Table 1.
Method | Acc | Acc 2−Cat | Bias 2−Cat | Acc 3−Cat | Bias 3−Cat | Acc 4−Cat | Bias 4−Cat | Acc 5−Cat | Bias 5−Cat | Acc 6−Cat | Bias 6−Cat |
---|---|---|---|---|---|---|---|---|---|---|---|
FF | 0.891 | 0.803 | 0.021 | 0.888 | 0.027 | 0.913 | 0.029 | 0.924 | 0.034 | 0.929 | 0.033 |
PA | 0.807 | 0.727 | −0.538 | 0.803 | −0.412 | 0.828 | −0.369 | 0.838 | −0.350 | 0.842 | −0.342 |
CD | 0.692 | 0.550 | −1.654 | 0.693 | −1.006 | 0.730 | −0.839 | 0.743 | −0.727 | 0.746 | −0.654 |
EKC | 0.647 | 0.645 | −0.812 | 0.651 | −0.996 | 0.647 | −1.031 | 0.645 | −1.049 | 0.645 | −1.057 |
KG | 0.550 | 0.434 | 1.675 | 0.532 | 1.046 | 0.576 | 0.843 | 0.596 | 0.744 | 0.610 | 0.690 |
Note. Acc stands for accuracy - so Acc2−Cat stands for the accuracy in conditions based on ordinal indicators with two levels (and symmetric thresholds). Bias describes the mean deviation of the suggested number of factors from the true number of factors in the respective conditions.
FF = Factor Forest; CD = Comparison Data; EKC = empirical Kaiser criterion; KG = Kaiser–Guttman rule.