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Abstract

Recently, joint models of item response data and response times have been proposed to better
assess and understand test takers’ learning processes. This article demonstrates how biometric
information such as gaze fixation counts obtained from an eye-tracking machine can be inte-
grated into the measurement model. The proposed joint modeling framework accommodates
the relations among a test taker’s latent ability, working speed and test engagement level via a
person-side variance-covariance structure, while simultaneously permitting the modeling of item
difficulty, time-intensity, and the engagement intensity through an item-side variance-covariance
structure. A Bayesian estimation scheme is used to fit the proposed model to data. Posterior
predictive model checking based on three discrepancy measures corresponding to various
model components are introduced to assess model-data fit. Findings from a Monte Carlo simula-
tion and results from analyzing experimental data demonstrate the utility of the model.
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Introduction

Recently, the innovative technology-enhanced learning system (ITELS) has drawn a great deal

of attention by researchers in educational and psychological assessment (see, e.g., Ercikan &
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Pellegrino, 2017; Hao et al., 2016; Jiao & Lissitz, 2018; Man & Harring, 2019). ITELSs can pro-

vide detailed feedback about test-takers’ learning processes in a formative manner through built-

in sensors. These sensors (e.g., eye-trackers, motion detectors, heart rate monitors) can record

learners’ psychological and biological reactions in real-time as they perform tasks on computer-

based assessments. The collected instantaneous psychological and biological data can be used by

educators in tracking individual learning status and monitoring individual/group attainment

differences (e.g., gender, social and economic status)—with the primary purpose of enhancing

student learning by modifying their teaching activities and re-emphasizing particular content.

Many measurement models have been proposed for concurrent investigation of different

types of product (i.e., item responses) and process data (i.e., response times) in order to under-

stand an individual’s latent cognitive performance and account for the corresponding quality of

measurements. Modeling item responses is typically carried out using various item response

theory (IRT) models (see, e.g., Birnbaum, 1968; Rasch, 1960; Samejima, 1996). To model

RTs, various response time models (see, e.g., Fox & Marianti, 2016; Rijn & Ali, 2017; van der

Linden, 2007) have been developed and utilized in practice.

Item responses and RTs can also be modeled jointly. For instance, van der Linden (2007)

proposed a two-factor structure model for item responses and RTs with random item and person

parameters. Later, Molenaar et al. (2015) extended van der Linden (2007)’s hierarchical model

into a general linear factor hierarchical model by imposing a few constraints on item para-

meters. This modeling extension enabled applied researchers to estimate the model using exist-

ing mainstream software for latent variable modeling like Mplus (Muthén & Muthén, 1998–

2017). Recently, Man et al. (2019) proposed a joint modeling approach for multidimensional

item responses and RTs. Numerous other extensions have been proposed (see, e.g., Bolsinova

et al., 2017; De Boeck et al., 2017; Fox & Marianti, 2016; Klein Entink et al., 2009; Zhan

et al., 2017), which have discussed the added value of modeling product and process data

simultaneously.

Among the statistical benefits, these joint-modeling methods facilitate the modeling of the

associations between latent cognitive abilities and reaction speeds of learners and the dependen-

cies among item parameters—providing insights regarding learning processes of test takers and

measurement features that could not be accessed from modeling each type of data independent

of one another. Conventionally, these joint models follow a multilevel modeling framework

(van der Linden, 2007) in which measurement components are modeled at level one. The struc-

tural association of the person-side and the item-side parameters are jointly estimated at level

two. Notably, the associations of responding accuracy and working speed can be operationa-

lized by estimating the correlations of person-side parameters; while simultaneously estimating

the correlations among item parameters. Besides the obvious benefit of connecting direct prod-

uct data and process data through their covariances, van der Linden et al. (2010) showed that

precision of both person-side and item-side parameters was enhanced through simultaneously

modeling the distinct data types as well.

Recently, Man and Harring (2021) demonstrated how eye fixation counts could be jointly

modeled with RTs and item responses in a multiple-group analysis to evaluate preknowledge

cheating of test-takers. Their supposition was that gaze fixation counts could be used to mea-

sure visual attention of test-takers, and in conjunction with latent ability as measured by item

responses and working speed as measured by RTs, could provide insights into aberrant test-

taking behavior. Generally, fixations are defined as the moment of uptake of visual information

when the eyes look to be fairly motionless within a small locale of a visual target (Goldberg &

Wichansky, 2003; Rayner, 1998). Because of its connection to visual attention and cognitive

processing, gaze fixation has been utilized across numerous disciplines. For example, in

human-computer interaction research, increased gaze fixation counts on an intriguing visual
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region indicated that it was more important, more perceptible to the subject than other visual

zones (Poole et al., 2004; Shagass et al., 1976). In human development, fixations have been

considered as a proxy for cognitive process load in the study of infants (e.g., Aslin, 2012). In

the video game industry, fixations have been used to evaluate user interface design’s effective-

ness based on where and how intensive the gazes are located on the screen (e.g., Corcoran

et al., 2012). Finally, fixation counts have been utilized to show word awareness in reading per-

formance studies (e.g., Justice & Lankford, 2002).

To jointly model visual fixations with RTs and item responses, the estimated model para-

meters represent essential relations allowing practitioners to more fully understand how learners

decode tasks in a virtual based ITELS such as game-based testing, scenario-based testing, and

virtual reality based remote learning. In this study, a three-way factor analysis model is pro-

posed for jointly modeling item responses, RTs, and visual fixation counts, which depicts the

relation between responding accuracy, working speed, and test engagement. The proposed mod-

eling approach is an extension of the Bayesian multilevel modeling framework proposed by van

der Linden (2007) in which a Rasch model, an RT model, and a visual fixation counts model

are specified at the measurement level. The variance-covariance structures of person-side and

item-side parameters are specified at level two. Markov chain Monte Carlo methods are used to

facilitate Bayesian estimation of the model and posterior predictive model checking using three

discrepancy measures corresponding to each of modeling components are presented to facilitate

model-data fit. An empirical example using data collected in an eye-tracking lab is provided

and the estimated parameters from the real data analyses are then used to inform data generation

for a small-scale simulation study to examine parameter recovery.

Multilevel Model Specification

Measurement Models

One-parameter (1-PL) logistic model. The 1-PL, or Rasch model (Lord, 1952) describes the rela-

tion between item responses and ability. This is typically specified as

P(uij = 1juj; bi) =
1

1 + e�(uj�bi)
, ð1Þ

where P(uij = 1| uj; bi) is the probability of a correct response to item i, i = 1, ., I, by person j,

j = 1, ., J; bi is the location (difficulty) parameter for item i, and uj is a general latent trait for
person j. The item slopes (discrimination parameters) are each fixed to unity. The proposed 1-

PL model may seem overly restrictive, but is implemented here given the modest sample size of

the dataset used in the empirical example. Of course, other IRT models besides the Rasch model

could be employed as the sample size and item characteristics warrant.

Log-Normal RT Model. In addition to the 1-PL model, the log-normal RT model is utilized to

reflect a test-taker’s working speed (van der Linden, 2006). The log-normal RT model is speci-

fied as

f (tijjtj, ni,bi) =
ni

tij
ffiffiffiffiffiffi
2p

p � 1

2
½nifln tij � (bi � tj)g�2

� �
, ð2Þ

where tij denotes the RT of test-taker j on item i. The latent parameter, tj 2 <, represents work-
ing speed for test-taker j. The item parameter bi 2 < denotes time intensity, or simply, the mean
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of ln(tij) when tj is 0. the parameter ni 2 < is an item time discrimination parameter reflecting

the dispersion of tij for item i. The mean value of ln(tij) is parameterized as mij = bi 2tj.

Negative Binomial Model. Visual fixation counts are summarized using a negative binomial fixa-

tion (NBF) model (Man & Harring, 2019; Wang, 2010), which captures the association between

observed visual fixation counts and latent test visual engagement. The NBF model is expressed

as

P(C = cijjsi,mi,vjg) =
G(cij + si)

cij!G(si)

si

exp (mi +vj) + si

� �si exp (mi +vj)

si + exp (mi +vj)

� �cij

, ð3Þ

where parameter mi is associated with the test and can be interpreted as the visual intensity for

item i. The assumption is that this parameter represents the averaged amount of cognitive

engagement for test takers to finish answering an item. Person-specific parameter, vj for each

of the J test takers (j = 1, ., J), denotes the overall test engagement level for test taker j, and is

assumed, at least initially, to be constant across all the items. Furthermore, a discrimination

parameter, ai, for item i is defined as ai = 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m:i +m

2
:i=si

p
, where m:i =

PI
i= 1 mij=I , reflecting

dispersion of the fixation counts on item i.

Item Domain and Person Domain Models

The second-level models incorporate two correlational structures to account for the dependen-

cies of both item and person parameters jointly.

Modeling Person Domain Parameters. In this joint modeling approach, the person domain covers

three latent person-side variables: (1) latent ability u, (2) working speed t, and (3) visual

engagement v. These three latent variables for the population of test takers is posited to follow

a multivariate normal distribution such that

Hp = (u, t,v)
T;MVN (mp,Sp), ð4Þ

where superscript T is the transpose operator. The mean vector is mp = (mu,mt,mv)
T and the

covariance matrix is formulated as

Sp =

s2
u

sut s2
t

suv stv s2
v

0
@

1
A: ð5Þ

The parameters on the diagonal of the Sp show the variances of the latent constructs. The

off-diagonal parameters indicate the covariances between any pairs of latent constructs. For

example, the parameter, sut presents the covariance between latent ability and speediness of

test-takers.

Modeling Item Domain Parameters. A multivariate normal distribution is also assumed for the

item parameters such that

NI = (b,b,m)
T;MVN(mI ,SI ): ð6Þ

The mean vector and symmetric covariance matrix, mI and SI, are defined, respectively, as

mI = (mb,mb,mm)
T and
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SI =

s2
b

sbb s2
b

sbv sbm s2
m

0
@

1
A, ð7Þ

Figure 1 displays the graphical representation of the three-way joint modeling of item

responses, response times, and visual fixation counts where mI denotes the mean vector of item

parameters, SI denotes the variances of and covariances between item parameters, mP is the

mean vector of person parameters, and SP denotes the matrix of variances of and covariances

between person parameters.

Bayesian Estimation Using MCMC Sampling

A Bayesian approach was employed to facilitate model parameter estimation using Just Another

Gibbs Sampler (JAGS; Plummer, 2015), which is housed in the R2jags package (Su &

Yajima, 2015). The coda package was utilized to evaluate convergence. Two chains using

96,000 total iterations with thinning of 2 to alleviate auto-correlation among draws, were exe-

cuted. Model parameter estimates and standard deviations were summarized based on the pos-

terior densities using the final 4000 iterations after burning-in 92,000. The potential scale

reduction factor (PSRF) was used for assessing convergence for all model parameters (Gelman

et al., 2003). Convergence was declared when a PSRF value of at most 1.1 was reached for each

model parameter.

Constraints for Model Identification

To properly identify the scales of the latent variables, model constraints are needed either on the

item side (fixing the summation of item difficulties to zero) or the person side (fixing the

Figure 1. Three-way joint model approach of item response, response time, and visual fixation counts.
uI, mean vector of item parameters; SI, covariance of item parameters; uP, mean vector of person
parameters; SP, covariance of person parameters.
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expectation of the latent ability parameter to zero). For model identification in this study, the

scales were fixed on the person side by following the convention used for IRT model estimation

(C. Wang, Fan, Chang, & Douglas, 2013; Wu et al., 1998).

For the 1-PL model, the population mean of the latent ability, u, was set to 0 (Lord, 1952),

and, the item discrimination parameter for each item was fixed to unity. For the log-normal RT

model, the population mean of latent speediness, t, was constrained to 0 as well (van der

Linden, 2006). For the NBF model, the mean of the latent person side visual engagement para-

meter v was also set to zero (Man & Harring, 2019).

mv =mu =mt = 0: ð8Þ

Prior Distributions

In reference to equation (6), the prior distribution for item parameters, NI in the proposed model

is assumed to be trivariate normal. A Gamma distribution is assumed for the time discrimination

parameter [i.e., ni ;G(1, 1)]. This is the inverse of the variances of the log-times on different

items (s2
ε) based on the RT model: log (Tij);N (bi � tj,s

2
εi
). In addition, the fixation dispersion

parameter for each item [i.e., si ; IG(1, 1), i = 1, ., I] is assumed to follow an inverse Gamma

distribution as well (see, e.g., Luo & Jiao, 2018; Zhan et al., 2018). Hyperpriors are defined as

md;N (0, 0:5), mb;N (4:0, 0:5), mm;N (3:5, 1)SI;IW II , nð Þ,

where II is a 3 3 3 identity matrix, and n is the degree of freedom, which in this case is equal

to 3.

In reference to equation (4), the prior distribution for the person parameters, Yp follows a tri-

variate normal distribution, where the mp are fixed to zero. And,

Sp =

s2
u

sut s2
t

suv stv s2
v

0
@

1
A;IW IP, nð Þ:

The joint posterior probability for the proposed model can be represented as

p Yp,NI ju, log Tð Þ, c
� �

}
YI
i= 1

YJ
j= 1

p uij, log (Tij), cijjYj,Ni

� �
p Yjjmp,Sp

� �
p NijmI ,SIð Þ

p mdð Þp mb

� �
p mmð Þp SI jnð Þp mpj0,Sp

� �
p Spjn
� �

where p(� | �) indicates the conditional density function.

Posterior Predictive Model Checking based on Discrepancy Measures

Posterior predictive model-checking (PPMC; see Gelman et al., 1996; Levy, 2009), a popular

Bayesian model-checking tool, will be used to evaluate whether the proposed model adequately

accounts for variability (uncertainty) that exists in the data. Of its many advantages, PPMC has

a strong theoretical basis and has an intuitive appeal and can be applied in a straightforward

manner (Sinharay et al., 2006). To quantify the differences, a discrepancy measure, T(�), a func-
tion of data and model parameters, is usually computed, which summarizes the data and the

corresponding model parameters (Gelman et al., 1996). A small difference is indicative of satis-

factory data-model fit.
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Discrepancy Measures for the Proposed Models

Three statistics are now introduced in this section. Each of the three statistics will be used as a

different discrepancy measure, T(�), to evaluate item by person-level data-model fit for item

responses, response times, and visual fixation counts, separately. Specifically, the values of

T(ypred, c) and T(y, c) will be calculated based on the predicted dataset and observed dataset

based on three statistics. Then, PPP-values will be calculated based on the discrepancies

between T(ypred, c) and T(y, c). The three item-fit statistics are: (1) the W index (Wright &

Stone, 1979); (2) the L index (Marianti et al., 2014); and, newly proposed (3) M index, which

will be discussed in detail subsequently.

Item Response Based W Statistic. The W index is computed from performing a residual analysis

from applying the Rasch model (Rasch, 1960) to a set of examinees’ item responses (Wright &

Stone, 1979). As a consequence of this parsimoniously parameterized model, analyses require

relatively small sample sizes (i.e., the number of examinees) to produce reasonable data-model

fit (Linacre & Wright, 1994). The computation of the W index follows

Wij =
½uij � Pi(u)�2

Pi(u)½1� Pi(u)�
, ð9Þ

where Pi (u) is the probability of correctly answering item i given the ability estimate, u, uij is
the dichotomous response (0, 1) of item i for a specific person j.

RT-Based L Statistic. Marianti et al. (2014) suggested an RT-based item-fit statistic, named the L

statistic. Parameters used for calculating the L statistic are estimated based on the RT model pro-

posed by van der Linden (2006). The L statistic is formulated as

Lij =
ln(tij)� bi + tj
� �2

s2
ei

, ð10Þ

where tij is the response time for test taker j on an item i, bi is the time-intensity parameter that

is the averaged population time required for answering that item, tj is the speediness parameter

for each test taker, and sei is defined as 1/ni.

Visual Fixations Based M Statistic. To evaluate the data model fit based on the visual fixation

counts, a visual fixation counts based item-fit M statistic is proposed. The M statistic is a

residual-based model-fit measure, which is constructed from a summation of the variance

weighted squared residuals defined as the differences between the observed outcome, cij, and

predicted value, E(cij). (Cochran, 1952; Fox & Marianti, 2017; van der Linden & Hambleton,

1997). The M statistic is formulated as

Mij =
cij � exp(mi +vj)
� �2

s2
ij

, ð11Þ

where cij is the visual fixation counts for test taker j on an item i, mi is the visual-intensity para-

meter that is the averaged population visual efforts required for answering that item, vi is the

individualized visual engagement parameter, and s2
ij is the variance of the visual fixation counts,

which is defined as s2
ij = exp (mi +vj) + (exp(mi þ vj)

2)=si.
Having a PPP-value close to 0 based on a discrepancy measure would indicate problematic

data-model fit implying that the proposed model fails to sufficiently regenerate the data

(Sinharay et al., 2006).

Man et al. 7



368	  Applied Psychological Measurement 46(5)

Real Data Analysis

The proposed three-way joint model of item responses, response times and visual fixation

counts were fitted to the data. Parameter estimates of the level-1 measurement models were

reported. In addition, the associations of the person-side and item-side parameters at the level-2

were discussed by summarizing the corresponding variance-covariance estimates.

Data Description

Data were collected in an eye-tracking lab setting at a large university with IRB approval. A

total of n = 93 university students who had normal or corrected vision were recruited. Students

were invited to a room and seated approximately 80 cm away from a 17$ monitor with an eye-

tracking device, Gazepoint, placed under the screen. Gazepoint is an accessible and reliable

experimental eye-tracker with 60 Hz sampling rate and 0.5–1 degree of visual angle accuracy,

which is commonly used for conducting eye-tracking research. Students were asked to take a

test consisting of I = 10 questions related to verbal reasoning. The test structure followed the

structure of one section of a high-stakes credentialing exam. Item responses, response times

and gaze fixation counts of the area of interest were recorded simultaneously as the participants

answered the assessment questions. The position-variance method (Jacob & Karn, 2003) was

the default algorithm for processing the fixation counts1. Figure 2 displays the collected item

response (transferred into the proportions of correctness), item response times and visual fixa-

tion counts side-by-side for the 10 items.

Accessing Data Model Fit Based on PPMC Method

The PPP-values were calculated based on 2000 iterations after dropping burn-in iterations with

thinning of 2. The PPP-values for the three model components across the 10 items were all

larger than 0.05 level indicating satisfactory data model fit. Notably, for the IRT model, the

PPP-values over the 10 items were systematically lower than the ones calculated based on

the RT model and NBF model although all values met the 0.05 threshold. Figure 3 summarizes

the PPP-values computed over the 2000 iterations across the 10 items. The three dashed

Figure 2. Visualization of item responses, response times, and visual fixation counts of 10 items.
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horizontal lines in each plot denote 0.05, 0.5, and 0.95, respectively. PPP-values lying below

the dashed line at the 0.05 level would indicate non-satisfactory data-model fit. All the PPP-val-

ues in Figure 3 were above 0.05, which suggests that the proposed joint model fits the data

satisfactorily even at a modest sample size.

Model Parameter Estimates

Table 1 shows the 10 item parameter estimates across the three proposed models. For the 1-PL

IRT model, the item difficulty parameter estimates, b̂i, ranged from 21.02 to 0.99. Item 8 was

the most challenging item. In contrast, Item 1 was the least difficult item on the test. For the

RT model, the time intensity parameter estimates, b̂i, varied from 1.92 to 4.14. Item 10 was the

most time-consuming item for test takers. In contrast, Item 1 required the least amount of time

on average for test takers to answer. For the NBF model, the most visually engaging item was

item 10, while item 1 required the least visual effort. Notably, the last 3 items required more

time and visual effort in solving them, which met our expectations since the last three items

were reading comprehension questions.

Table 2 displays the results of the estimation of the variance-covariance of item domain and

population domain at a higher level (see Figure 1). This is of interest because the higher-level

item domain covariance components between different item parameters show the dependencies

between responses, RT, and visual fixation counts. The estimated covariance between item dif-

ficulty and item visual intensity was 0.410 (Cor. = 0.574 with a 95% credible interval of 0.013

to 0.528) suggesting that the item difficulty is positively associated with item visual intensity

for the given test (see Figure 4). The estimated covariance between item difficulty and item

time intensity was 0.417 (Cor. = 0.572 with a 95% credible interval of 0.292 to 0.875), which

is also significant indicating that the item difficulty was positively related with item time inten-

sity (see Figure 5). Moreover, the estimated covariance between item visual intensity and item

time intensity was 0.595 (Cor. = 0.813 with a 95% credible interval of 0.190 to 0.723), which

is also significant showing that the item visual intensity was positively related with item time

intensity (see Figure 5).

The person-level covariances, su,v, su,t, and sv,t shown in Table 2, were estimated to be

20.001 (Cor. = 0.008, 95% credible interval: 20.023 to 0.020); 0 (Cor. = 0.003; 95% credible

interval: 20.024 to 0.027)); and 20.003 (Cor. = 0.151; 95% credible interval: 20.007 to

0.001), respectively (see Figure 4). Notably, all the covariance estimates were not statistically

Figure 3. Posterior predictive p-values for 1-PL IRT model, log-normal response time model, and
negative binomial visual fixation counts model over 10 items. The three dash horizontal lines denote
0.05, 0.5, and 0.95, respectively. The box-plots represent the item by person-level PPP values.
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significant, indicating that the three latent dimensions were not statistically related to each

other. The non-significant results could be a proxy for a lack of motivation for students required

to take this low-stakes assessment (Wise & Kong, 2005).

Overall, the results showed a number of interesting findings. First, given the current data set,

the fitted three-way model shows that the three latent dimensions were not statistically signifi-

cantly related to each other, which demonstrates weak associations among accuracy, working

speed, and visual engagement of test-takers when their eyes were being tracked. Similarly, Lee

et al. (2019) found a weak correlation between speediness and abilities when test-takers solved

a set of complex simulation-based visual tasks. The weak correlation among these latent con-

structs may be due to factors such as content display, item types, and testing conditions. Second,

the proposed model presents the special structure of the measurement features. The results show

that item difficulty, time intensity, and visual intensity are positively related to each other,

which indicates that more difficult items require more time and visual effort by the examinee.

Table 1. Item Parameter Estimates.

Model 1-PL RT NBFM

Item b b n m a

1 21.02 (.250) 1.92 (.046) 0.42 (.031) 3.20 (.025) 0.19 (.012)
2 20.51 (.227) 2.64 (.026) 0.21 (.017) 3.86 (.020) 0.14 (.005)
3 20.54 (.226) 2.59 (.029) 0.24 (.016) 3.81 (.023) 0.12 (.011)
4 0.33 (.212) 3.02 (.042) 0.36 (.021) 4.28 (.040) 0.04 (.003)
5 0.99 (.217) 3.57 (.027) 0.21 (.014) 4.77 (.018) 0.07 (.007)
6 20.10 (.215) 3.09 (.036) 0.32 (.024) 4.42 (.028) 0.05 (.004)
7 0.51 (.233) 2.67 (.040) 0.34 (.023) 4.02 (.032) 0.07 (.005)
8 0.99 (.242) 3.98 (.025) 0.17 (.017) 5.27 (.016) 0.06 (.007)
9 0.62 (.225) 3.96 (.026) 0.22 (.013) 5.26 (.021) 0.03 (.003)
10 0.09 (.206) 4.14 (.024) 0.19 (.015) 5.42 (.016) 0.05 (.005)

Standard error (standard deviation of the posterior distribution) is in parenthesis; b, item difficulty; b, item time

intensity; n, item time discrimination; m, item engagement intensity; a, item engagement discrimination; 1-PL,

One-parameter logistic model; RT, log-normal Response Time model; NBFM, Negative binomial visual fixation

counts model.

Table 2. Variance-covariance Estimates.

Item parameters Person parameters

Variance-covariance parameters Variance-covariance parameters

Mean CI Mean CI

s2
b

0.687 (0.249,0.829) s2
u

0.488 (0.246,0.825)

s2
m

0.728 (0.285,0.866) s2
v

0.017 (0.013,0.023)

s2
b

0.717 (0.282,0.861) s2
t

0.021 (0.015,0.028)

sb, b 0.417 (0.292,0.875) suv 20.001 (20.023,0.020)
sb, m 0.410 (0.013,0.528) sut 0.000 (20.024,0.027)
sb, m 0.595 (0.190,0.723) svt 20.003 (20.007,0.001)

Mean, mean value of the posterior distribution; CI, credible interval; b, item difficulty; b, item time intensity; m, item

engagement intensity; u, ability; v, visual engagement; t, speediness.
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These results are based on a small sample size of n = 93 individuals, which may bring into

question the statistical conclusion validity using parameters estimates and corresponding stan-

dard deviations of such a complex model. A small-scale Monte Carlo simulation study to inves-

tigate parameter recovery was executed to address this concern.

Simulation Study: Parameter Recovery

Three simulation factors were manipulated to assess parameter recovery in the three-way joint

model: (1) test length, (2) sample size, and (3) correlations among person-side latent variables.

Two levels of test length were considered, I = 10 and I = 25, matching previous simulation and

experimental investigations (e.g., Luo, 2021). Sample sizes were set at N = 100, 500, and 1000.

Correlations (r) among person-side latent variables were fixed as 0.3, 0.5, and 0.8, separately.

These values were selected to follow past methodological investigations while simultaneously

considering the possible scale of adoption of eye-tracking technology in practice. Three main

item parameters were generated from a three-dimensional normal distribution based on the esti-

mates obtained in the real data example,

bi
bi

mi

0
@

1
A;N3

0

4:5
4

0
@

1
A,

1

0:25 0:25
0:25 0:125 0:25

0
@

1
A

2
4

3
5: ð12Þ

Figure 4. Scatter-plots for person parameter estimates. A loess non-parametric smoothed curve is
plotted for each scatter-plot.

Figure 5. Scatter-plots for item parameter estimates. A loess non-parametric smoothed curve is
plotted for each scatter-plot.
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Following Man and Harring (2019), item time-discrimination parameter n, was generated

from a uniform distribution, U(0.5, 0.8) and item visual dispersion parameters, si, were gener-

ated from an inverse-Gamma distribution, IG(2, 6).

On the person-side, individual random effects were generated from the following the three-

dimensional normal distribution
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where r is the correlation between latent variables. Scalars (e.g., 0.25, 0.5) are chosen to assure

that the variances of person-side variables are fixed as 1, 0.25, and 0.25, which mimics the

empirical analysis results.

According to equation (13), the correlation between a person’s ability and working speed is

positive—ru,t . 0 reflecting that capable test-takers were more likely to answer items correctly

and faster than less able examinees. A positive correlation between a person’s working speed

and visual engagement level (i.e., rt,v . 0) would indicate test takers who answer items for

rapidly tend to be more visually engaged. Similarly, a positive correlation ru,v . 0 indicates

that capable test-takers who are working efficiently are more likely to gaze at items with any

frequency. For instance, test-takers who are less able are more likely to reexamine items to

gain insights into how to solve them. Thus, three factors were considered to evaluate para-

meter recovery in the proposed model: 1) sample sizes, which were set at n = 100, 500, and

1000 (e.g., Fox et al., 2014; Man & Harring, 2021; 2) test lengths, which were set at I = 10

and 25; and 3) magnitudes of the pairwise associations among person-side latent parameters,

which were set at r = 0.3, 0.5, and 0.8. These levels were chosen to mimic the results from

the real data analysis described previously as well as past studies (Fox & Marianti, 2016;

Man & Harring, 2019)

Outcome Measures

Root mean square error (RMSE) and bias were adopted to assess model parameter recovery.

There are two separate types of RMSE and bias values to be calculated: (1) one for item-side

parameters bu and (2) one for person-side parameters ĵ. The RMSEs are defined as

RMSE(ĵ) = 1
R

PR
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I�1

PI
i = 1 (ĵir � jir)

2
q

, and RMSE(bu) = 1
R

PR
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J�1

PJ
j= 1 (bujr � ujr)

2
q

,

respectively. Bias values are denoted as bias(ĵ) = 1
R

PR
1 I�1

PI
i = 1 (ĵir � jir)

n o
, and

bias(bu) = 1
R

PR
1 J�1

PJ
j= 1 (bujr � ujr)

n o
, where j is the true values generated for item i, ĵir is

the parameter estimates for item i (i = 1, ., I) in replicate r, (r = 1, ., R). u and bur are the

true value of the person-side parameter and estimate from the rth replication for a pool of J test

takers, respectively. In addition, distinct PPMC values were calculated to evaluate model-data

fit for the 1-PL logistic model, the log-normal RT model, and the NBF model.

Simulation Results

To better understand which factors impacted model parameter recovery, a factorial three-way (sam-

ple size 3 test length 3 correlations among latent traits ) analyses of variance (ANOVAs) were
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where r is the correlation between latent variables. Scalars (e.g., 0.25, 0.5) are chosen to assure

that the variances of person-side variables are fixed as 1, 0.25, and 0.25, which mimics the

empirical analysis results.
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Root mean square error (RMSE) and bias were adopted to assess model parameter recovery.
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the parameter estimates for item i (i = 1, ., I) in replicate r, (r = 1, ., R). u and bur are the

true value of the person-side parameter and estimate from the rth replication for a pool of J test

takers, respectively. In addition, distinct PPMC values were calculated to evaluate model-data

fit for the 1-PL logistic model, the log-normal RT model, and the NBF model.

Simulation Results

To better understand which factors impacted model parameter recovery, a factorial three-way (sam-

ple size 3 test length 3 correlations among latent traits ) analyses of variance (ANOVAs) were
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conducted where the RMSEs were treated as the outcome variables regressed on the manipulated

factors and their interactions. To examine the effects of manipulated factors, h2 was calculated as

the effect size measure. In addition to reporting the p-values for each effect, an effect size was inter-

preted to be nontrivial when h2 � 0.06 (see, e.g., Bakeman, 2005; Cohen, 1988).

Table 3 summarized the effects of the manipulated factors on the item and person-side para-

meters. None of the interaction effects were practically important, thus, only the main effects

were reported. In terms of the item parameters, the ANOVA results showed that all manipu-

lated factors (number of items, sample size, and correlations among item parameters) were

highly influential on the recovery of item means and variances. Moreover, different sample

sizes showed meaningful effects on item parameter estimates. The correlations among item

parameters had large effects on the recovery of variance-covariances of item parameters. All

nontrivial effects (h2 � 0.06) for the item parameter are plotted in Figure 6.

Figure 6 reveals that the recovery of item parameters improved as the sample size increases.

For instance, the average RMSE of b parameters decreased from 0.239 to 0.081 as the sample size

increased from 100 to 1000. Also, the recovery of time-related boundaries (i.e., b and n) and that

of visual-related parameters (i.e., m and a) had smaller RMSE values across conditions than did

item difficulty (b). This result is not too surprising and enlarging the sample size would clearly

yield item parameters with less bias and variability (see, e.g., Man et al., 2019; Molenaar et al.,

Table 3. Factorial Three-way ANOVA with RMSE as the Outcome Variable.

Par Number of items Sample size Cor

Item parameters
b 0.005(0.138) 0.967(0.000)* 0.001(0.807)
b 0.004(0.305) 0.954(0.000)* 0.002(0.769)
n 0.056(0.359) 0.104(0.450)* 0.050(0.702)
m 0.000(0.895) 0.970(0.000)* 0.001(0.848)
a 0.004(0.021) 0.990(0.000)* 0.001(0.825)
mb 0.054(0.016)* 0.831(0.000)* 0.034(0.124)
mb 0.317(0.000)* 0.562(0.000)* 0.002(0.888)
mm 0.378(0.000)* 0.394(0.001)* 0.037(0.350)
s2
b

0.732(0.000)* 0.029(0.047)* 0.195(0.000)*

sb,b 0.595(0.000)* 0.179(0.004)* 0.111(0.070)*
s2
b

0.916(0.000)* 0.000(0.079) 0.031(0.377)

sb,m 0.493(0.000)* 0.313(0.000)* 0.122(0.003)*
sb,m 0.727(0.000)* 0.181(0.001)* 0.450(0.074)*
s2
m

0.992(0.000)* 0.000(0.789) 0.001(0.471)
Person parameters

u 0.980(0.000)* 0.000(0.784) 0.014(0.001)
t 0.512(0.002)* 0.064(0.416)* 0.018(0.772)
v 0.828(0.000)* 0.008(0.645) 0.053(0.095)
s2
u

0.001(0.711) 0.008(0.402) 0.941(0.000)*

sut 0.042(0.107) 0.061(0.155)* 0.731(0.000)*
suv 0.000(0.976) 0.045(0.350) 0.722(0.000)*
s2
t

0.040(0.175) 0.057(0.267)* 0.671(0.000)*
svt 0.006(0.397) 0.021(0.298) 0.880(0.000)*
s2
v

0.025(0.004) 0.006(0.253) 0.946(0.000)*

b, item difficulty; b, item time intensity; n, item time discrimination; m, item engagement intensity; a, item engagement

discrimination; u, ability; v, visual engagement; t, speediness; Cor., Correlations among person-side latent variables.

Numbers listed are the main effects across all parameters and corresponding p-values in parenthesizes. Asterisk notes

the ones identified to be statistically significant (p-value\ .05)
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2015). In addition, having a longer test improves item parameter recovery, especially regarding the

item variances. And, the recovery of time- and visual engagement-related parameters (e.g., mb, m
and sz,m) was better than that of item difficulty (e.g., s2

b). In addition, it appears that correlations

among item parameters had limited impact on recovery of the item-side covariances.

Regarding the recovery of latent ability, working speed, and visual attention parameters, the

ANOVA results indicated that test length had a larger impact than did sample size and correla-

tions among latent traits on recovery of person parameters. Outcome measures of person-side

parameters improved as test length increased (e.g., the averaged RMSE of u = 0.568 when test

length = 10, and the averaged RMSE of u = 416 when test length = 25). Additionally, latent

working speed and visual engagement were recovered better than general ability from the IRT

model. Moreover, correlations among person-side latent traits impacted the recovery of var-

iance/covariances of the person-side parameters. Relatively higher RMSEs for the latent ability

related parameters were observed in the conditions where latent traits were highly correlated

(cor. = 0.8). However, for the conditions with a longer test length (I = 25), parameters were

recovered better than those with shorter test length (I = 10). One reason for having better para-

meter recovery with longer tests is that more information was provided from the data to esti-

mate the nuances among test-takers regarding their responding accuracy, working-efficiency,

and visual attentiveness. General trends of RMSE according to the sample size and correlations

among latent traits are shown in Figure 7.

To assess data model fit, test-level PPP-values were calculated and averaged over all simu-

lated datasets for each condition. The PPP-values were summarized based on 2000 iterations

after dropping burn-in iterations with thinning of 2. A PPMC value within the range of 0.05 and

0.95 indicates satisfactory data-model fit. In general, all models showed adequate fit with the

simulated datasets. Compared to the RT and VFC models, PPMC values for the 1-PL IRT model

Figure 6 . RMSE values of item-side parameters across different levels of manipulated factors. b, item
difficulty; b, item time intensity; n, item time discrimination; m, item engagement intensity; a, item
engagement discrimination; m., item mean; s., item variance; Cor., correlations among person-side latent
variables.
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were relatively smaller, especially for the conditions with shorter test-length and smaller sample

size. However, all the PPP-values were above 0.05 indicating acceptable fit. Detailed results can

be found in Table 8 in the Supplemental file.

In summary, the simulation study showed that model parameters of the proposed model are

well-recovered across all conditions with MCMC estimation. Particularly, for the conditions

with small sample size (n = 100) and short test length (I = 10), model parameters were ade-

quately recovered based on reasonably small RMSE values. RMSE was clearly smaller under

larger sample size and longer test length conditions. The results from the empirical study are

consistent with the simulation study, which indicate that the manifested patterns regarding test-

takers’ behaviors and item characteristics in the empirical example appear to be valid.

Table 4 showed that all item parameters were well-recovered across with low biases. The

recovery of time-related boundaries (i.e., RMSE(b) = 0.065 and RMSE(n) = 0.141) and that of

visual-related parameters (i.e., RMSE(m) = 0.054 and a = 0.054), have smaller RMSE values

than does item difficulty (RMSE(b) = 0.234). And, the mean biases were lower than 0.028.

Regarding the item mean vector and variance-covariance matrices. In general, the recovery of

all model parameters was satisfactory. The RMSE values of item means are ranged from 0.023

to 0.072, and the RMSE values of the variance-covariance components are ranged from 0.021

to 0.302. And, the bias values are ranged from 0.012 to 0.225. In general, the recovery of time-

and visual engagement-related parameters (e.g., mb, m and sz,m) was better than that of item

difficulty (e.g., s2
b) with lower values in both RMSE and bias.

As also shown in Table 4, person-side parameters, latent working speed and visual engage-

ment (i.e., RMSE values for (t) = 0.176 and v = 0.138) were recovered better than ability

(RMSE (u) = 0.586) from the IRT model. All bias values were lower than 0.004 in absolute

value. Moreover, the recovery of variance-covariance components related to working-speed and

Figure 7. RMSE values of person-side parameters across different levels of manipulated factors. u,
ability; v, visual engagement; t, speediness; Cor., Correlations among person-side latent variables.
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visual engagement (e.g., s2
t and s2

v ) was better than that of latent ability related parameters

(e.g., s2
u, and su,t), in terms of both RMSE and bias. Overall, recovery of the person-side var-

iance and covariances (Sp) was satisfactory in which all RMSE values were less than 0.406.

In addition, ANOVA results demonstrated nontrivial effects from sample size and test length.

We expected the crossed condition with small sample size (n = 100) and short test length

(I = 10) to be potentially challenging to recover model parameters. The RMSE and bias values

of each parameter in that condition were summarized in Table 4. The detailed results of other

conditions can be located in the Supplemental file.

Discussion

With increasing frequency, researchers are using multimodal data in order to better understand

the interconnections of the myriad of complex behaviors and cognitive processes of test-takers.

To this end, innovative assessments environments, like ITELS, make the concurrent collection of

various types of data, possible. Gathering and assembling different data (i.e., item responses,

response times, and gaze fixation counts) from these settings notwithstanding, the overall success

of linking these data to underlying human biological and cognitive processes also relies on inno-

vative psychometric models like the hierarchical factor model presented here. This work builds

on models for simultaneously analyzing item responses and response times (van der Linden,

Klein Entink, & Fox, 2010). These joint models have proven effective in providing valuable

Table 4. RMSE and Bias for Simulated Data with a Small Sample Size (N =100) and a Short Test Length
(I = 10).

Par Bias RMSE

Item parameters
b 0.028 0.234
b 0.001 0.065
n 0.001 0.141
m 20.002 0.054
a 20.002 0.054
mb 0.025 0.072
mb 0.010 0.018
mm 20.012 0.023
s2
b

0.225 0.302

sb,b 0.020 0.056
s2
b

0.155 0.157

sb,m 0.017 0.057
sb,m 0.012 0.021
s2
m

0.165 0.167
Person parameters

u 0.001 0.586
t 20.001 0.176
v 20.004 0.138
s2
u

0.188 0.205

su,t 20.403 0.406
su,v 0.030 0.033
s2
t

20.094 0.105
st,v 20.188 0.199
s2
v

0.031 0.037
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information about item and person characteristics above and beyond what could be ascertained

from analyzing item responses alone (Man & Harring, 2019). Two important caveats are worth

noting. First, is that these disparate data types must be collected simultaneously if they are to

modeled jointly. That is, if relations and associations among model parameters reflecting item

and person characteristics are of interest, then the environment in which data collection occurs,

must be sufficiently equipped. Second, software must be available for merging and cleaning these

data collected from different sources (i.e., log files, eye-tracking machine) so that modeling can

even occur. These tasks are not inconsequential and require planning for successful execution.

A three-way joint model that integrates visual fixation counts into a traditional psychometric

modeling framework was proposed and its utility was shown through an analysis of data gath-

ered on a sample of n = 93 college students and via a small-scale Monte Carlo simulation. The

joint modeling framework permits estimation of item and person parameters from a 1-PL IRT

model, an RT model and a negative binomial model, simultaneously. Elements of item-side

and person-side variance-covariance matrices represent the glue that connect the distinct model

parameters together. An MCMC algorithm was used to facilitate parameter estimation. Results

from the real data example showed that the proposed model captured the underlying patterns

embedded in the data and showed satisfactory data-model fit—even though the sample size

was quite modest.

We suggested interpretations of estimated item parameters (i.e., difficulty, time and visual

intensity) and person parameters (i.e., latent ability, working speed, and visual engagement),

particularly elements of the covariance matrices where associations between item characteristics

and between person characteristics could be examined separately—each providing insights into

the interconnected patterns of behaviors and attributes of the test-takers and characteristics of

the task items. Our interpretations were admittedly superficial in nature as they were informed

by past methodological studies2 (see, e.g., Fox & Marianti, 2016; Man & Harring, 2019; van

der Linden, 2006). We acknowledge that they also lacked depth, nuance, and understanding that

a learning scientist or cognitive psychologist, who had an intimate knowledge of the underlying

biological processes, could provide. Future projects would certainly benefit from collaborating

within a multidisciplinary team comprised of methodologists and substantive researchers, each

bringing content knowledge, complementary skills and expertise to the research enterprise—

especially in the early stages where discussions among team members could inform data collec-

tion and research design.

In a virtual-based learning system, this joint modeling framework can help evaluate relations

among responding accuracy, task decoding speed, and visual engagement providing educators a

deeper understanding of test takers’ cognitive process in reaching their final answers. This

information, if presented in a digestible manner, could be subsequently used in a formative

way—providing feedback to inform course design modifications or suggesting different teach-

ing strategies aimed at enhancing student outcomes (Jiao & Lissitz, 2018). Besides those vari-

ables gathered as part of the current study, the ITELS environment facilitates the collection of

a number of other eye-tracking related biometric information variables (e.g., blinking rates,

pupil diameters) that could be jointly modeled to reflect other characteristics of test-taking

behaviors. For example, pupil diameter has been reported to be negatively correlated with lev-

els of fatigue (e.g., Morad et al., 2000; Yoss et al., 1970). Other biometric data (e.g., blood-oxy-

gen-level dependent signal, Electroencephalography (EEG), or heart rate) could be integrated

into the current modeling framework for systematically assessing the learners’ learning progres-

sions in ITELS. Other individual attributes and background variables, like gender, could also

be added as covariates to show differences in model parameters between groups. As a conse-

quence, practitioners could better understand the nuances in performance across groups or iden-

tify aberrant/gifted learning groups.
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As was just argued, an ITELS clearly presents opportunities to collect a multitude of distinct

data types. Whether this leads to useful information that can be tied directly to underlying theories

of behavior, development, learning, and cognition has yet to be established and fully exploited. As

one reviewer pointed out, test-takers might be less than enthusiastic about ever-increasing monitor-

ing, and instead find it quite intrusive. Imagine being subjected to a polygraph while sitting for a

licensing exam. While this may seem a little far-fetched, the slope may quickly become very slip-

pery without standards guiding the ethical use of these assessment environments in practice. This

said, we remain cautiously optimistic about the potential insights that can be garnered about under-

lying biological and cognitive processes by further connecting advanced modeling techniques, like

the joint model of multimodal data presented here, with theory.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorshsip, and/or

publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or pub-

lication of this article: This work is funded by an Institute of Educational Sciences (IES) grant

R305A210428.

ORCID iDs

Jeffrey R. Harring https://orcid.org/0000-0002-7102-0303

Kaiwen Man https://orcid.org/ 0000-0002-9696-9726

Peida Zhan https://orcid.org/0000-0002-6890-7691

Supplemental Material

Supplemental material for this article is available online.

Notes

1. The interested reader can visit the Gazepoint website for tutorials (https://www.gazept.com/tutorials/)

about usage and setup as well as a listing of peer-reviewed publications (https://www.gazept.com/

about-us-page-2/publications/) that used the eye-tracking hardware to gather data for the research proj-

ects. The test was delivered with a time limit. For the verbal reasoning section, students were asked to

finish 10 questions within 20 minutes, where the last three questions required reading short passages.

2. Visual attention in cognitive psychology is a broader concept, often defined as a process that directs a

tiny fraction of the information arriving at the visual cortex involved in visual working memory, pat-

tern recognition, and motivation (Anderson et al., 2005). The ‘‘visual engagement’’ term was sug-
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reflect the visual attention load, and the interpretation of visual engagement depends on the context.
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