe-4S clusters without 
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relying on the natural CXXC motif176–180 including examples that can assemble and transfer 

electrons in vivo. 179,180 It is important to note that these latter designs used physical force 

fields rather than statistical machine-learning based approaches.181,182

In all of the aforementioned metalloclusters, the metal incorporation and ligand composition 

were confirmed with spectroscopic data; however, high-resolution structures of the protein 

complexes were not obtained. Examples that have been structurally characterized are 

particularly notable and useful for elucidating design principles. For example, the careful 

incorporation of carboxylate and histidine ligands into a D2-symmetric four helix-bundle 

can stabilize a tetranuclear Zn cluster. This cluster was stabilized through a complex design 

of second and third-shell H-bonding interactions, demonstrating how the numerous ligands 

necessary to support clusters can be challenging to accommodate in such scaffolds.183,184

Proteins featuring multiple metals are also important in the context of protein–protein 

interface design. These interfaces can be stabilized and/or templated by the careful 

introduction of appropriate ligands on two or more different protein elements. Important 

work has been done in this area in the redesign of the surfaces of natural proteins both to 

bind xeno-biological metals185 and to generate reactive sites.186,187 Particularly interesting 

from the perspective of symmetry are the large protein assemblies that can be generated by 

the appropriate choice of metal and ligands on protein surfaces.32,186,188,189 The strategy 

of using metals to control protein–protein interfaces can also be employed in de novo 

designed proteins, such as to design helix-loop-helix motifs (that is, helical hairpins) that 

homodimerize in the presence of Zn2+ (Kd of 4 μM without Zn and 30 nm with Zn).164,190 

This protein was later evolved to be a highly functional esterase191 and Diels alderase25 (see 

below).

In addition to direct ligation of metal ions by amino acids, many natural proteins feature 

biosynthetically generated cofactors to ligate metal ions. The canonical example, as 

discussed above, is heme B (Fe protoporphyrin IX). These cofactors are important in 

ligand sensing and transport, electron transfer, and substrate oxidation; this wide array 

of functionality demonstrates the influence of the protein microenvironment on tuning 

heme function. While there have been many successes in developing functional synthetic 

porphyrins,192,193 simplified de novo designed proteins provide excellent scaffolds to 

understand the complexities of natural hemoproteins. Moreover, it allows us to build on 

our understanding to develop new functionalities. However, before delving into designed 

proteins that bind porphyrins, we wish to also mention the success of hemes with 

covalently bound peptides, which recapitulate many aspects of larger proteins, including 

heme peroxidase activity and has been reviewed in the literature.16,194,195

As discussed, many natural heme-proteins contain bis-His binding sites within a four-helix 

bundle, therefore this strategy was applied to design de novo heme binding proteins, 

which presents the additional challenge of burying the bulky cofactor while maintaining 

a well-packed interior. The C2-symmetric bis-His binding motif can be used to prepare 

synthetic helix-turn-helix peptides that assemble into four-helix bundles.196,197 The Leu-rich 

α2 homodimeric peptide was used as the parent scaffold and a His residue was placed 

at a d-position — a bound heme cofactor would sit in the middle of the bundle with 
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negatively charged propionate groups poised to interact favourably with Arg residues on the 

loop region. Additionally, two buried Leu residues were changed to smaller Val residues 

and another Leu was changed to an Ala to accommodate the bulky heme group. In the 

presence of stoichiometric heme, the peptides assembled into the desired 2:1 (peptide:heme) 

stoichiometry. Practical placement of ligating His residues along with carving out ample 

space was sufficient to convert a Leu-rich protein into a heme protein. Subsequently, design 

principles were used to engineer proteins that modulate the heme redox potential by over 

100 mV, elucidating the motifs necessary to help control the thermodynamics and rates of 

electron transfer.198

Building upon this work, functional heme-binding maquettes were developed.198 Starting 

with the heptad repeat Leua-Glub-Gluc-Leud-Leue-Lysf-Lysg an a-position was replaced 

with His to bind two heme cofactors with bis-His ligation within a four-helix bundle.199 

Heme in this D2-symmetric, coordinatively saturated ligand environment is not capable of 

binding external ligands, such as CO or O2; however, taking inspiration from the natural 

heme-protein neuroglobin, an entatic state was engineered into the scaffold. The binding of 

a single heme cofactor rotates the helices to achieve bis-His ligation, deliberately burying 

three destabilizing Glu residues, weakening one of the His ligands (Fig. 5c). Exposing 

this scaffold to O2 allows for the reversible formation of an oxy-ferrous heme species in 

which the displaced His ligand likely acts as a distal H-bond donor, as is often seen in 

natural hemoglobins. This H-bonding interaction is vital for stabilizing the oxy-ferrous heme 

(Fe2+-O2) without oxidizing Fe2+ to Fe3+ and releasing superoxide. Reducing the symmetry 

around the heme center stabilized this oxy-ferrous state for tens of seconds before oxidation 

occurs and showed that the complex globin fold is not necessary for reversible dioxygen 

binding. In addition, it showed the necessary design of purposeful instability around the 

metal site to elicit function.

Subsequently, the type C heme-binding maquettes could be assembled in vivo using the 

native biological machinery for cofactor insertion.200,201 Moreover, these maquettes served 

as malleable platforms for the development of catalytic systems that featured spectroscopic 

and mechanistic similarities to native enzymes.202 Given the lack of engineered substrate 

binding site, this protein is unsurprisingly active with many substrates, a feature that might 

have been characteristic of early metalloenzymes. Subsequently, this de novo platform could 

also perform abiological reactions, such as carbene transfer,203,204 which have been a recent 

focus for directed evolution work.205 This demonstration provides exciting support for the 

prospect that de novo proteins may provide excellent launching pads for optimization via 

evolutionary techniques (see below).

De novo designed proteins often use simplified symmetric scaffolds; however, the ability to 

move away from symmetry and design fully asymmetric de novo sequences provides a path 

to new-to-nature function. One initial strategy uses binary (polar/nonpolar) patterning of a 

helical bundle to develop combinatorial libraries of sequences.206–208 A general strategy for 

protein design follows the assumption that the ability of a sequence to form a secondary 

structure will suffice to drive a polypeptide to fold into a compact, native-like structure. 

Essentially, the formation of compactly folded structures does not require the explicit design 

of specific inter-residue contacts— only the sequence location, not the identity, of polar and 
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nonpolar residues must be specified explicitly. Using this strategy, libraries of well-folded 

four-helix bundles were developed. While the scaffold had D2-symmetry (with respect to 

the helical backbone), these single chain proteins were fully asymmetric with respect to the 

sequence. They then applied this strategy to the design of heme proteins by placing His 

and Met at a buried position within the bundle.209 With this protein library, 15 of their 

30 sequences were found to bind heme, the best of which bound heme with surprisingly 

strong affinity (KD = 0.7 μM). Moreover, some of these heme-binding sequences functioned 

as peroxidases, which suggests that binary patterning may have been a first step in the 

evolution of functional metalloenzymes.

Despite over two decades of work on de novo designed heme-proteins, high-resolution 

structures had not been solved prior to 2019. Atomic-level structural information allows 

us to assess the success of our designs. Moreover, natural metalloenzymes control their 

substrates very tightly to achieve both high rates and specificity, even small deviations from 

the desired geometry can result in sluggish catalysis.40 Thus, sub-Å accuracy is necessary, 

if we aspire to native-like catalysis. To address this issue of structural non-uniqueness, 

a strategy found in nature was applied to computationally design a structurally unique 

cofactor-binding protein (PS1). Starting from a D2-symmetric bundle backbone, an “Enfold” 

strategy was implemented to produce a well-packed protein (Fig. 6a–b).210 Instead of 

focusing on the symmetry of the structure, emphasis was placed on maintaining a well-

packed apolar core distal from the binding site to ensure a well-structured protein. This 

folded core was treated as an extension of the primary and secondary-shell interactions 

with the cofactor and therefore the entire sequence was optimized in unison. To assure 

tight coupling between the fold of the core and the structure of the binding site, the 

amino acid sequence was designed using a sidechain repacking algorithm along with a 

flexible backbone design — both of which are implemented in the versatile computational 

design program Rosetta.9–11,211,212 A sequence was designed from scratch to bind an 

abiological Zn-porphyrin in an asymmetric binding site containing one His ligand (placed 

in a d-position). Remarkably, the first sequence designed not only folded and bound the 

cofactor, but it also yielded the first high-resolution NMR structure of a porphyrin-binding 

protein. The structure was in agreement with the design, with a helical backbone RMSD of 

0.8 Å relative to the design. As designed, the structure of the apo-protein had a well-packed 

core that positioned a more flexible binding site for facile entry of the cofactor. This was 

consistent with ab initio folding calculations on the apo-protein sequence, that predicted the 

fold of the well-packed core with greater accuracy than the binding site. Indeed, the protein 

was so well-packed, that both the holo-and apo-proteins were hyper-stable, with Tm > 100 

°C.

Subsequently, a related backbone was used to build a multi-domain protein that included the 

porphyrin binding site from PS1 and the diiron binding site from the DF family of proteins 

(discussed above). This work used a bioinformatics approach based on Master searches 

(Box 3)4 to find the most designable links between two helical domains with significantly 

different architectures. The backbone changes that occur upon porphyrin binding were used 

to allosterically regulate the catalytic rate of the di-Fe sites.35
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Using the Enfold strategy, the protein, MPP1, could be designed to bind a synthetic Mn-

diphenylporphyrin, and stabilize a high-valent Mn5+-oxo species to perform sulfoxidation 

chemistry.213 Moreover, this was the first crystallographically characterized porphyrin-

binding protein, giving the exact position of the metal ion relative to the protein and location 

of aqua ligands and associated water molecules within the binding site (Fig 6c–e). As was 

the case for the DF proteins, it was important to introduce an access channel connecting 

the outside to the binding site. Therefore, to engineer function into the designed scaffold, 

a dioxygen unit was used in the open coordination site on the Mn center during design to 

ensure adequate space for two oxygen-atoms during catalysis. This further desymmetrized 

the bundle, maintaining access for oxidants and substrates. In fact, the crystal structure 

showed two structural water molecules sitting at the same Mn-O-O angle that was used 

in the design (Fig. 6d). This designed void likely had a destabilizing effect on the bundle, 

so highly designable loops were used to maximize backbone stability. Moreover, it shows 

the importance of substrate access as a design motif that can be implemented and tuned 

for a desired function. When considering catalytic function, both the metal and substrate 

binding sites should be explicitly designed to ensure the sequence properly accommodates 

the cofactors. In fact, MPP1 was highly specific, binding only the porphyrin of interest and 

preventing the strongly oxidizing Mn5+ species from deleterious reaction with the protein 

or the porphyrin ring. Taken together this work illustrates how the ability to design binding 

sites with sub-Å precision can be harnessed to program the function of O-atom transfer in a 

highly restrained environment.

Beta-sheet de novo metalloproteins

Most de novo designed proteins, including metalloproteins, are based on helical bundle 

motifs due to the deep understanding of the structure and folding of these proteins. However, 

other secondary structure elements, such as β-sheets, are also used extensively by nature in 

the construction of metalloproteins. The simplest β-strand containing motif is the β-hairpin, 

which features two β-strands connected by a reverse turn. This structure has been employed 

as a simple building block in the de novo design of metalloproteins.

The first de novo metalloproteins to use this motif were rubredoxin mimics. The β-hairpin 

motif is pseudo-C2 symmetric and provides a highly organized primary and secondary 

coordination sphere in the natural protein. With de novo design it has been shown that 

these functional qualities can be reproduced despite new-to-nature sequences, if this tertiary 

structure is maintained.166–169,172

β-hairpin motifs can also be adapted to the de novo design of metalloproteins not typically 

encountered in this fold. In particular, initial de novo designed, membrane-bound beta-

hairpin motifs for heme binding yielded mini-peptides (that is, 8 residues) featuring a single 

His ligand.214 Later designs were extended to feature a pair of β-hairpins each donating 

a ligating His.215,216 By combining more β-hairpins (up to twelve β-sheets), ensembles of 

multiple hemes could be assembled in a controlled fashion.217 Structural characterization 

of these β-hairpin proteins by NMR provides insight into how flexibility and coordination 

number can affect functional properties such as electron transfer or peroxidase activity.218
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The edges of β-strands are often considered to be “sticky” and, thus, can lead to 

the aggregation of β-sheets into an amyloid structure. By controlling the nature of 

aggregation, short peptides can generate large scaffolds. Ligating residues (that is, His) 

can be introduced into these peptides to create catalytically active amyloids, including 

Zn-dependent hydrolases219 and Cu-dependent oxidases.220 High resolution structures of 

these amyloids were determined by solid-state NMR and showed that in addition to the 

translational symmetry inherent to the amyloid, the stacked sheets packed back-to-back 

generating an C2 symmetry axis (Fig. 7a–b).37 The introduction of a hydrophobic Phe into 

such peptides also allowed them to bind hemin and mediate catalytic cycloproponation.221 

These results demonstrate the versatility of simple scaffolds for generating metalloenzymes.

Alternative, beta-sheet based architectures may also prove useful in the context of de 

novo protein design. Ancestrally reconstructed beta-propellor proteins can be useful in 

the stabilization of unusual Cd chloride nanocrystals.222–224 The high symmetry of beta-

propellor proteins and the open pore generated by their funnel-like shape provide an 

opportunity for further metalloprotein design. Moreover, a number of common natural 

protein folds combine beta-sheets with alpha-helices. One such example is the triose 

phosphate isomerase (TIM) barrel, which features 8 external alpha helices and 8 internal 

beta-sheets creating a pseudo-C8 axis running down the center of the barrel. Recently, the 

de novo design of a TIM barrel with C4 symmetry225 was extended to the design of a 

metalloprotein (Fig. 7c).226 In this case, the Tb3+ metalloprotein features a C4 coordination 

geometry consisting of four Glu ligands with a symmetry that lowers to C2 on consideration 

of the secondary coordination sphere (Fig. 7c).

Outlook

This Review describes the extent to which we have progressed in achieving an active, 

working knowledge of metalloproteins, by formulating and executing a set of chemical 

and engineering principles. As we have come to understand metalloproteins, we have 

become increasingly successful in designing them from scratch — rather than by modifying 

natural proteins. Designed proteins test our hypothetical understanding of metalloprotein 

function and can ultimately serve as starting points to design useful catalysts. In the above 

sections, we focused on simple parametric protein backbones to illustrate the principles 

of metalloprotein design. Nonetheless, we have already seen that by beginning with a 

hypothesis concerning the metal, the geometry of first/second shell-ligands, and solvent/

substrate accessibility a metalloprotein can be imbued with the desired functionality. Indeed, 

a simple diiron site can be systematically modified to catalyse two- or four-electron 

chemistry, resulting in drastically different products starting from similar substrates.17,162 

In addition, the midpoint potentials, binding and reactivity of hemes can be modulated over 

a wide range to create multiple functions.198 However, we are just scratching the surface 

of what is possible, given the remarkable versatility of proteins and their ability to create 

myriad ligand geometries, dynamics and auxiliary binding sites. Surely, there is much more 

to be accomplished by a new generation of protein designers and inorganic chemists.

Even within the geometric space of helical bundles, metalloprotein designers have not 

strayed far from the idealized left-handed bundles and coiled coils. Other geometries 
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such as right-handed coiled coils or straight bundles offer opportunities for the design of 

novel binding sites.49,51,76,77 De novo design of metalloproteins outside of the context 

of coiled coils opens up even more possibilities. This is emphasized by the design of 

rubredoxin mimics that use the pseudo-C2 symmetric beta-hairpin motif of the natural 

protein.166–169,172 The highly organized primary and secondary coordination sphere 

provided by the beta-hairpin motif improves the reversibility and O2-stability of these 

rubredoxin mimics compared to those designed in helical bundles, which demonstrates 

the importance of tertiary structure on function. These successes and the recent de novo 

design of natural topologies such as TIM barrels (including a metalloprotein)225,226 and 

beta barrels,39,227 in addition to non-native folds228,229, should encourage metalloprotein 

designers to explore more diverse folds and, consequently, active sites.

As we have discussed, deviations from ideality are often used by natural proteins to shape 

the active site or to correctly position ligands.71,73,74 Nonetheless, design strategies for 

incorporating deviations, such as pi-bulges or substrate-access channels, are thus far limited, 

but hold potential for dramatically increasing the design space. One possible approach 

is to start from an ideal backbone but introduce constraints (that is, metal-ligand bond 

distances or angles) that will strain the local backbone, thereby introducing the deviation. 

Alternatively, a bioinformatics approach could be used to position a deviation, for example 

a pi-bulge in an ideal backbone, such as an alpha-helix, before the design begins. Using 

the Enfold strategy to offset the instability of these deviations, a well-packed core can 

be added distal from the active site. Statistical scoring methods to designing proteins will 

inherently score such designs poorly because of their relative infrequent occurrence in 

natural proteins; however, as we have stressed, such deviations are often key to function. 

Thus, alternative approaches to assess the stability of non-ideal secondary structures, such as 

the use of molecular dynamics or methods that use physics-based scoring functions, may be 

particularly valuable to assess if such geometries are reasonable.

In addition to new topologies, new active sites can be explored. Already there has been 

success in the de novo design of active sites featuring xeno-biological metals including 

lanthanides44 and titanium,230 as well as a demonstration that helical bundle formation 

can be used to guide the reactivity of di-rhodium metallopeptides.231,232 However, by 

adapting rules derived from synthetic inorganic chemistry, an abundance of xeno-biological 

active sites should be readily accessible. Moreover, the broad success in designing proteins 

for non-natural heme derivatives35,196,197,199,210,213 suggests that de novo protein design 

could be used to tailor the reactivity of a broad range of organometallic species. Lastly, 

improvements in both peptide synthesis233 and protein expression234–236 increasingly 

enables the use of non-canonical amino acids as building blocks in active sites.237–239

We anticipate that future metalloprotein design efforts will be targeted at the final tier of 

our design hierarchy, the use of metal ions to functionalize complex organic substrates in 

a regio- and stereoselective fashion. While some progress towards this aim has been made, 

such as building shape-selective channels capable of binding apolar substrates proximal 

to metal sites,151,213,240 much work remains to be done. Unlike natural proteins, most 

de novo metalloenzymes remain highly promiscuous, because the flexibility that allows 

them to attain high activity also results in ill-defined active site pockets. One approach 
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to achieve better specificity is to evolve these flexible scaffolds to discover new and 

unexpected tertiary structures, ligand environments, and binding sites. In early work, a 

closed-shell Zn2+-binding structural site was added between two helix-loop-helix motifs.164 

Serendipitously, the resulting proteins had rather malleable tertiary structures, with metal-

binding sites not fully anticipated by design that nevertheless presented open ligation sites 

for hydrolytic catalysis.190 Using directed evolution, accessible sequence landscapes were 

searched to find proteins that catalysed Zn2+-dependent esterase reactions.191 This resulted 

in the change of one of the ligands in the designed protein164 to a new position in the tertiary 

structure and a significant remodeling of the substrate-binding pockets. These findings 

illustrate not only the power of directed evolution, but also the relative facility with which 

new activities can be discovered beginning with only a rough draft of a protein.33,241,242 

Moreover, the features discovered through evolutionary screening can be added to the design 

toolbox and applied to future designs.

Alternatively, achieving stereo- and enantio-selective metalloenzymes may be possible 

by design processes that explicitly consider the target substrate from the initial design. 

Few metalloprotein designs have thus far incorporated substrates. The aforementioned Mn-

porphyrin protein, MPP1, which was structurally characterized to have water molecules 

occupying the positions intended for the O2 ligand, is an initial step in this direction.213 

Moreover, it speaks to the importance of the development of general strategies to handle 

water in computational de novo design, which are currently in their infancy.243,244 A notable 

success in this final design tier was to use the transition state of the Zn-mediated Diels–

Alder transformation in a recent redesign of the MID1sc protein. Impressively, the first 

generation designs show moderate catalytic activity, which were dramatically enhanced via 

directed evolution.25 We anticipate that advances in the de novo design of small molecule 

binding proteins245 will soon be incorporated into metalloenzyme design to improve initial 

design models. Moreover, these design strategies could be coupled to molecular dynamics 

simulations to improve in silico assessment of the feasibility of accessing a desired transition 

state. These designs could then be further improved by experimental validation aided by 

modern methods of gene synthesis coupled to an appropriate activity screen allowing, in 

principle, thousands of individual designs to be evaluate.242

Advances in computation, gene synthesis, structural biology, and evolution have 

dramatically improved our abilities to de novo design proteins. The varied and important 

functions of metalloproteins remain an important measuring stick for our understanding of 

the underlying structure-function principles of proteins. We anticipate that further advances 

will make the de novo design of functional metalloproteins increasingly routine, opening 

up attractive possibilities in a variety of areas including green catalysis, sensing, and 

therapeutics.
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Glossary:

Allostery a biological phenomenon, in which regulation occurs at a distal site 

often triggered by a ligand-binding event, such as a metal ion.

Rotamers preferred orientations of an amino acid side chain relative to the main 

chain.

Maquette simple peptide models that can be progressively altered to test the 

characteristics of their construction that have been commonly studied 

in the de novo design of proteins.
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Key points

• The metalloprotein designer must first consider the desired function, select an 

appropriate active site to achieve it, and the tertiary structure to support it.

• Design approaches can be usefully drawn from either the inorganic chemistry 

literature or from a bioinformatics approach.

• There must be a unifying element to the local symmetry of the protein tertiary 

structure and the metal active site.

• The design must balance the energetics of protein folding with metal-ligand 

binding in order to achieve the desired coordination geometry.

• The introduction of asymmetry is a key strategy for introducing function 

into metalloproteins and must be compensated for by the introduction of 

stabilizing elements elsewhere in the design.

• The design space beyond coiled coils remains sparsely studied and offers 

opportunities for more diverse active sites and, hence, functions.
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Box 1 |

Coiled coil fundamentals

Mathematical terms for coiled coil parameterization

• Superhelical radius (R0) is the distance from the central major axis of the 

coiled coil (green) to the axis helix (orange).

• Helical radius (R1) is the distance of closest approach from the axis of the 

major helix (the superhelix) to a point on the minor helix (here, the α-helix)

• Superhelical frequency (ω0) is a measure of the angular rotation of the 

superhelix, measured about the central axis of the coiled coil (2.9°/residue 

for an idealized left-handed coiled coil.

• Helical frequency (ω1) characterizes the angular rotation of the minor helix 

around its local axis with each residue. For a canonical coiled coil, this value 

is approximately 102.8 °/residue.

• Chain axial offset (ΔZoff) is the shortest displacement along the central axis 

between an inward-facing point on one helix and the closest point on an 

adjacent helix. The sign is set by whether the second helix is shifted in the 

N-terminus to C-terminus direction (+) or C-terminus to N-terminus direction 

(−) relative to the first helix.

• The superhelical phase offset (Δφ0) is the angular rotation of a minor helix 

relative to the first helix in a coiled coil. In an idealized, symmetrical, parallel 

2-stranded coiled coil it is 180°. In four-helix bundles this parameter can 

control the shape of a coiled coil (that is, square bundle vs. rectangular 

bundle).
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• The starting helical phase (φ1) measures the starting angular register of the 

α-helix in a coiled coil, controlling the projection of the first residue, relative 

to the center of the bundle.

• To get a more hands-on understanding of these mathematical parameters, 

the authors suggest that new designers use the CCCP tool (Box 1) to adjust 

parameters by hand and visualize the changes each parameter endows on a 

coiled coil.

• Reprinted with permission from ref. 1, Elsevier.
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Box 2 |

Bioinorganic fundamentals

Common metal ions in biology

Redox Active Mn Fe Ni Cu

Common 
oxidation states 2+, 3+, 4+ 2+, 3+, 4+ 2+ 1+, 2+

Geometric 
preferences

Octahedral, 
trigonal 

bipyramidal

Octahedral, 
tetrahedral, 

trigonal 
bipyramidal

Square 
planar

Square planar, 
tetrahedral

Redox inactive Zn Ca Mg

Oxidation state 2+ 2+ 2+

Geometric 
preferences Tetrahedral Octahedral, 7-coordinate Octahedral, 7-

coordinate

Common ligands and binding modes
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Box 3 |

Computational Protein Design Tools

TOOLS FOR COILED COIL BACKBONE CONSTRUCTION

CCCP (Coiled coil Crick parameterization) – A tool to generate ideal coiled coil 

backbones from specified Crick parameters. It also allows for the extraction of 

parameters from helical bundles.51

CCBuilder 2.0 – A tool to model alpha-helical, coiled coil structures using Crick 

parameters for many oligomeric and topological states. It also allows for rapid 

visualization and minimization of helices with specific sequences.250

MASTER (Methods of accelerated search for tertiary ensemble representatives) – A 

fast, backbone RMSD-based structure search tool. The designer can use this tool to 

search backbone fragments to determine designability, to explore structure-sequence 

requirements of a motif, or to build loops to generate single-chain proteins.251

TOOLS FOR METAL BINDING SITE PREDICTION

SyPRIS – A computational design method used to locate clusters of backbone-specific 

positions capable of supporting symmetric coordination geometries.189

GaudiMM – A platform aimed at generating geometric candidates to perform hypothesis 

driven analysis of a metalloprotein’s conformational landscape.189

TOOLS FOR SIDECHAIN PACKING AND BINDING SITE DESIGN

COMBS (Convergent Motifs for Binding Sites) – A PDB-search algorithm using a 

defined structural unit called a van der Mer (vdM). This unit defines non-covalent 

interactions with key chemical groups in a ligand of interest to define its optimal position 

relative to the protein backbone.37,245

protCAD – Computational software that can design sequences for a given backbone. 

This tool uses physical force fields (that is, implicit solvent dielectric) to improve 

sequence and backbone design.181,182

FULLY AUTOMATED TOOLS FOR SEQUENCE AND STRUCTURE DESIGN

Rosetta – A widely used software suite that includes an expansive library of tools for 

computational modeling and analysis of protein structures. In metalloprotein design, it 

can design a sequence on a given backbone (or library of backbones) while constraining 

a metal binding site. It is well-maintained and has a thriving community of users and 

developers.9–11,211,212

TOOLS FOR PROTEIN FOLDING PREDICTION

Robetta and AlphaFold2 – Robetta has long been maintained as a server for ab 

initio protein folding predictions by the Rosetta community.252 In its most recent 

form (RoseTTAFold)253, it uses a machine-learned neural network similar to the 

simultaneously published AlphaFold2254 approach. Both of these tools have greatly 
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improved predictions of protein folding from sequence and can generate predictive 

models and confidence metrics for de novo designed sequences.
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Fig. 1 |. Three- and four-helix bundles.
a | Helical wheel diagrams of parallel three-helix bundles. N and C are the terminal ends 

of the helices. b | Helical wheel diagrams of anti-parallel four-helix bundles. a and b 
show the heptad arrangements. The buried residues (green and blue) are packed against 

each other in the core, the orange positions are at the helical interface, and the white 

positions are on the surface. The N (blue) and C (red) termini of each helix are labelled 

to show directionality. c |A parallel three-helix bundle with idealized C3-symmetry. The 

axis of symmetry (in gray) traverses the center of the bundle. d |An antiparallel four-helix 
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bundle with idealized D2-symmetry. The three axes of C2-symmetry are shown in gray. 

e, f |Examples of idealized coordination geometries accessible in e C3-symmetric three 

helix bundles and f D2-symmetric four helix bundles. The red axes represent the rotational 

symmetry axes. Orange spheres are the metal ions, blue spheres are coordinating ligands, 

and green spheres are empty coordination sites. g, h |Illustration of the difference between 

an a- g and a d-position h with respect to sidechain orientation. The coloured vector 

indicates the Cα-Cβ bond direction and the dashed lines and distances (Å) indicate the 

Cγ-Cγ’ vector.
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Fig. 2 |. Crystal structures of natural metalloproteins illustrating symmetry elements in helical 
bundles.
a |A C4-symmetric Cu (green) binding site with a square planar coordination geometry 

formed by four HIs at a-positions in a parallel helical bundle (PDB: 6D42). b |A C3-

symmetry structure with an octahedral Ni (green) coordination geometry generated by 

His at adjacent a- and d-positions in a parallel helical bundle (PDB: 3NTN).78 c |A C3-

symmetry site with a tetrahedral geometry (vacant site on the C3-axis) formed by three 

Asn residues H-bonded to a chloride (green).78 d |The D2-symmetric heme-binding site 

from cytochrome bc1 (PDB: 2A06) showing first- and second-shell interactions critical 

for function. Gly residues are shown as Cα spheres and the heme cofactor is shown 

in cyan.246 e |D2-symmetric di-Fe binding sites in bacterioferritin (left, PDB: 4AM2)88 

and toluene monooxygenase (TOMO) (right, PDB: 5TDT)90 with a representation of the 

Glu4His2 coordination environment (middle). The orange helices illustrate the ideal helix in 

bacterioferritin versus the pi-bulge creating a substrate access site in TOMO. The structure 

of TOMO shows the bound oxidized toluene intermediate (cyan). Dashed lines represent 

H-bonds and the remainder of the protein structures are hidden for clarity.
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Fig. 3 |. Tri-peptide scaffolds for metalloproteins design.
a |Crystal structure of the apo-Tri-peptide substituted with cysteine at an a-position (PDB: 

3LJM).99 b |Crystal structure of the apo-Tri-peptide substituted with cysteine at a d-position 

(PDB: 2X6P).99 One Cys adopts a non-preferred rotamer to facilitate hydrogen bonding. c 
|Overlay of two crystal structures (PDBs: 3H5F and 3H5G) featuring penicillamine (labelled 

Pen, β-mercaptovaline, methyl carbons hidden) substituted at an a-position.102 The L-amino 

acids (maroon) form a small equilateral triangle (maroon dashes) and the D-amino acids 

(dark blue) form a large equilateral triangle (dark blue dashes). d |Crystal structure (PDB: 

3PBJ) of a Zn-carbonic anhydrase mimic with a tetrahedral, catalytic site (left) and a 

trigonal planar, structural site (right).120 The backbone cartoon is coloured by B-factor with 
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more mobile sites in blue and less mobile sites in red, showing that the catalytic site is more 

dynamic than the structural metal site. e |Overlay of the tris-histidine active site from a de 

novo designed (light pink)120 and a natural carbonic anhydrase (dark pink, PDB: 2CBA).247 

f |Side-on view of a tetra-Cd2+ cluster showing the disruption of the alpha-helix at the 

binding site (PDB: 4G1A).248 g |View down the C3-symmetry axis of the tetra-Cd2+ cluster 

and the three, parallel alpha-helices (PDB: 4G1A).248 Cd2+ ions shown in cyan.
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Fig. 4 |. Asymmetric active sites in three-helix bundles.
a |Model of the pseudo-C3 symmetric active site in a three-helix bundle. Steric bulk in 

adjacent layers controls access of water to the lanthanide ion, and thereby the photophysical 

properties.130 b |Crystal structure of a domain swapped-dimer (PDB: 1G6U)132 with the 

pseudo-C2 axis shown intersecting the N-termini and the other two helices. The locations 

of leucine mutations to cysteine to build the two 4Fe-4S binding sites are shown for 

the first generation (yellow spheres)133 and second generation (pink spheres)134 designs. 

N-termini are shown in blue and C-termini are shown in red. c |On the left, are the possible 

parallel, three-helix bundles entropically favoured to assemble upon 1:1 mixing of two 

different peptides. A model of the knobs-into-holes packing approach shows preferential 

2:1 heterooligomer formation by packing a large residue such as tryptophan (pink) against 

two small residues such as alanine (light blue). d |A single-stranded protein can also be 

used to generate asymmetry. In this case, secondary structure elements (that is, helices) are 

connected by loops (light blue) to form a fully asymmetric active site (cysteines in pink).144
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Fig. 5 |. Functional metalloproteins with four-helix bundles.
a |Diagram showing the helical backbone and heptad positions chosen for ligating residues 

and second-shell H-bonding interactions.150 b |Solution structure of di-Zn bound Due 

Ferri 2 (PDB: 1U7M) showing positions of primary shell ligands (green) and second-shell 

H-bonding residues (cyan). H-bonds are shown as black dashed lines and metal-ligand 

interactions are shown in green dashed lines.249 c |Schematic illustrating the entatic state 

designed to allow reversible O2 binding in a 4-helix maquette. Green and brown helices 

represent the N- and C-terminal ends of the helices. Addition of heme (red rectangle) forces 

unfavourable burial of Glu residues (red Y), weakening the His-Fe interaction. Exposure to 

O2 leads to reversible formation of an Fe-O2 species.199 Part a adapted with permission from 

ref.150, Elsevier. Part c adapted from ref.199, Springer Nature Limited.
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Fig. 6 |. Design strategy for well-structured porphyrin binding proteins
a |The general Enfold design strategy for PS1 in which the binding region and folded core 

regions are designed simultaneously to give an optimized sequence and backbone around 

the desired metallocofactor.210 b |An illustration of the Enfold strategy in which the under-

packed binding site becomes well-structured on binding the metallocofactor to produce a 

well-folded, stable holo protein.210 c–e |Structural comparison of the designed model of 

MPP1 (gray) and the crystal structure (PDB: 7JRQ; orange).213 c |A cartoon representation 

showing an extremely good backbone match between the design and structure (0.6 Å all 
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backbone RMSD). d |A comparison of the placement of two water molecules (Wat1 and 

Wat2; red spheres) relative to the dioxygen unit in the design (transparent) and e |extended 

H-bonding network from the binding site to the surface by the Wat1-Wat2 water network. 

XRD = X-ray diffraction. Parts a and b adapted from ref.210, Springer Nature Limited. Parts 

c–e reprinted with permission from ref.213, ACS.
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Fig. 7 |. Beta-sheet containing designed metalloproteins
a, b |Two views of the solid-state NMR structure (PDB: 5UGK) of Zn2+ bound catalytic 

amyloids.37 a |Each Zn2+ ion is coordinated by three His nitrogens between two neighboring 

strands. b |Two beta-sheets stack anti-parallel with hydrophobic residues facing each other 

forming a C2-symmetry axis along the fibril axis (perpendicular to the beta-strands). c |Two 

views of the crystal structure (PDB: 6ZV9) of Tb3+ bound designed TIM barrel with a C2 

symmetry axis.226 Tb3+ is shown as a cyan sphere with a coordinated water (red sphere), 

alpha helices are shown in salmon and beta-sheets are shown in green. Coordinating Glu 

residues are shown in blue, second-shell H-bonding Asn are shown in grey with H-bonds as 

black dashed lines, and Trp “antenna” are shown in pink.
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