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Abstract: The ability of TiO2 to generate reactive oxygen species under UV radiation makes it an
efficient candidate in antimicrobial studies. In this context, the preparation of TiO2 microparticles
coated with Ca- and Cu-based composite layers over which Cu(II), Cu(I), and Cu(0) species were
identified is presented here. The obtained materials were characterized by a wide range of analytical
methods, such as X-ray diffraction, electron microscopy (TEM, SEM), X-ray photoelectron (XPS), and
UV-VIS spectroscopy. The antimicrobial efficiency was evaluated using qualitative and quantitative
standard methods and standard clinical microbial strains. A significant aspect of this composite
is that the antimicrobial properties were evidenced both in the presence and absence of the light,
as result of competition between photo and electrical effects. However, the antibacterial effect was
similar in darkness and light for all samples. Because no photocatalytic properties were found in the
absence of copper, the results sustain the antibacterial effect of the electric field (generated by the
electrostatic potential of the composite layer) both under the dark and in light conditions. In this way,
the composite layers supported on the TiO2 microparticles’ surface can offer continuous antibacterial
protection and do not require the presence of a permanent light source for activation. However, the
antimicrobial effect in the dark is more significant and is considered to be the result of the electric
field effect generated on the composite layer.

Keywords: antimicrobial coating; Ca-Cu composite layer; TiO2 microparticles; cell wall electric charge

1. Introduction

The development of effective and cost-efficient methods for fighting healthcare-
associated infections (HAIs) is the main challenge of the 21st century [1]. The pandemic
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phenomenon of antimicrobial resistance (AMR) has caused an exacerbation of the virulence
of pathogens and has forced the discovery of new methods to control HAIs [2–4]. Recent
research has highlighted the importance of microbial biofilms in the emergence and spread
of high-virulence pathogens. One of the best measures to prevent HAIs is to block the
development of biofilms on medical surfaces [5,6]. Simultaneously with the development
of new active methods for disinfection (discovery of new disinfectants, use of automatic
disinfection and ozonation equipment, implementation of robots with UV-C), special em-
phasis has been placed on the discovery and use of antimicrobial coatings for medical
surfaces exposed to viral and microbial pathogen loads [3,7].

Until now, antimicrobial-coated medical devices with anti-adherent properties have
been widely implemented, in most cases involving nanoparticles (metal, metal–polymer
nanocomposites, bimetallic nanoparticles, and polymer nanoparticles) [8–10]. The antimi-
crobial properties of nanoparticles’ ions (such as Ca2+, Zn2+, Mg2+, Fe2+, Fe3+, Ni2+, and
Cu2+) have been extensively studied because of their potential to generate ROS or create ox-
idative stress as the main mechanism of the lethal effect [8]. Moreover, nanomaterial based
on chitosan and lysozyme-functionalized magnetite have been proven to be very efficient
bioactive nanostructured coatings for medical implants, with good anti-biofilm experimen-
tal results [10]. Compositions containing biocidal agents, such as 1,2-benzothiazol-3-one,
silver, or copper nanoparticles, are applied on the surfaces of medical devices and sup-
plies [11,12]. These coatings have the role of decreasing the bacterial load by blocking
bacterial adherence and biofilm development on these surfaces [10,13–15].

Photocatalytic surfaces based on TiO2 nanoparticles (NPs) have recently been de-
veloped and introduced into current practice [15,16]. Under UV light, TiO2 generates
a photocatalytic effect that produces reactive oxygen species (ROS) responsible for the
degradation of various organic compounds. Being an exogenous mechanism, ROS species
also act on bacterial targets without interfering with the metabolic mechanisms of bacteria.
Therefore, in principle, the antibacterial photocatalytic effect cannot generate a bacterial
resistance response [17]. However, some studies have also showed that TiO2 NPs exposed
to UV radiation induce adverse effects on eukaryotic cells through a similar mechanism
that is antimicrobial efficient: they can react with free radicals and signal molecules, and
interfere with the biochemical reactions on plasmalemma, inducing human cell damage,
genotoxicity, and inflammation, and exacerbating the immune response [18]. For this
reason, current biomedical applications are focusing on the development of TiO2 coatings
and materials with a local bioactive effect to obtain antimicrobial surfaces while limiting the
amount of toxic ROS that can be released into the human body, thus avoiding side effects.

The present study aimed to obtain and characterize new composite layers coated
on TiO2 microparticles with antimicrobial properties for applications on various devices
and surfaces, including ceramics, plastic, glass, stone, or concrete, with great potential in
limiting the growth and development of pathogens in health-care facilities. The obtained
materials contained commercial TiO2 microparticles coated with composite layers based
on Ca and Cu and can be applied as a thin film on a plastic surface, showing an efficient
antimicrobial effect after at least 2 h of exposure to various microorganisms. The obtained
results evidenced a more significant antibacterial effect under dark conditions than light.

2. Results
2.1. Scanning and Transmission Electron Microscopy

TiO2 microparticles were modified by coating a surface with Ca and Cu composite
layers. The obtained samples were named S0 (commercial TiO2), S1 (sample with 10%
Ca on TiO2), and S2 (sample with 10% Ca and 2% Cu on TiO2). The morphology of the
obtained samples was evidenced by scanning electron microscopy (SEM) (Figure 1).
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Figure 2. TEM images of the S2 (Ca-Cu/TiO2) sample.

Electron diffraction in a selected area (SAED) demonstrated the crystalline nature of
the rutile TiO2 microparticles. The elementary distributions of Ca and Cu on the TiO2
microparticles were highlighted by the elementary mappings obtained in scanning trans-
mission electron microscopy (STEM) mode (Figure 3).
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Figure 4. X-ray diffractogram of the S2 (Ca-Cu/TiO2) sample. 

  

Figure 3. STEM dark-field images for sample S2: (A) distribution of Ca; (B) distribution of Cu;
(C) distribution of Ca and Cu.

2.2. X-ray Diffraction

The X-ray diffractogram of the S2 sample (Figure 4) confirms the presence of rutile
as the dominant crystalline phase. Thus, the most intense diffraction peaks located at
2θ = 27.2, 36.02, 41.2, 44.06, 56.47, and 69.01 corresponded to TiO2 as the rutile phase [19]
while the peaks located at 2θ = 29.2 and 38.8 suggest the presence of Cu2O and CuO [20].
The other three peaks from 2θ = 11.06, 22.54, and 30.9 are attributed to the hydrocalumite
structure. Hydrocalumite is a result of Ca and Al interaction on TiO2 microparticles under
alkaline conditions. Aluminum ions are commonly used as a stabilizer for commercial
rutile TiO2 and a basic environment is used for most of the composite layer’s steps. In
addition to the identified peaks, there are some that can be attributed to the possible phases
of the composite layer.
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2.3. X-ray Photoelectron Spectroscopy

All samples were analyzed using XPS. We aimed to study the surface of the S1 and S2
samples and analyze the copper on the surface. In Figure 5, a comparison of the XPS spectra
of the main elements of the S1 and S2 samples is shown. The Cu 2p spectra show a broad
peak deconvoluted in two peaks centered at 931.63 and 932.67 eV that can be attributed to
Cu(0)and/or Cu(I) and Cu(II). Because of the peak overlap in energy, it is very difficult to
distinguish between Cu(0) and Cu(I) just from the Cu 2p region. Additionally, two satellite
peaks were observed at 940.03 and 942.35 eV, which confirms the presence of Cu(II) on
this surface. The Cu(I)/Cu(II) ratio of almost 1:2 obtained by deconvolution of Cu 2p3/2
proves that on the surface, there is a mixture of Cu(I) and Cu(II). The Ti 2p XPS spectra
(Figure 5) are typical for Ti4+ and the two peaks at 457.75 and 463.54 eV indicate the rutile
form of Ti 2p. The atomic composition of all samples is presented in Table 1.
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Figure 5. XPS spectra of Cu 2p3/2, Ti 2p, Ca 2p, and O 1s for the samples S1 and S2.

Table 1. Atomic composition (%) of the surface of each sample.

Chemical Element S0 S1 S2

O 1s 88.21 81.7 70.1

Ti 2p 11.79 13.49 16.12

Ca 2p - 4.8 3.77

Cu 2p - - 1.91
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The XPS spectra for O 1s exhibited three peaks centered at around 529, 531, and 535.4 eV.
The first peak was attributed to O2− from titanium and copper oxides (529 eV) [1,2,20,21],
the second to calcium oxide (531 eV) [22,23], and the last to water oxygen species from the
surface. Decreases in the intensity of all the peaks and a shift towards higher binding energy
values were observed for the S2 sample. For the S2 sample, the significant effect on the
intensity of the second peak of the O 1s spectrum confirms the decrease in oxygen from a
Ca oxide due to Ca–Cu interaction.

2.4. Density Functional Theory Calculations

The isosurfaces of the electrostatic potentials, which were estimated using density
functional theory calculations, for the pristine and Ca-deposited TiO2(001) surfaces, and
Cu2O(001)//Ca-TiO2(001) interface are presented in Figure 6. The phase diagram database
provided by the Materials Project [24].
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Figure 6. The isosurfaces of the electrostatic potential for pristine TiO2(001) (left), Ca-deposited
TiO2(001) surfaces (center), and the thin film of Cu2O(001) formed on Ca-TiO2(001) (right), where
TiO2 is considered with the structure of rutile polymorph. The color map is given for values between
−7.5 (blue) and 15 eV (red), with the yellow color corresponding to 5 eV.

It can be seen that the addition of the Ca on the TiO2(001) surface, where Ca atoms
form strong bonds with the dangling free oxygen atoms from the top of the TiO2(001)
surface, determines a perturbation in the averaged electrostatic potential on the surface
plane, with about −12.2 eV at the position of the calcium atom compared with about
−22.4 eV at the position of the titanium located below the calcium atom. Thus, an external
potential perpendicular to the TiO2(001) surface is revealed.

The addition of a thin Cu2O(001) film on the top of the Ca-TiO2(001) surface induces a
large modification of the electrostatic potential. The electrostatic potential, in this case, has
important components on the surface plane and the resulting electrostatic potential has an
important dependence on the position in space.
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2.5. UV-Vis Absorption Spectra

The absorption spectra of pure and Ca or Ca-Cu-modified TiO2 samples are shown
in Figure 6. All the samples exhibit a broad absorption peak between 230 and 370 nm.
The peak of the sample modified with copper (Figure 7, sample S2) extends significantly
towards the visible region.
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2.6. SEM Microscopy of the Bacterial Cell Membrane

The SEM images (Figure 8) show morphological and numerical changes in the Gram-
positive and Gram-negative bacterial cells after 30 min of contact with the pigment samples.
The images confirm the cell membrane integrity test, showing for the Gram-negative strain
E. coli ATCC 25922 a difference in the size of the bacterial cell, which was smaller (1.155 µm)
in the case of sample 1 (Figure 8(1C)) compared to sample 2 (2.720 µm) (Figure 8(2C)), and
also a lower number of cells distributed on the sample 1-covered surface (Figure 8(1C))
after 30 min of contact.

2.7. Antimicrobial Efficacy Tests

Qualitative screening of the antimicrobial activity was used to evaluate the efficiency
of the three samples in two different incubation conditions by measuring the diameters of
the inhibition zone expressed by each tested microbial strain. The results were expressed
as the diameter ratio, statistically analyzed, and are shown in Figures 9 and 10. The lower
the ratio values, the higher the antimicrobial effect.

As shown in Figure 9, the recorded values for the diameter ratio demonstrate statis-
tically significant differences for E. coli Gram-negative strains when the incubation was
performed in darkness, compared with the light condition, in the presence of the S1 sample.
Moreover, the S1 sample demonstrated significantly lower ratio values than the 0 sample
and more bass than the S2 sample. These results suggest that photocatalytic activation of
the substrate cannot be considered as the only antimicrobial mechanism.

For P. aeruginosa 494 strains, the difference in the diameter ratio between the two
incubation conditions is not significant, with both the S1 and S2 samples expressing an equal
inhibition zone. Compared with the 0 sample (TiO2 rutile), both samples demonstrated
significantly lower ratio values of the inhibition zone diameters.
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Figure 8. Scanning electron micrograph of the two pigments before and after 30 min of contact with
the Gram-positive and Gram-negative bacterial cells. The left column represents sample 1; the right
column represents sample 2. The bacterial strains are listed on the images. The diameters of the
bacterial cells are marked on each image: (1A) and (2A)—controls (samples 1 and 2 that aren’t put
in contact with bacterial cells); (1B)—no bacterial cells observed; (2B)—626 nm; (1C)—1.155 µm;
(2C)—2.720 and 2.114 µm.
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Figure 9. Graphic representation of the inhibition zone diameters, expressed as the diameter ratio,
obtained for Gram-negative tested strains after incubation in two different conditions: visible light and
darkness. The results were compared using two-way ANOVA and Dunnett’s multiple comparisons
tests; ns—not significant; * p < 0.05; ** p < 0.009; *** p = 0.0009; **** p < 0.0001.

For the tested S. aureus strains, there was a significant difference in the value of the
inhibition diameters in the two incubation conditions, with sample 1 inducing a greater
inhibitory effect after incubation in the light compared to incubation in darkness (Figure 10)
and compared to the S2 sample. For the other Gram-positive strains (C. albicans and E. fae-
calis), the results were variable, demonstrating that the antimicrobial efficiency depends on
the cell wall structure and the molecular membrane electric charge, in direct relation to the
chemical composition of the pigment substrate.

The antimicrobial activity of the tested samples was quantitatively evaluated by
covering a surface with a uniform layer of each sample over which the bacterial suspensions
were added, followed by determination of the viable cell number after 2 h of contact. The
results were statistically processed and integrated into Figure 10. The viable cell count
(VCC) method was performed (according to the standard method ISO 22196/2011) using
two test conditions (visible light and darkness).

In our experiment, the tested sample 1 (10% Ca2+-decorated TiO2 rutile) and the S2
sample (10% Ca2+-decorated TiO2 rutile + 2% Cu2+) significantly inhibited the multipli-
cation of all tested microbial strains, under both incubation conditions (**** p < 0.0001)
(Figure 11). Both samples showed an inhibitory effect even in the absence of light radiation,
which suggests the possibility that the activation of the substrate may not be caused by a
photocatalytic effect.
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Figure 10. Graphic representation of the inhibition zone diameters expressed as the diameter ratio,
obtained for the tested C. albicans and Gram-positive strains, after incubation in two different condi-
tions: visible light and darkness. The results were compared using two-way ANOVA and Dunnett’s
multiple comparisons tests; ns—not significant; * p < 0.05; ** p < 0.003; **** p < 0.0001.
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Figure 11. Graphical representation of the log10 values of colony-forming units (CFU)/mL represent-
ing the viable cell number after 2 h of contact with the tested products under two conditions: visible
light and darkness. The results were compared using two-way ANOVA and Dunnett’s multiple com-
parisons tests. The results were considered statistically significant (ns—not significant, ** p = 0.0011;
*** p < 0.0004; **** p < 0.0001).
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2.8. Membrane Permeability Test

In order to elucidate the possible mechanism of action manifested by the samples
on the bacterial cells with which they came into contact, a membrane permeability test
was performed. The test is based on the detection of the relative fluorescence intensity
of two dyes, N-phenyl-1-naphthylamine (NPN) and propidium iodine (PI), with specific
fluorescent emissions.

NPN (N-phenyl-1-naphthylamine) is a hydrophobic dye that fluoresces weakly in
aqueous environments and strongly in hydrophobic environments. The increase in the
fluorescence intensity of NPN is in direct relation to NPN binding with nonpolar substances
after permeabilization of the outer membrane of Gram-negative strains. Analyzing the
graphic representation of the fluorescence intensity of NPN, after 30 min of contact of E. coli
strains (standard and clinical strains) with the samples, it was observed that only sample 1
(10% Ca2+-decorated TiO2 rutile) generated a significant increase in the fluorescence intensity
of NPN compared to the control (bacterial suspension not exposed to contact with pigment)
and compared to the other two samples (Figure 12). Thus, the change in the fluorescence
intensity of NPN reflects the efficacy of sample 1 at increasing the permeability of the
Gram-negative bacteria’s outer membrane.
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Figure 12. Outer membrane permeabilization of E coli strains measured by detecting the fluorescence
intensity of NPN after 30 min of contact with the samples. All the data are shown as the mean ± SD of
the three independent experiments. p-values were determined via two-way ANOVA and Dunnett’s
multiple comparisons tests (ns—not significant, **** p < 0.0001 vs. untreated control).

As a response to direct changes in the inner membrane permeability of the Gram-
positive strains after contact with the pigment surfaces, detection of the relative fluorescence
intensity of PI was performed. PI is a red-fluorescent nucleic acid stain that can bind to
DNA and RNA between the bases only if the inner cell membrane is damaged. Binding to
DNA and RNA leads to a strong increment in their fluorescence [25].

Considering this, our results expressed in Figure 13 suggest that the tested pigments
have a weak influence on the Gram-positive bacterial cell wall structure, with the same
sample 1 represented by 10% Ca2+-decorated TiO2 rutile generating a significant increase in
the fluorescence intensity of PI only for one of the two tested S. aureus strains.
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Figure 13. S. aureus strains’ inner membrane permeabilization measured by the detection of the
fluorescence intensity of PI. All the data are shown as the mean ± SD of three independent experi-
ments. p-values were determined via two-way ANOVA and Dunnett’s multiple comparisons tests
(*** p = 0.003; **** p< 0.0001 vs. untreated control).

3. Discussion

Research studies have recently focused on the development of composite materials
based on TiO2 as powders or layers with photocatalytic antibacterial activity in order to
eliminate the disadvantages of the frequently used biotoxic agents [15,16,26,27]. Since the
discovery of the photocatalytic effect in 1970 by Akira Fujishimaet al. [28], it has been
observed that photocatalytically activated TiO2 triggers a series of chemical reactions that
result in reactive oxygen species (ROSs) with a biotoxic role [15]. Various attempts have
been made to construct photocatalytic compositions, including ceramic pieces [7]. TiO2
as a photocatalytic material has the disadvantage of being activated only under UV light,
which is toxic to the human body. In the absence of radiation, or if an obstacle is placed
between the surface covered with catalytic material and the light source, the antibacterial
effect usually ceases, and the surface may be repopulated with pathogens.

New composite layers with Ca and Cu were obtained by coating TiO2 surface mi-
croparticles. The aim of this study was to obtain an efficient antimicrobial agent that can
eliminate the disadvantages of the current similar materials in terms of the photocatalytic
effect-dependent antimicrobial activity [17,29].

The SEM images showed (Figure 1) a disordered spherical morphology for all the
samples. This is the morphology of commercial TiO2 microparticles with sizes between 150
and 300 nm. The TEM images (Figure 2) confirmed the variation in the microparticles’ size
and morphology. Between the spherical and elliptical microparticles of the coated TiO2, the
presence of another phase was also evidenced. This indicates that in addition to the com-
posite layer from TiO2 microparticles, there may also be traces of unsupported composite.
The XRD patterns evidenced the presence of a rutile phase for all the samples (Figure 4). In
order to check the chemical composition on the surface and Cu oxidation states, samples
were investigated using XPS. The obtained XPS spectrum (Figure 4) confirmed the presence
of Ti4+ species and oxygen as O2− in titanium, copper, and calcium oxides and adsorbed
species from the surface (as water). The presence of Ca(II), Cu(II), Cu(I), and Cu(0) species
was also evidenced on the surface of the S2 sample. The presence of CuO, CaO, and other
crystalline species was evidenced by XRD (Figure 4).

In the first step, the TiO2 crystalloid was coated with calcium ions. The strong inter-
action of Ca2+ and negative sites from the TiO2 surface, generated by the basic pH, has a
significant influence on the composite layer’s stability and properties. Therefore, for the
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S1 sample, the increase in the Ca-O bond concentration was highlighted on the surface,
but no effect was observed for the Ti4+ species (Figure 5). Thus, a pseudo-perovskite-like
structure of calcium titanium-perovskite formed on the surface of the TiO2 crystalloid.
In the second step, Cu2+ ions were supported on the first layer of the surface to obtain a
composite layer with a higher absorption intensity (Figure 6) and photocatalytic activity in
the visible spectral range (400–700 nm). For the Cu-doped TiO2 samples, the shift in the
absorption above 400 nm was considered as a consequence of the charge transfer from the
O 2p to the d states with Cu, and the visible absorption is due to the electronic transition
d-d [30]. High absorbance values over a wide visible range of 400 to 800 nm may result from
the interaction between the copper ions and surrounding species (e.g., OH−, H2O). These
species are removed by calcinations, and the UV-VIS spectrum of the sample, calcined
in air at 800 ◦C, showed a significant decrease in the intensity of the visible absorption
band (Figure 7, S2c sample). The obtained material with copper showed antimicrobial
photocatalytic activity, as highlighted in previous publications [17].

The performed DFT calculations show that the adsorbed calcium might result in an
electric field perpendicular on the surface and that the addition of a thin film of Cu2O
on top of the Ca-TiO2 system results in a very complex distribution of the electrostatic
potentials, with an electric field with components also in the plane of the surface.

The antimicrobial activity of the three samples under the two different incubation
conditions demonstrated statistically significant results. Our study showed that the tested
S1 sample (10% Ca2+-decorated TiO2 rutile) and sample 2 (10% Ca2+-decorated TiO2 rutile
+ 2% Cu2+) significantly inhibited the multiplication of all tested microbial strains under
both incubation conditions (Figure 9). Both samples showed an inhibitory effect even in
the absence of light radiation, which suggests the possibility that photocatalytic activation
of the substrate is not the only antimicrobial mechanism.

The biological activity of the TiO2 composite decorated with 10% Ca2+ and 2% Cu2+,
as demonstrated by antimicrobial tests and membrane permeability tests, can be explained
based on the interactions between the negative electric charge of the microbial cell wall and
the positively charged composite layers supported on the TiO2 microparticles.

Gram-positive and Gram-negative bacteria have differences in their membrane struc-
ture, with Gram-negative cell walls having an additional outer membrane covered in
negatively charged lipopolysaccharides. At the same time, the Gram-positive walls possess
only the inner membrane, with a representative peptidoglycan layer containing negatively
charged teichoic acids [31,32]. In conclusion, most microorganisms have a negative charge
when cultivated at physiological pH values [31].

The SEM images highlight these electrostatic interactions due to the presence of
bacterial cells adhering to the surface of the composites 30 min after contact (Figure 8).
However, the electrostatic attraction of these two surfaces is not enough to generate the
destruction of the cell wall. The large modification of the S1 sample’s surface electrostatic
potential may induce cell membrane potential changes, which explains the permeability of
the outer membrane of the E coli strain as demonstrated by the increase in the fluorescent
signal for NPN (Figure 12).

On the other hand, the S1 sample (10% Ca2+-decorated TiO2 rutile) generated a signifi-
cant increase in the fluorescence intensity of PI (propidium iodine) only for the standard
S. aureus ATCC 25923 strain but not for the clinical strain S. aureus MRSA 5578. If, for the
standard strain, the permeabilization effect of the cell wall and the inner membrane can
be explained by the same mechanism described above, for the MRSA clinical strain, the
lack of a fluorescent signal for PI and, implicitly, the lack of a permeabilization effect can be
explained by the ability of this clinical strain to influence the bacterial microenvironment
through the cell wall surface appendages and proteins and cellular secretions [33,34].

As can be seen in the UV-Vis spectrum (Figure 7), only the sample containing Ca and
Cu showed absorption in visible light. The antimicrobial photocatalytic effect of copper was
highlighted for similar materials [17]. However, this study evidenced a similar antibacterial
effect under dark and light conditions for all the samples. Given that only the sample with
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Ca and Cu generated a photocatalytic effect and the results were similar (Figure 11) we
concluded that although it competition may occur between the two processes, the one that
determines the antimicrobial effect is that of the electric field (generated by the electrostatic
potential of the composite layer, see Section 2.4), which is present both in the dark and in
the light.

4. Materials and Methods
4.1. Synthesis of Composite Layers with Ca and Cu on TiO2 Microparticles

Tytanopol TiO2 microparticles and Sigma-Aldrich Ca(OH)2, CuSO4, and NaOH
were used as starting materials for the preparation of supported composite layers. A
two-step wet method was used for this, described in detail in the patent application
PCT/RO2022/05005 [34]. In the first step, 18.5 g of Ca(OH)2 was mixed with 500 mL of
1 M NaOH aqueous solution under constant stirring. After 15 min, 100 g of rutile TiO2
microparticles was dispersed into the obtained solution. The milky-white suspension
was then heated, under continuous stirring, to boiling for 1 h, cooled, and decanted. The
obtained sample was named S1. In the second step, a solution containing copper was
obtained out of two others containing 8 g of CuSO4, dissolved in 150 mL of distilled water,
and 2.2 g of NaOH added to 150 mL of H2O. Then, 10 mL from sample S1 was dispersed
into the obtained solution, heated under stirring for 1 h, cooled, and decanted. The obtained
sample was named sample S2.

4.2. Scanning Electron Microscopy

The electron microscopy images were obtained using a Quanta Inspect F50 (FEI
Company, Eindhoven, The Netherlands) equipped with a field emission gun (FEG) with
a 1.2 nm resolution and an energy-dispersive X-ray spectrometer (EDS) with an MnK
resolution of 133 eV Kα.

4.3. Transmission Electron Microscopy

Transmission electron microscopy (TEM) investigations were performed using a JEOL
2100 instrument (LaB6 electron gun) equipped with a high-resolution polar piece and a
JEOL Energy Dispersive X-ray Spectrometer (EDS).

4.4. X-ray Diffraction

The composition and crystallinity of the Ca-Cu-modified TiO2 powder were analyzed
using wide-angle X-ray diffraction using of a Rigaku Ultima IV diffractometer with Cu Kα

(λ = 0.15406 nm).

4.5. X-ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS) measurements were performed in an AXIS
Ultra DLD (Kratos Surface Analysis) setup, using Al Kα1 (1486.74 eV) radiation produced
by a monochromatized X-ray source at an operating power of 240 W (12 kV× 12 mA). The
base pressure in the analysis chamber was 1.0× 10–8 mbar. Charge compensation was
reached with the help of a flood gun, which operated at a 1.7 A filament current, 2.8 V
charge balance, and 2.0 V filament bias. High-resolution core-level spectra for all elements
were acquired using the hybrid lens mode, 50 eV pass energy, and slot aperture. In the
deconvolution of the core-level spectra, Voigt profiles, singlets, or doublets were used,
based on the methods described in [3,35] The binding energy scale for all spectra was
calibrated to the C1s standard value of 284.6 eV. The atomic composition was determined
using the integral areas provided by the deconvolution procedure normalized to the atomic
sensitivity factors given by [4,36] The surface contamination with C1s was not considered
for the atomic composition.
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4.6. Density Functional Theory Calculations

The DFT calculation scheme has an important effect on the accuracy of the results [37]
For the present study, we compared the accuracy and the computational effort. We per-
formed the spin-polarized DFT calculations using the solid-state code CASTEP [38] using
the exchange-correlation potential PBE, the on-the-fly generation ultrasoft pseudopotential
OTFG [39] an energy cut-off of 490 eV, and a fine grid for the reciprocal space with a
separation of at least 0.04 Å−1. The thresholds of the parameters that control the electronic
structure included an SCF tolerance of 10−5 eV/atom, an electronic minimizer of the type
All Bands/EDFT, and a convergence window of 3. The total spin was optimized after each
of the 5 SCF iterations. For good treatment of the van der Waals interaction between the
different layers of materials, the dispersion corrections TS was introduced with the default
DFT-D parameters included in the CASTEP code. The chosen DFT calculation scheme was
accurate as the optimized unit cells of the CuO, CuO2, Cu2O, and rutile-TiO2 had very
close parameters to the corresponding experimental data.

4.7. UV-Vis Spectroscopy

The UV-Vis absorption spectra of the modified TiO2 samples were obtained in diffuse
reflectance (DRS) mode using a JASCO V570 spectrophotometer.

4.8. Antimicrobial Efficacy Tests

The antimicrobial pigment efficacy test was performed according to qualitative and
quantitative standards methods with specific adapted steps, using both clinical and stan-
dard microbial strains that were included in the microbial collection of the University
of Bucharest, Faculty of Biology, Microbiology Department: Staphylococcus aureus ATCC
25923 and Staphylococcus aureus MRSA 5579 (clinical isolate), Escherichia coli ATCC 25922
and Escherichia coli ESBL 135 (clinical isolate), Pseudomonas aeruginosa ATCC 27853 and
Pseudomonas aeruginosa 494 (clinical isolate), Candida albicans ATCC 10231, and Candida
albicans 6853 (clinical isolate). All strains were grown on a nutritious agar medium using
incubation for 18–20 h at 37 ◦C to obtain fresh cultures.

For the qualitative screening of the antimicrobial efficiency, an adapted spot diffusion
method was used, according to the CLSI standard (Clinical Laboratory Standard Insti-
tute, 2021) [40] Microbial suspensions of 1.5 × 108 CFU/ml density (corresponding with
0.5 McFarland standard) were prepared from all microbial cultures and seeded on the agar
medium (Müller-Hinton agar for bacterial strains and Sabouraud agar for yeast strain),
followed by spotting 50 µL of each sample over the inoculated medium: sample 0 (rutile
TiO2); sample 1 (10% Ca2+-decorated TiO2 rutile); and sample 2 (10% Ca2+-decorated TiO2
rutile + 2% Cu2+).

After equal diffusion of the compound in the medium, at room temperature, the plates
were incubated at 37 ◦C for 2 h, in 2 different conditions: visible light and darkness. For
the qualitative evaluation of the anti-microbial efficiency, the diameters of the inhibition
zones were measured. The results were expressed as the ratio of the droplet diameter to
the total diameter (droplet diameter + area of inhibition) to avoid variation between the
sample droplet diameters. The lower the ratio, the higher the antimicrobial effect.

The quantitative evaluation of the antimicrobial efficiency was performed based on
the ISO 22196/2011 standard method [17,41] In total, 1 mL of each sample was spread
on the 6-well plates, maintained for 24 h for drying, and inoculated with 500 µL of the
microbial suspensions prepared in 1/500 diluted nutrient broth (distillate water/nutrient
broth = 1/500), with a final density of 1.5 × 106 CFU/mL. The inoculated 6-well plates
were divided into 3 sets. Set 1 (considered T2h light) was incubated at 37 ◦C for 2 h in
visible light and set 2 (considered T2h darkness) was incubated at 37 ◦C for 2 h in darkness.
A third set (set 3) of 6-well plates covered with the tested samples was inoculated with
500 µL of the microbial suspension and used as the microbial cell recovery control, with
no incubation time (considered T0h). In the following steps, all tested sets were treated
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similarly by adding 1 mL of neutralizing agent (1% sodium thiosulphate), followed by
viable cell count determination using a 10-fold serial microdilution method.

4.9. Membrane Permeability Test

The integrity of the inner and outer cell membranes of the Gram-positive and Gram-
negative bacterial strains was evaluated using an adapted NPN/PI(N-phenyl-1- naph-
thylamine/propidium iodide) assay that has been described previously by Ma et al. [42].
The tested bacterial strains were represented by: Staphylococcus aureus ATCC 25923 and
Staphylococcus aureus MRSA 5579 clinical isolate; Escherichia coli ATCC 25922; and Escherichia
coli ESBL 135 clinical isolate.

Gram-positive and Gram-negative bacterial cells in the exponential growth phase
were suspended in LB broth media (Luria Bertani), at a final density corresponding to
1–1.5 × 108 cells/mL. Subsequently, 2 mL of this suspensions was incubated in the presence
of the three pigment samples (rutile TiO2; 10% Ca2+-decorated TiO2 rutile; 10% Ca2+-
decorated TiO2 rutile + 2% Cu2+) at 37 ◦C for 30 min under darkness conditions. After
the incubation, the recovered cell suspensions were washed two times with phosphate-
buffered saline (PBS, pH 7.4), harvested by centrifugation (11,000× g rpm) for 10 min, and
resuspended in 2 mL of PBS-NPN-PI solution (pH 7.4 PBS, 20 µM/mL NPN and 5 µg/mL
PI). After 10 min of incubation at room temperature and in darkness, cell suspensions
were analyzed using a fluorescent spectrophotometer SYNERGY HTX (multi-mode reader).
Fluorescence was detected with an excitation of 350 nm and an emission of 450 nm (for
NPN), respectively, and an excitation of 535 nm and an emission of 620 nm (for PI).

4.10. Statistical Analysis

The antimicrobial test results were statistically analyzed using the GraphPad Prism 9
program, developed by GraphPad Software, San Diego, CA, USA. All experiments were
performed in three independent determinations.

The membrane permeability test results were statistically analyzed using a two-way
analysis of variance (two-way ANOVA) and Dunnett’s multiple comparisons test. Sig-
nificance differences were noted as: * for p < 0.05, ** for p < 0.01, ***p < 0.001, or **** for
p < 0.0001 and were considered statistically significant.

5. Conclusions

This study reports the synthesis of new composite layers with Ca- and Cu-coated
TiO2 microparticles. The obtained material with copper showed a broad absorption band
with high intensity in visible light. A significant aspect of this composite is that similar
antimicrobial effects were evidenced both in the presence and absence of the light as a
result of competition between the photo and electrical degradation processes. Because
no photocatalytic properties were found in the absence of copper, the results support the
antibacterial effect of the layer with Ca due to as effect of the electric field (generated by
the electrostatic potential of the composite layer, see Section 2.4) under both the dark and
in light conditions. In this way, the composite layers can offer permanent antibacterial
protection and do not require the existence of a permanent light source for activation.
The obtained aqueous mixture could be applied on various abiotic surfaces in health-care
facilities and represents a versatile solution for limiting nosocomial infections.
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