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Abstract

The Schwarz or Bayesian information criterion (BIC) is one of the most widely used tools for 

model comparison in social science research. The BIC however is not suitable for evaluating 

models with order constraints on the parameters of interest. This paper explores two extensions 

of the BIC for evaluating order constrained models, one where a truncated unit information 

prior is used under the order-constrained model, and the other where a truncated local unit 

information prior is used. The first prior is centered around the maximum likelihood estimate and 

the latter prior is centered around a null value. Several analyses show that the order-constrained 

BIC based on the local unit information prior works better as an Occam’s razor for evaluating 

order-constrained models and results in lower error probabilities. The methodology based on the 

local unit information prior is implemented in the R package ‘BFpack’ which allows researchers to 

easily apply the method for order-constrained model selection. The usefulness of the methodology 

is illustrated using data from the European Values Study.

1 Introduction

The Bayesian information criterion (BIC) is one of the most commonly used model 

evaluation criteria in social research, for example for categorical data (Raftery, 1986), event 

history analysis (Vermunt, 1997), or structural equation modeling (Raftery, 1993; Lee & 

Song, 2007). The BIC, originally proposed by Schwarz (1978), can be viewed as a large 

sample approximation of the marginal likelihood (Jeffreys, 1961) based on a so-called unit 

information prior. This unit information prior contains the same amount of information as 

would a typical single observation (Raftery, 1995).

The BIC has several useful properties. First, it can be used as a default quantification of the 

relative evidence in the data between two statistical models. Second, it can straightforwardly 

be used for evaluating multiple statistical models simultaneously. Third, it is consistent for 

most well-behaved problems in the sense that the evidence for the true model converges to 

infinity (Kass & Wasserman, 1995). Fourth it behaves as an Occam’s razor by balancing 

model fit (quantified by the log likelihood function at the maximum likelihood estimate 

(MLE)) and model complexity (quantified by the number of free parameters). Fifth, it 

is easy to compute using standard statistical software: only the MLEs, the maximized 
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loglikelihood, the sample size, and the number of model parameters are needed to compute 

it. All these useful properties have contributed to the popularity and usefulness of the BIC in 

social research.

Despite the general applicability of the BIC, it is not suitable for evaluating statistical 

models with order constraints on certain parameters. In a regression model for instance it 

may be expected that the first predictor has a larger effect on the outcome variable than the 

second predictor, and the second predictor is expected to have a larger effect than the third 

predictor. This can be translated to the following order-constrained model, M1 : β1 > β2 > 
β3, where βk denotes the effect of the k-th predictor on the outcome variable. This model can 

then be tested against conflicting models, such as a model with competing order constraints, 

e.g., M2 : β3 > β1 > β2, a model where the effects are expected to be equal, M3 : β1 = β2 = 

β3, or the complement of these models, denoted by M4. Under the complement model M4, 

the true values for the β’s do not satisfy any of the constraints under models M1, M2, or M3.

The reason that the BIC is not suitable for testing models with order constraints is that 

the number of free parameters does not properly capture the complexity of a model. In the 

above model M1, all three β parameters are free parameters but saying that M1 is equally 

complex as a model with no constraints, i.e, β1, β2, β3 ∈ ℝ3, seems incorrect. Furthermore, 

the BIC is based on the Laplace approximation of the marginal likelihood. It is as yet 

unclear how well the approximation performs in the case of models with order constraints. 

The complicating factor is that the approximation assumes that the maximum value of the 

integrand is an interior point of the integrated region. This assumption is violated if the 

maximum likelihood (or posterior mode) does not lie in the integrated region.

Testing order constraints is particularly useful because effect sizes can only be interpreted 

relative to each other in the study, and relative to the field of research (J. Cohen, 1988). 

An effect size of, say, 0.3, of educational level on attitude towards immigrants might 

seem substantial for a sociologist, while 0.3 might not be interesting when it quantifies 

the effect of a medical treatment on the amount of pain of a patient. Thus, instead of 

interpreting the magnitudes of effects by their estimated values, it may be more informative 

to interpret them relative to each other, as is done using order-constrained model selection. 

This would allow us to assess which effects dominate other effects in the study. Further, 

order-constrained model selection could be useful for testing scientific expectations which 

can often be formulated using order constraints. Examples will be given in Section 2, but 

see also Klugkist et al. (2005), Hoijtink (2011), Braeken et al. (2015), Mulder & Pericchi 

(2018) and Mulder & Fox (2018). By testing order-constrained models we can quantify the 

evidence in the data for one scientific theory against others.

Order-constrained models are also naturally specified when one is interested in the effect 

of an ordinal categorical variable on an outcome variable of interest. Also, the inclusion 

of order constraints results in more statistical power. This can be explained by the smaller 

subspace for the parameters under an order-constrained model compared to an equivalent 

model without the order constraints. The order constraints make the model ‘less complex’ 

resulting in a smaller penalty for model complexity, and thus in more evidence for an 

order-constrained model that is supported by the data.
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In this paper we explore how the BIC can be extended to enable order-constrained 

model selection. First a unit information prior is considered that is truncated in the 

order-constrained subspace. This results in a BIC that may not properly incorporate the 

relative complexity of an order-constrained model. For this reason an alternative local unit 

information prior is considered which is centered around a null value. This prior results 

in a BIC that properly incorporates the relative fit and complexity of order-constrained 

models. The R package ‘BFpack’ has been developed for order-constrained model selection 

in popular models such as generalized linear models, survival models, and ordinal regression 

models.

To our knowledge there have been two other proposals for the BIC for evaluating models 

with order (or inequality) constraints by Romeijn et al. (2012) and Morey & Wagenmakers 

(2014), and we will compare our proposal to theirs.

The article is organized as follows. We motivate the evaluation of statistical models with 

order constraints on the parameters of interest in the context of the European Values Study 

in Section 2. In Section 3 we discuss BIC approximations of the marginal likelihood under 

an order-constrained model. Section 4 provides a numerical evaluation of the methods, while 

Section 5 describes software to implement the methods. Section 6 explains how to apply the 

new method for testing social theories in the European Values Study, and Section 7 discusses 

the results.

2 Order-constrained model selection in social research

In this section we present two situations where order-constrained model selection is useful. 

First, theories often make an assumption about the relative importance of certain predictors 

on an outcome variable. This can be formalized by specifying order constraints on the 

effects of these predictor variables. We will show this in Application 1 using Ethnic 

Competition Theory (Scheepers et al., 2002). Second, a researcher may have an expectation 

about the direction of an effect of a predictor variable with an ordinal measurement 

level. When modeling this ordinal predictor variable using dummy variables, the expected 

directional effect can be translated to a set of order constraints on the effects of these dummy 

variables. This will be shown in Application 2 by considering Inglehart’s Generational 

Replacement Theory.

2. 1 Application 1: Assessing the importance of different dimensions of socioeconomic 
status

In most European countries, the majority of immigrants are located in the lower strata of 

society. For this reason lower-strata members of the European majority population who 

hold similar social positions as the ethnic minorities, having a relatively low social class, 

low educational level, or low income level, will on average compete more with ethnic 

minorities than will other citizens in the labour market. Therefore Ethnic Competition 

Theory (Scheepers et al., 2002) would predict that higher social class, educational level, or 

income level would result in a more positive attitude towards immigrants. Furthermore, it is 

likely that social class (which reflects the type of job a person has) has the largest impact 

because one’s social class is directly related to the labour market. The effects of education 
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is less direct and therefore it is expected that one’s educational level has a lower impact on 

attitude towards immigrants than social class. Finally it would be expected that the effect of 

income would be the lowest, but still positive. This expectation will be formalized in model 

M1 which is provided below.

Alternatively, due to the importance of education in shaping one’s identity (A. K. Cohen 

et al., 2013; van der Waal et al., 2015), it might be expected that education is the most 

important factor explaining one’s attitude towards immigrants, followed by social class 

and income for which no specific ordering is expected (formalized in model M2). A third 

hypothesis is that all three dimensions have an equal and positive effect on attitudes towards 

immigrants (model M3). Finally, it may be that none of these three hypotheses is true (model 

M4).

To evaluate these expectations we first write down the linear regression model where the 

attitude towards immigrants is the outcome variable, and social class, educational level, and 

income are the predictor variables while controlling for age. The i-th observation is modeled 

as follows,

attitude i = θ0 + class i × θclass + education i × θeducation
+ income i × θincome + gender i × θgender + error i , (1)

for i = 1, …, n. The predictor variables are all standardized. In (1), θclass, θeducation, and 

θincome are the standardized coefficients for social class, educational level, and income, 

respectively, θgender is the standardized coefficient for gender, and the errors are assumed to 

be independent and normally distributed with unknown variance.

The four expectations given above can be formalized using competing statistical models 

with different order constraints on the standardized effects, namely

M1:θclass  > θeducation  > θincome  > 0,
M2:θeducation  > θclass , θincome  > 0,
M3:θclass  = θeducation  = θincome  > 0,
M4:  “neither M1, M2,  nor M3”,

(2)

where θclass, θeducation, and θincome denote the effects of social class, educational level, and 

income on attitude towards immigrants, respectively. Consequently the goal is to quantify 

the evidence in the data for these three models to determine which model receives the most 

support.

Note that nuisance parameters (e.g., effects of control variables) are omitted in the above 

formulation of the models of interest to simplify the notation. Further note that additional 

competing constrained models could be formulated in this context as well. For the current 

application however we restrict ourselves to these models.
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2.2 Application 2: The importance of postmaterialism for young, middle and old 
generations

Experiences in pre-adult years are known to have a crucial impact on the development of 

basic values in later life. Due to the increase in welfare in recent decades, Generational 

Replacement Theory predicts that the values of younger generations are different from those 

of older generations. In particular postmaterialistic values, such as the desire for freedom, 

self-expression, and quality of life, are expected to have increased for younger generations 

as a result of improved economic standards in western countries (Inglehart & Abramson, 

1999; Welzel & Inglehart, 2005).

In the European Values Study, generation was operationalized using an ordinal variable 

with three categories corresponding to a young, middle or old generation. Similarly, 

postmaterialism has been measured on an ordinal scale as well, having three categories. 

When setting the younger generation as the reference group and using dummy variables for 

the middle and older generations, Generational Replacement Theory can be translated to an 

order-constrained model (M1). We contrast it with a model that assumes no generation effect 

on postmaterialism (M0) and with a complementary model that assumes neither an increased 

effect nor a zero effect (M2).

The models of interest can be summarized as follows:

M0:θold = θmiddle = 0,
M1:θold < θmiddle < 0,
M2: “neither M0, nor M1 . ”

(3)

Furthermore we hypothesize that the inclusion of order constraints on the generational 

effects of interest results in an increase of statistical power in comparison to testing the 

classical alternative, say, M3 : θyoung ≠ θmiddle 6= 0 versus the null model M2 : θyoung = 

θmiddle = 0. In terms of the BIC this implies we obtain more evidence against M0 when 

testing it against the order-constrained model M1 (if the constraints are supported by the 

data) than when testing M0 against the unconstrained alternative M3.

3 BIC approximations of the marginal likelihood

In this section, extensions of the BIC are derived for a model with order (or inequality) 

constraints on certain model parameters. Consider an order-constrained model M1 with d 
unknown model parameters, denoted by θ, which are restricted by r1 order constraints, i.e., 

M1 : R1θ > r1 where [R1|r1] is an augmented r1 ×(d+1) matrix containing the coefficients of 

the order constraints under M1.

For example, the order-constrained model M1 : θclass > θeducation > θincome > 0 in (2) can be 

translated to
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R1θ > r1

0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 0 0

θ0
θclass
θeducation
θincome
θgender

σ2

>
0
0
0

,

(4)

where the first element of θ denotes the intercept, the fifth element the gender effect, 

and the sixth element denotes the error variance, which are nuisance parameters. The 

order-constrained model is nested in an unconstrained model which will be denoted by Mu.

The likelihood function under M1 is a truncation of the likelihood under an unconstrained 

model, i.e., p1 D|θ = p D|θ × IΘ1 θ , where p(D|θ) denotes the likelihood function of the 

data D under the unconstrained parameter space Θ. The prior for θ under M1 will be denoted 

by p1(θ). Two different types of priors will be considered for approximating the marginal 

likelihoods under M1 and Mu.

3.1 Truncated unit information prior

First we assume that the unconstrained posterior mode, denoted by θu, falls in the inequality-

constrained space of model M1, i.e., R1θ > r1. The BIC approximation of the marginal 

likelihood under the inequality-constrained model is then obtained using a second-order 

Taylor expansion of the logarithm of the integrand around the posterior mode. This 

approximation introduces in an error that is O n−1 .1 Let us define g(θ) = logp1(D|θ) + 

logp1(θ). Then, the marginal likelihood can be derived by

log p1 D = log ∫R1θ > r1
p1 D|θ p1 θ dθ

= log ∫R1θ > r1
exp g θ dθ

= log ∫R1θ > r1
exp g θu + 1

2 θ − θu ′H θu θ − θu dθ + O n−1

= log p1 D|θu + log p1 θu +

log ∫R1θ > r1
exp 1

2 θ − θu ′H θu θ − θu dθ + O n−1

= log p1 D|θu + log p1 θu + d
2 log 2π − 1

2log |−H θu |

+ log Pr R1θ > r1 |D, Mu + O n−1 ,

where H θu  denotes the Hessian matrix of second-order partial derivatives of g(θ) evaluated 

at θu.

1A quantity being O n−1  implies that nO n−1  converges to a constant as n → ∞.
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Hence, the only difference with the original derivation is that the resulting approximation 

also includes the posterior probability that the order constraints of M1 hold under the 

larger unconstrained model Mu. From large sample theory, the unconstrained posterior mode 

can be approximated with the unconstrained maximum likelihood estimate (MLE), i.e., 

θu ≈ θu, and −H θu ≈ nIE θu , where IE θu  is the expected Fisher information matrix of 

one observation (which can be obtained using standard statistical software). This introduces 

an additional approximation error of O n− 1
2 . Subsequently the approximated logarithm of 

the marginal likelihood is given by

log p1 D = log p1 D|θu + log p1 θu + d
2 log 2π − d

2 log n − 1
2log |IE θu |

+ log Pr R1θ > r1 |D, Mu + O n− 1
2 .

(5)

As was pointed out by Raftery (1995), certain terms cancel out when plugging in the 

so-called unit information prior (see also Kass & Wasserman, 1995). The unit information 

prior has a multivariate normal distribution with mean equal to the MLE and variance 

equal to the inverse of the expected Fisher information matrix of one observation, i.e., 

pUI θ = N θu, IE θu
−1

. Under the constrained model M1 we propose using a truncated 

unit information prior, i.e.,

p1
UI θ = pUI θ × I R1θ > r1 × PrUI R1θ > r1 |Mu

−1, (6)

where the prior probability serves as a normalization contant so that the truncated unit 

information prior integrates to one, i.e.,

PrUI R1θ > r1 |Mu = ∫R1θ > r1
pUI θ dθ .

Evaluating the logarithm of the unconstrained unit information prior at the unconstrained 

MLE yields log pUI θu = − d
2 log 2π + 1

2 log |IE θu |, and therefore (5) becomes

log p1 D = log p1 D|θu + − d
2 log n + log Pr R1θ > r1 |D, Mu

− log PrUI R1θ > r1 |Mu + O n− 1
2 .

(7)

The corresponding order-constrained BIC is then obtained by multiplying the logarithm of 

the approximated marginal likelihood by −2 and ignoring the error term. This yields

OC‐BIC M1 = − 2 log p1 D|θu + d log n − 2 log Pr R1θ > r1 |D, Mu
+ 2 log PrUI R1θ > r1 |Mu ,

(8)
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where the first two terms form the ordinary BIC of model M1 without the order constraints, 

and the additional third and fourth term are used for the evaluation of the order constraints of 

M1 within Mu.

Next we consider the case where the unconstrained posterior mode does not lie in the 

inequality-constrained subspace of M1, i.e., R1θ ≱ r1. In this case the second-order Taylor 

expansion of g(θ) around the unconstrained posterior mode (or MLE) may not be a good 

approximation. The rationale is that the mode under M1, which will have a nonzero gradient, 

will lie on the boundary space where R1θ = r1.2

Because of the exponential tails of the normal distribution, a first-order Taylor expansion 

of g(θ) at the posterior mode under M1, denoted by θ1, seems more appropriate (Avramidi, 

2000). For example let us consider a simple inequality-constrained model, M1 : θ ≥ 0, and 

let the unconstrained mode be smaller than 0, i.e., θ < 0, so that the posterior mode under 

M1 is located on the boundary, i.e., θ1 = 0, which has a negative gradient, g′(0) < 0. The 

function g(θ) for such a situation is plotted in Figure 1 (black line, solid line under θ ≥ 0, 

dotted line under θ ≱ 0). The second-order Taylor approximation at the unconstrained mode 

is also plotted (red line; solid line under θ ≥ 0, dotted line under θ ≱ 0).

A first-order Taylor expansion at θ1 = 0 can be used to approximate the function in the 

region θ ≥ 0 according to

g θ = g 0 + g′ 0 θ + O θ2 .

The marginal likelihood can then be approximated as follows

log p1 D = log ∫θ > 0
p1 D|θ p1 θ dθ = log ∫θ > 0

exp g θ dθ

≈ log ∫θ > 0
exp g 0 + g′ 0 θ dθ = g 0 − log −g′ 0 .

Hence, instead of the normal distribution which is used to compute the integral in the case of 

a second-order Taylor expansion, an exponential distribution is used to compute the integral 

using this first-order Taylor expansion. The approximated line is also plotted in Figure 1 

(green line).

The figure suggests that the second-order Taylor approximation at the unconstrained 

posterior mode is less accurate than the first-order Taylor approximation at the boundary 

point. This suggests that the approximated marginal likelihood under the inequality-

constrained model will generally be better using first-order approximation at the boundary 

point in the case that the inequality constraints are not supported by the data. In the 

remainder of this paper however we shall use the second-order Taylor approximation at the 

2In the case R1θ = r1, the second-order expansion may still be appropriate.
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unconstrained posterior mode both when the posterior mode does and does not lie in the 

subspace of the inequality-constrained model under investigation.

When the order constraints are not supported by the data, the crudeness of the approximation 

is less important because the order-constrained model will not be selected because of the 

bad fit. Instead another, better fitting model will be selected for which the approximated 

marginal likelihood can be accurately estimated. Another reason for working with the 

second-order Taylor approximation is that it can easily be computed using (7), also for 

more complex systems of inequality constraints on multiple parameters, e.g., θ1 > θ2 > θ3 

> 0, than when using a first-order Taylor approximation at boundary point of the inequality-

constrained subspace where the mode is located. Numerical experiments presented later 

illustrate that the approximation error is acceptable when the posterior mode does not lie in 

the constrained subspace.

It has been argued that data-based priors, such as the unit information prior, may result 

in Bayes factors that do not function as an Occam’s razor when evaluating inequality-

constrained models (Mulder, 2014a, b). To see that this is also the case for the unit 

information prior, the approximated Bayes factor of an inequality-constrained model M1 

against an unconstrained model Mu (where the inequality constraints are omitted) is given 

by

B1u
UI ≈

Pr R1θ > r1 |D, Mu
PrUI R1θ > r1 |Mu

.

This follows automatically from (7).

Now in the case of overwhelming evidence for M1, i.e, R1θu ≫ r1, both the posterior 

probability and the prior probability based on the unit information prior will be 

approximately one, resulting in equal evidence for M1 and Mu. This is a consequence of the 

fact that the unit information prior is concentrated around the MLE. Because both models 

fit the data equally well while the inequality-constrained model can be viewed as a less 

complex model (because a ‘smaller’ subspace is spanned), this property suggests that the 

approximated Bayes factor does not properly function as an Occam’s razor.

3.2 Truncated local unit information prior

Due to the behavior of the unit information prior when evaluating order-constrained models, 

we consider a ‘local’ unit information prior with a mean that is located on the boundary 

of the inequality-constrained space (we borrow the term ‘local’ from Johnson & Rossell, 

2010). Note that the boundary space is equal to the parameter space under the null model 

M0 : R1θ = r1. The rationale for centering the prior around the null space dates back at 

least to Jeffreys (1961) who argued that when the null model is false the effects are expected 

to be close to the null; otherwise there is no point in testing the null. This implies that 

the prior under the alternative model should be located around the null value. Furthermore 

there have been reports in the literature where the use of such local priors result in desirable 
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selection behavior when evaluating order-constrained models (e.g., Mulder et al., 2010; 

Mulder, 2014a). Here we explore this class of priors for the BIC.

We set the mean of the local unit information prior equal to the MLE under the null model, 

denoted by θ0. Furthermore, the covariance matrix will be equal to the covariance matrix 

of the unit information prior. Thus, the unconstrained local unit information prior can be 

written as pLUI θ = N θ0, IE θu
−1

. The truncated prior under M1 : R1θ > r1 is then equal 

to

p1
LUI θ = pLUI θ × I R1θ > r1 × 1

PrLUI R1θ > r1 |Mu
.

By applying formula (14) in Kass & Raftery (1995), changing the unit information prior 

to the local unit information prior, results in an approximated logarithm of the marginal 

likelihood of

log p1
LUI D = log p D|θu − d

2 log n − 1
2 θu − θ0 ′IE θ θu − θ0

+ log Pr Rθ > r |D, Mu − log PrLUI Rθ > r|Mu .
(9)

Consequently, the approximated Bayes factor based on the local unit information prior of an 

inequality-constrained model against an unconstrained model is given by

B1u
LUI ≈ Pr R1θ > r1 |D, Mu

PrLUI R1θ > r1 |Mu
. (10)

Now in the case of overwhelming evidence for M1, in the sense that R1θu ≫ r1, 

the Bayes factor will be equal to the reciprocal of the prior probability that the 

inequality constraints hold under the unconstrained local unit information prior, i.e., 

B1u
LUI ≈ PrL R1θ > r1 |Mu

−1
, which is strictly larger than one because the prior mean 

is located on the boundary of the constrained space where R1θ = r1. Note that this 

prior probability can be viewed as a quantification of the relative size of the inequality-

constrained subspace. For example in the case of a diagonal covariance matrix, the prior 

probability of k one-sided constraints, θ > 0, is equal to 2−k, and the prior probability of k 
order constraints, θ1 < … < θk, is equal to (k!)−1, similar to the Bayes factors proposed by 

Mulder et al. (2010) and Morey & Wagenmakers (2014).

Instead of working with (9) we consider a slightly cruder approximation where the third 

term, which quantifies prior fit, is omitted. This yields

log p1
LUI * D = log pu D|θu − d

2 log n + log Pr Rθ > r |D, Mu

− log PrLUI Rθ > r|Mu .
(11)
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The rationale for omitting this term is that we are not interested in quantifying prior 

misfit. Another reason is that expression (11) can be combined with the ordinary BIC 

approximation for an unconstrained model (i.e., ‘log p D|θu − d
2 log n ’) to obtain the 

approximated Bayes factor in (10).

The terms on the right-hand side of (11) have the following intuitive interpretations. The 

first and second term can be interpreted as measures of model fit and model complexity 

of the unconstrained model where the inequality constraints are excluded (similar to 

the ordinary BIC approximation based on the unit information prior). The third term, 

which is the approximated posterior probability that the inequality constraints hold under 

the unconstrained model, can be interpreted as a measure of the relative fit of an order-

constrained model M1 relative to the unconstrained model Mu. Finally, the fourth term, 

which is the local prior probability that the order constraints hold under the unconstrained 

model, can be interpreted as a measure of the relative complexity of the order-constrained 

model M1 relative to the unconstrained model Mu.

Thus (11) will behave as an Occam’s razor when evaluating order-constrained models 

by balancing the fit and complexity of the order-constrained model. The corresponding 

order-constrained BIC based on the local unit-information prior then yields

OC‐BIC* M1 = − 2 log pu D|θu + d log n − 2 log Pr Rθ > r |D, Mu
+ 2 log PrLUI Rθ > r|Mu .

(12)

3. 3 Comparison with other BIC extensions

The order-constrained BIC in (12) shows some similarities with the BIC extensions 

proposed by Romeijn et al. (2012) and Morey & Wagenmakers (2014). In the proposal 

of Romeijn et al., the prior can be chosen by users allowing a subjective quantification of 

the relative size of the constrained space. Although this may be useful in certain situations, 

the BIC is typically used in an automatic fashion, and thus it may be preferable to also 

let the prior probability be based on a default prior. The advantage of using the local unit 

information prior for this purpose is that it results in a reasonable default measure for 

the relative size of an order-constrained parameter space because the prior is centered on 

the boundary of the constrained space (unlike the (nonlocal) unit information prior). For 

example, when considering a univariate one-sided constraint, θ < 0, the prior probability 

based on the local unit information prior will be 1
2 , which seems reasonable because half of 

the unconstrained space of θ is covered by the one-sided constraint.

Furthermore Romeijn et al. set the posterior probability that the order constraints hold to 1 

in the case the MLE is in agreement with the constraints, and 0 elsewhere. This additional 

approximation step follows directly from large sample theory: When the sample size goes 

to infinity the posterior probability converges to 1 if the true parameter value is an interior 

point of the order-constrained subspace, and 0 if it is an interior point of the complement 

of this subspace. Thus, for extremely large samples, the prior-adapted BIC of Romeijn et al. 

may perform similarly to the order-constrained BIC in (12).
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For modestly sized samples however, or in the case of small effects (as is typical in 

social research), setting the posterior probability to either 1 or 0 may result in crude 

approximations of the posterior probability. As will be shown in the empirical application 

in Section 6.1 for example, the posterior probabilities that two competing sets of order 

constraints hold under an unconstrained model are equal to .50 and .18. Setting these 

probabilities to 1 and 0, respectively, would result in an unnecessarily crude estimate of the 

marginal likelihood. Instead we recommend using the actual posterior probability that the 

order constraints hold based on the unconstrained approximated posterior (the third term in 

(12)).

In the proposal of Morey & Wagenmakers (2014) the prior probability that a specific 

ordering of d parameters hold, e.g., θ1 < … < θd, is set to 1/d!. This probability is thus 

based on the assumption that each ordering is equally likely a priori, similar to the priors 

proposed by Mulder et al. (2010) and Klugkist et al. (2005) when using Bayes factors. 

This probability however holds only for specific covariance structures, such as a diagonal 

covariance structure. The prior probability may not be invariant for reparameterizations of 

the model (see also Mulder, 2014a). For example, if we would define ξd′ = θd′ − θd′−1, 

for d′ = 2, …, d, and ξ1 = θ1, the above order constraints would be equivalent to the 

one-sided constraints (ξ1, …, ξd−1) > 0. If one would use a prior diagonal covariance 

structure for ξ and zero means, the prior probability would be equal to 1/2d−1. This may be 

very different from 1/d!, resulting in a serious violation of invariance to reparamaterizations. 

The prior probability based on the local unit information (the fourth term on the right-hand 

side of (12)) on the other hand would be invariant for such reparameterizations as the prior 

covariance structure is automatically transformed along with the reparameterization.

4 Numerical analyses

The behavior of approximated Bayes factors based on the unit information prior and the 

local unit information prior will be investigated in a numerical example of the linear 

regression model, yi = θ0 + θ1xi1 + θ2xi2 + ϵi, with ϵi ~ N(0, σ2), for i = 1, …, n. Here θ0 

is the intercept, and θ1 and θ2 are the effects of the first and second predictor. We consider a 

model selection problem between an order-constrained model M1 : θ2 > θ1 > 0, a null model 

M0 : θ2 = θ1 = 0, and the complement model, M2 : θ2 ≱ θ1 ≱ 0. To gain more insight into 

the behavior of the criterion as an Occam’s razor, we also test the order-constrained model 

M1 against the unconstrained model, Mu: θ1, θ2 ∈ ℝ2.

4.1 Statistical evidence for order-constrained models

To understand better how the approximated Bayes factors quantify statistical evidence for 

order constrained models, we computed the approximated Bayes factors for data with 

θ1, θ2 = a, 2a , for a ∈ (−1.5, 1.5), while fixing θ0 = 0, σ2 = 1, n = 20, and X′X = [n 0 0; 0 

n n/2;0 n/2 n] (the exact choice of these fixed values did not qualitatively affect the results). 

Thus there is evidence for M1, M0, and M2 when a > 0, a = 0, and a < 0, respectively.

The logarithm of the approximated Bayes factors can be found in Figure 2. Based on the 

approximated Bayes factors of M1 versus Mu (left panel) we can see that the evidence 
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based on the unit information prior (dotted line) for M1 against Mu starts to decrease 

for larger effects (for approximately a = .3 and larger), which seems counterintuitive. 

Eventually the weight of evidence (i.e., the log Bayes factor) converges to 0. Thus, in the 

case of overwhelming evidence for an order constrained model, we obtain equal evidence 

for an order-constrained model M1 that is fully supported by the data and the ‘larger’ 

unconstrained model Mu when using the unit-information prior, even though M1 is a simpler 

model. This suggests that the approximated Bayes faction based on the unit information 

prior does not work as an Occam’s razor when evaluating order constrained models.

The evidence for M1 against Mu based on the local unit-information prior (solid line) on 

the other hand increases as a function of a. Eventually the weight of evidence converges to 

the reciprocal of the prior probability of θ2 > θ1 > 0 under the unconstrained model Mu, 

which is strictly larger than 0. Furthermore the local unit-information prior results in more 

evidence for a model that is supported by the data in comparison to the unit-information 

prior when comparing model M1 versus model M2 (Figure 2, middle panel) and model 

M1 versus M0 (Figure 2, right panel). Based on these considerations we conclude that 

the order-constrained BIC based on the local unit-information prior better balances fit and 

complexity when evaluating order-constrained models than the order-constrained BIC based 

on the unit-information prior.

4. 2 Error probabilities

Next we investigate the probabilities of selecting the true data generating model when 

including order constraints in the alternative model or not. First we consider testing the 

null model, M0 : θ1 = θ2 = 0, against an unconstrained alternative, Mu:θ ∈ ℝ2, using the 

ordinary BIC. Second we consider testing the null model M0 : θ1 = θ2 = 0 versus M1 : θ2 

> θ1 > 0 against two order-constrained alternative, namely M2 : θ2 ≱ θ1 ≱ 0, using the two 

order-constrained BICs. Note that the BIC for M0, with no inequality constraints, is the same 

in both tests. Further note that because the second test contains three models instead of two, 

the error probabilities in the second selection problem will be slightly larger when M0 is 

true, as a result of the design. The true effects will be set to (θ1, θ2) = (a, 2a), for a = 0, so 

that M0 is true, and a = .1, .2, and .4, so that Mu (M1) is true in the first (second) test.

Figure 3 displays the error probabilities as a function of the sample size (on a log-scale). 

All the criteria show consistent behavior in the sense that the error probabilities go to zero 

as the sample size grows. Furthermore we see that when M0 is true (upper left panel), the 

error probabilities are very similar and the ordinary BIC in test 1 results in the smallest 

errors. In the case of a true effect in the direct of the order constraints of M1 we see that 

the order-constrained BIC based on the local unit-information prior results in considerably 

smaller errors than the other criteria.

The error probabilities of the order-constrained BIC based on the local unit-information 

prior were only slightly larger in the case of a non-zero effect. This is partly a consequence 

of the design of the test having three instead of two models under investigation. We conclude 

that overall the order-constrained BIC based on the local unit-information prior performs 

best in terms of error probabilities.
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4. 3 Approximation errors of the order-constrained BICs

Finally we investigated the relative approximation errors of the order-constrained BICs 

by comparing them to nonapproximated counterparts, e.g., 
log B12 − log B12

log B12
 for model M1 

against M2. The approximation errors were investigated when the order-constrained model is 

supported by the data, namely when testing M1 : θ2 > θ1 > 0 versus M0 : θ1 = θ2 = 0, with 

θ1, θ2 = . 5, 1 , and when the order-constrained is not supported by the data, namely when 

testing M1 : θ2 > θ1 > 0 against its complement M2 : θ1 ≱ θ2 ≱ 0, with θ1, θ2 = − . 5, − 1 , 

while increasing the sample size.

The results can be found in Figure 4. As can be seen from the left panel, the relative 

error goes to 0 fast when the effects are in agreement with the order constraints of model 

M1. When the effect are not in agreement with the constraints (right panel), we see that 

the relative error does not go to zero. This is a consequence of the somewhat crude 

approximation we already observed in Figure 1 (red line). The approximation error however 

is not large enough to be a serious practical problem. Other settings resulted in qualitatively 

similar results.

5 Software

The R-package ‘BFpack’ was developed for evaluating order-constrained models using 

the order-constrained BIC based on the local unit-information prior. The R-functions 

can be downloaded from www.github.com/jomulder/BFpack3, or from CRAN in the near 

future. The order-constrained BIC based on the truncated unit-information prior was not 

considered because of its poorer performance that we observed in the numerical simulations. 

The package makes use of the mvtnorm-package (Genz et al., 2016) for computing the 

probabilities in (11). The key function is ‘bic_oc’, which can be used for computing the 

order-constrained BIC for various statistical models, including generalized linear models and 

survival models. As input the function needs a fitted model object (e.g., a fitted glm-object 

or coxph-object), a character string denoting the order constraints on certain parameters, and 

a Boolean argument denoting whether the order-constrained subspace or its complement is 

considered (the default is the order-constrained subspace).

For example, in the case of a regression model with three predictors, say, X1, X2, and X3, 

on an outcome variable y, and it is expected that X1 has the largest effect on the outcome 

variable, followed by X2, and X3 is expected to have the smallest effect, and all effects 

are expected to be positive, the order-constrained BIC can be computed by executing the 

following lines

fit1 < − glm y X1 + X2 + X3, data
bic_oc fit1, "0 < X1 < X2 < X3"

The use of the function will be illustrated in two empirical applications in the next section.

3Run ‘devtools::install_github(“jomulder/BFpack”)’ in R to install the BFpack package.
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6 Empirical applications revisited

The models from the applications in Section 2 are evaluated using the order-constrained BIC 

based on the local unit information prior using the R-package BFpack. For the empirical 

analyses presented in this section, only the European Values Study data of Germany are 

considered.

6. 1 Application 1: Assessing the importance of different dimensions of socioeconomic 
status

Model (1) can be fitted in R using the lm function:

lm1 < − lm atti_immi class + education + income + gender, data = EVS Germany

The estimated coefficients of interest were (βclass, βeducation, βincome) = (.312, .250, .041), 

with standard errors .067, .075, .072, respectively.

The order-constrained BIC for model M1 : θclass > θeducation > θincome > 0 in (2) can then be 

computed using the new bic_oc-function:

bic_oc lm1, "class > education > income > 0"

This resulted in a BIC of 3918.46. The function also provides the posterior probability that 

the constraints hold under the unconstrained model, which was equal to .50. Next the BIC 

for model M2 : θeducation > (θclass, θincome) > 0 is computed using the command

bic_oc lm1, "education > class, income > 0"

The resulting OC-BIC was 3921.98. For this set of constraints, the posterior probability 

under the unconstrained model equaled .18.

The BIC for model M3 : θclass = θeducation = θincome > 0 is computed. First the model 

is fitted with the equality constraints on the effect but without the inequality constraint. 

Because the effects of social class, education, and income are equal under M3, the regression 

model in (1) becomes

atti_immi = θ0 +  class + education + income   ×  θclass . educ . income + error

where θclass.educ.income denotes the equal effect of social class, educational level, and income 

on attitude towards immigrants. Thus, this model can be fitted by including the sum of the 

class, education, and income as a linear predictor:

EVS_Germany$class . educ . income < − EVS_Germany$class + EVS_Germany$education + EVS Germany$income
lm2 < − lm atti_immi class . educ . income + gender, data = EVS Germany

The order-constrained BIC can then be computed based on the resulting fitted model:
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bic_oc lm2, "class . educ . income > 0"

This resulted in a BIC of 3917.84.

Finally, to compute the BIC of the complement model M4 : “neither M1, M2, nor M3, “, first 

note that the marginal likelihood of the union of M1, M2, and M3 would be the same as the 

marginal likelihood of the union of only M1 and M2 because M3 has zero probability due 

to the presence of the equality constraints of M3. Thus, we need to compute the marginal 

likelihood of the complement model of the joint of models M1 and M2. First we combine 

the two sets of order constraints in one vector, and then compute the order-constrained BIC 

using the new function:

constraints_M4 < − c "class > education > income > 0", "education > class, income > 0"
bic_oc lm1, constraints_M4, complement = TRUE

This resulted in a BIC of 3926.13. The BIC values are summarized in Table 1. From 

these values we can conclude that model M3 receives the most support but the evidence is 

negligible in comparison to the evidence for the order-constrained model M1, given the BIC 

difference of .624. The evidence for M2 and M3 is considerably lower than for M1 and M3.

For interpretation purposes it can be useful to translate the BICs to posterior model 

probabilities. A posterior model probability quantifies the probability of the data having 

been generated by one of the models considered, after observing the data given certain prior 

model probabilities. This probability is conditional on the data having been generated by one 

of the models considered.

In this application we assume equal prior probabilities for the models. The posterior model 

probabilities can be computed from the BIC values using the ‘postprob’ function in BFpack. 

The posterior probabilities together with the BICs can be found in Table 1. Hence the 

posterior probability for model M3, which assumes equal and positive effects of social class, 

education, and income on attitude towards immigrants, is largest with 53.3%. The posterior 

probability of M1, which assumed ordered positive effects of social class, education, and 

income based on the Ethnic Competition Theory, is only slightly smaller with 39.1%. There 

is not much evidence for either M2 or M2, given their posterior probabilities of 6.7% and 

.8%, respectively. There is thus considerable model uncertainty, and more data would be 

needed to choose a single best model.

6.2 Application 2: The importance of postmaterialism for young, middle and old 
generations

Because the outcome variable ‘postmaterialism’ has an ordinal measurement level with 

three categories (‘low’, ‘medium’, and ‘high’), an ordinal regression model can be fitted 

using the polr-function of the MASS-package. Thus, the ordinal variable ‘postmaterialism’ 

4Typically a BIC difference of 10 points is needed in order to rule out a model.
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is regressed to the ordinal predictor ‘generation’ with categories ‘young’, ‘middle’, and ‘old’ 

while controlling for ‘gender’, ‘income’, and ‘education’:

fit3 < − polr postmaterial generation + gender + income + education, data = EVS_Germany, Hess
= TRUE

In the fitted model the ‘young’ generation is the reference group and dummy variables are 

created for the ‘middle’ and ‘old’ generation. These variables are called ‘generationmiddle’ 

and ‘generationold’ in the fitted polr-object. The estimated effects under this model were 

equal to θgenerationmiddle, θgenerationold = − . 444, − . 848 , having standard errors of .154 and 

.150, respectively.

Thus, the order-constrained BIC of model M1 : θgenerationold < θgenerationmiddle < 0, 

representing the Generational Replacement Theory, can be computed by the command

bic_oc fit3, "generationold < generationmiddle < 0"

The resulting BIC equaled 3154.82.

Next, the BIC of the null model M0 : θgenerationold = θgenerationmiddle = 0 is computed with no 

generation effect. Because this model does not contain any order constraints, we can simply 

compute an ordinary BIC. This can also be done using the bic_oc-function by omitting any 

order constraints:

fit4 < − polr postmaterial 1 + gender + income + education, data = EVS_Germany, Hess = TRUE
bic_oc fit4

The resulting BIC was equal to 3177.69.

Finally the BIC of the complement model was computed. Similarly to the previous example, 

this can be done as follows

bic_oc fit3, "generationold < generationmiddle < 0", complement = TRUE

This resulted in a BIC of 3170.15. The BICs and respective posterior model probabilities 

can be found in Table 2. Clearly, there is overwhelming evidence for M1 which implies that 

postmaterialism has increased for younger generations.

Finally we show that the inclusion of order constraints in the alternative model results in 

more evidence against a null model if the order constraints are supported by the data. First 

note that the BIC for the order-constrained model, M1, against the null model, M0, equals 

BIC(M1, M0) = BIC(M1) − BIC(M0) = 3154.82 − 3177.69 = −22.87. The BIC for an 

unconstrained alternative model, M3 : θgenerationold ≠ θgenerationmiddle ≠ 0, against the null 

model equals BIC(M3, M0) = BIC(M3) − BIC(M0) = 3158.18 − 3177.69 = −19.51.5 Hence, 

5The BIC for M3 can be obtained by running ‘bic_oc(fit3)’.
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the inclusion of order constraints results in a substantial increase of the evidence against 

the null model in the case where the order constraints are supported by the data. We also 

get a more informative answer about how the effects are related to each other in the case 

there is evidence against the null model than when testing the null against an unconstrained 

alternative.

7 Discussion

We have presented two extensions of the BIC for evaluating models with order constraints 

on certain parameters of interest. In the first extension a truncated unit-information prior was 

considered under the order-constrained model and in the second extension a truncated local 

unit-information prior was considered. Theoretical considerations and numerical analyses 

revealed that the local unit-information prior resulted in better model selection behavior than 

the non-local unit information prior for order-constrained model selection.

The new order-constrained BIC based on the local unit-information prior can easily be 

computed using the new R-package ‘BFpack’. This will allow researchers to test multiple 

social theories that can be translated into conflicting sets of equality and order constraints on 

the parameters of interest. The methodology can also be used for testing directed effects of 

ordinal predictors, as these expectations can be translated into order-constrained models in a 

natural manner.
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Figure 1: 
Plot of the log of prior times likelihood, g(θ), (black line), first-order Taylor approximation 

at θ = 0 (green line), and second-order Taylor approximation around the unconstrained 

posterior mode of θ ≈ − . 5 (red line), for an inequality-constrained model M1 : θ ≥ 0. The 

left panel displays the functions of the log scale and the right panel on the regular scale. The 

inequality-constrained region under M1 : θ ≥ 0 has solid lines, and the complement region 

has dotted lines.
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Figure 2: 
The logarithm of the approximated Bayes factors based on the unit information prior 

log BUI  (dotted line), and the local unit information prior log BL  (solid line) of M1 : 

θ2 > θ1 > 0 versus Mu: θ1, θ2 ∈ ℝ2 (left panel), of M1 versus the complement model M2 

(middle panel), and of M1 versus M0 : θ2 = θ1 = 0 (right panel). The criteria are plotted for n 
= 20 as a function of a, where θ1, θ2 = a, 2a .
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Figure 3: 
Probability of selecting the wrong model when using the ordinary BIC for testing M0 : θ1 

= θ2 = 0 against Mu:θ ∈ ℝ2 (dashed line), and the two order-constrained BICs when testing 

M0 : θ1 = θ2 = 0, M1 : θ2 > θ1 > 0, and M2 : θ2 ≱ θ1 ≱ 0 (dotted and solid line for the 

non-local and local unit-information prior, respectively) for true effects of (θ1, θ2) = (a, 2a), 

for a = 0, .1, .2, and .4. The sample size on the x-axis is on a logarithmic scale.
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Figure 4: 
Left panel: Relative approximation error of the order-constrained BIC of M1 : θ2 > θ1 > 
0 versus M0 : θ1 = θ2 = 0 when ( θ1, θ2 = . 5, 1 . Right panel: Relative approximation 

error of the order-constrained BIC of M2 : θ1 ≯ θ2 ≯ 0 versus M1 : θ2 > θ1 > 0 when 

θ1, θ2 = − . 5, − 1
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Table 1:

Order-constrained BICs and posterior model probabilities for the competing models in Application 1.

OC-BIC* P(Mt|D)

M1 : θclass > θeducation > θincome > 0 3918.46 0.391

M2 : θeducation > (θclass, θincome) > 0 3921.98 0.067

M3 : θclass = θeducation = θincome > 0 3917.84 0.533

M4 : “neither M1, M2, nor M3,” 3926.13 0.008
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Table 2:

Order-constrained BICs and posterior model probabilities for the competing models in Application 2.

OC-BIC* P(Mt|D)

M0 : θold = θmiddle = 0 3177.69 0.00

M1 : θold < θmiddle < 0 3154.82 1.00

M2 : “neither M0, nor M1,” 3170.15 0.00
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