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Abstract: Background: Multiple lesions are uncommon in brain gliomas, and their pathophysiology
is poorly understood. Invasive growth along white matter tracts is an important clinicopathological
characteristic of gliomas, and a major factor in a poor therapeutic outcome. Here, we used prob-
abilistic fiber tracking and cluster analysis to investigate the inter-focal connectivity relationships
of multiple gliomas, in order to seek inferential evidence of common origin. Methods: MRI scans
of 46 patients with multiple gliomas were retrospectively analyzed. Before surgery, all patients
underwent multimodal functional MR imaging, including diffusion tensor imaging, enhanced 3D
T1-weighted imaging, diffusion-weighted imaging, 1H MR spectroscopy, and dynamic susceptibility
contrast perfusion-weighted imaging. Probabilistic fiber tracking was used to quantify white matter
connectivity between neoplastic foci. Hierarchical cluster analysis was performed to identify patterns
of white matter connection. Results: Cluster analysis reveals two patterns of connectivity, one with
smaller, and one with greater, connectivity (2675 ± 1098 versus 30432 ± 22707, p < 0.0001). The
two subgroups show significant differences in relative cerebral blood volume (2.31 ± 0.95 versus
1.73 ± 0.48, p = 0.002) and lipid/creatine ratio (0.32 ± 0.22 versus 0.060 ± 0.051, p = 0.006). Conclu-
sion: Two distinct patterns of white matter connection exist in multiple gliomas. Those with lower
connectivity tend to have independent origins, and can be termed true multicentric glioma, whereas
those with greater connectivity tend to share common origin, and spread along white matter tracts.
True multicentric gliomas have higher vascularity and more intratumoral necrosis. These findings
may help to develop personalized therapeutic strategies for multiple gliomas.

Keywords: multiple gliomas; diffusion tensor imaging; probabilistic fiber tracking; white matter
connection; cluster analysis

1. Introduction

Multiple gliomas, characterized by the presence of two or more neoplastic foci, are rare
(2–9% of all gliomas [1–3]), but because of the higher disease burden [4], genetically more
aggressive phenotype [5], and unsuitability for gross tumor resection, they are associated
with worse clinical outcomes and poorer survival rates than solitary gliomas [6,7].

The pathogenesis of multiple gliomas is not fully understood. Three genomic analyses
strikingly reveal that foci from the same patient were of monoclonal origin [8–10]. By
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analogy with glioblastoma recurrence following treatment [11], this seems to imply spatial
continuity between the different foci, due to invasion of the whole brain by lower grade
cells, which undergo malignant transformation at separate points. However, other studies
suggest that different neoplastic foci develop simultaneously and independently [12,13].
Thus, the results of genetic analysis are still controversial.

Taking a different approach, some argue that if there is a microscopic connection
between the foci, this suggests multifocal gliomas originating from a single tumor; by
contrast, if the foci are widely separated, without demonstrable connecting pathways,
they are likely multicentric gliomas, arising as independent tumors [2,14,15]. Various
radiological features of multiple glioblastoma were described, characterizing the lesion
as being located deep or outside the cortical–subcortical boundaries, being a solid nodule
without central necrosis, and with an irregular shape, but not suggestive of metastasis.
However, differentiating multicentric gliomas and multifocal gliomas based on radiological
appearance is difficult.

In recent years, magnetic resonance imaging (MRI) permitted the identification of con-
nections between neoplastic foci. For example, communication through association tracts
was demonstrated as a continuous hyperintense area on T2-weighted imaging and fluid-
attenuated inversion recovery (FLAIR) [3]. Unfortunately, as the underlying white matter
invasion is invisible on conventional MRI, it is hard to identify anatomical connections
between neoplastic foci [16]. Unlike conventional MR imaging, diffusion tensor imaging
(DTI), combined with state-of-the-art probabilistic tractography algorithms, can help in
detecting and quantifying this underlying tumor infiltration [17,18]. This non-invasive
method allows the reconstruction of white matter pathways, connecting two regions at
a voxel level [19], and, thus, may help to identify the otherwise invisible dissemination
routes along fiber tracts between the neoplastic foci.

In this study, we used probabilistic fiber tracking with DTI to identify white matter
pathways in patients with multiple gliomas, and then used cluster analysis to identify
possible subgroups, based on the probabilistic values across white matter tracts between
neoplastic foci. We then investigated the differences between the two subgroups in clinical
data, selected molecular markers, and the results of other advanced MR imaging modalities,
including diffusion-weighted imaging (DWI), proton MR spectroscopy (1H-MRS), and
dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI).

2. Materials and Methods
2.1. Subjects

This retrospective data analysis study was approved by West China Hospital Ethics
Committee (Chengdu, China), which waived the requirement to obtain individual informed
consent. Data were selected from routine clinical scans carried out between February 2017
and February 2021. MRI scanning was conducted strictly, according to current clinical
protocols, and no additional scans were carried out for purely research purposes. All
patients whose data were used had newly diagnosed gliomas, and underwent resection or
biopsy of the tumors. Based on modified Batzdorf criteria [2,20], only data from patients
with at least two clearly separated foci at the time of initial MRI diagnosis were included. We
excluded data from: (1) children and adolescents (≤18 years); (2) patients with evidence of
cerebrospinal fluid spread or leptomeningeal dissemination; (3) patients who received any
treatment such as radiation, chemotherapy, or surgery before MR examination; (4) studies
with poor image quality, due to head motion or artifacts. Finally, data from 46 patients with
multiple gliomas were included in the study cohort.

2.2. Molecular Analyses

For molecular biomarker analysis, tumor DNA was extracted from formalin-fixed
and paraffin-embedded tissue samples, with a histologically estimated tumor cell con-
tent ≥80%. To assess mutation status, the genomic regions encompassing codons R132
of IDH1 and R172 of IDH2 were analyzed by pyrosequencing [21], using the forward
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primer 5′-TGATCCCCATAAGCAT-3′ and reverse primer 5′-CGACTGACACTATCGAT-3′

for IDH1, and forward primer 5′-AGCCCATCACCATTG-3′ and reverse primer
5′-TGCGATCGATCGCACGCA-3′ for IDH2. MGMT promoter methylation status analysis
was performed with bisulfite sequencing, providing the percentage of methylated CG
island in the sample. Nuclear ATRX status was determined by immunohistochemistry:
>90% loss of nuclear staining for ATRX in tumor cells was considered positive for ATRX
loss [22].

2.3. MRI Acquisition

Scans of all patients were acquired on a 3.0 T MRI equipped with a 20 channel phased-
array head and neck coil (Skyra, Siemens Healthineers, Erlangen, Germany). The scanning
protocol is presented in Table 1.

Table 1. MRI acquisition protocol.

Parameters MPRAGE
(3D T1WI)

Enhanced
3D T1WI T2WI FLAIR DWI DSC-PWI 1H-MRS

Repetition time (ms) 1630 1630 4500 6000 6000 1640 2000
Echo time (ms) 2.3 2.3 105 81 93 30 135

Flip angle 8◦ 8◦ 150◦ 90◦ 90◦ 90◦ 150◦

Slice thickness (mm) 1 1 5 5 3 5 5
In-plane resolution (mm) 0.5 × 1 0.5 × 1 0.5 × 0.5 0.7 × 0.7 1.8 × 1.8 1.7 × 1.3 0.5 × 0.5

Acquisition time (s) 187 200 58 62 206 105 394
Directions - - - - 30 - -

Abbreviations: MPRAGE, magnetization-prepared rapid acquisition gradient echo.

2.4. Image Processing
2.4.1. DTI

The foci region, defined as the whole area of abnormal signal intensity on enhanced 3D-
T1 and FLAIR, was manually segmented (by *, 12 years neuroradiology experience), using
ITK-SNAP software (www.itksnap.org, accessed on 5 March 2021). The foci mask serves as
the seed and target for probabilistic tractography. The DTI images were pre-processed using
the FSL 6.0.2 Diffusion Toolbox (FDT) (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT, accessed
on 5 March 2021). Diffusion parameters at each whole-brain voxel were first estimated using
BEDPOST [23]. For each subject, the resulting distributions were used for probabilistic
fiber tracking using PROBTRACK [24], with FSL 6.0.2. This algorithm calculates white
matter connectivity (streamlines) as an estimate of fiber connections between the seed and
the target masks defined a priori (the neoplastic foci, segmented by ITK-SNAP) [25,26].
Finally, the probabilistic value, connectivity value, and fractional anisotropy (FA) between
neoplastic foci were extracted from the probabilistic fiber tracking.

2.4.2. Other Advanced MR Imaging Modalities
1H-MRS was analyzed using LCModel software [27]. The ratios of N-acetylaspartate

(NAA)/creatine (Cr), choline (Cho)/Cr, lactate (Lac)/Cr, lipid (Lip)/Cr, and Cho/NAA in
the multiple tumor foci were selected for further analysis. The CBV and relative CBV (rCBV,
defined as the ratio of CBV of lesion to CBV of contralateral normal brain) were calculated,
and the final values for each patient were the average over all foci. The foci mask with
whole solid tumor was registered to the apparent diffusion coefficient (ADC) maps. The
statistics tool of ITK-SNAP was used to obtain the mean ADC value of the whole foci mask.
Then, the ADC of the lesion was compared with the ADC of the contralateral normal brain,
to obtain relative ADC (rADC); the final values were the average of all foci. The details of
these procedures are shown in Supplementary Figures S1 and S2.

www.itksnap.org
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT
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2.5. Cluster Analysis

Hierarchical clustering [28] was performed using the probabilistic value feature ex-
tracted from the probabilistic fiber tracking. The optimal cluster number was determined
using Gap statistic [29], which compares the total intra-cluster variation for different val-
ues of k with their expected values under null reference distribution of the data (i.e., a
distribution with no obvious clustering). Figure 1 shows this workflow.
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Figure 1. The workflow of probabilistic fiber tracking and cluster analysis.

T2WI and FLAIR images of each patient were reviewed by a radiologist (*, with
12 years neuroradiology experience). The presence of a continuous hyperintense area
on T2WI or FLAIR images is generally accepted as indicating the presence of connection
between the foci [30].

2.6. Inter-Subgroup Comparison

After identification of subgroups by cluster analysis, the inter-subgroup differences
were explored. Differences in age were compared using Student’s t-test. Sex distribution,
molecular status including isocitrate dehydrogenase mutation (IDHmut), O6-methylguanine-
methyltransferase promoter methylation (MGMTmet), alpha thalassemia/mental retarda-
tion syndrome X-linked loss (ATRXloss), and WHO glioma grades were compared using
the chi-square test. The Ki-67-labeled proliferation index was compared using the 2-tailed t
test. The FA and measures derived from 1H-MRS, PWI, and DWI were compared using
the Mann–Whitney U test. All statistical test results were considered significant if p < 0.05
(FDR-corrected).

As distance may affect the connectivity value, we used the Euclidean distance to measure
the spatial distance between two foci, implemented as a heuristic of white matter paths:

d =

√
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2

in which x, y, and z represent the three-dimensional Montreal Neurological Institute
(MNI) coordinate located in the core of the two foci (see Supplementary Figure S3). Then,
we conducted a general linear model, to compare the connectivity value between the
subgroups, using Euclidean distance as the covariate.

3. Results
3.1. Demographic and Clinical Characteristics of the Patients

The study includes 46 patients (25 males and 21 females) with multiple gliomas.
Median age at the time of diagnosis is 42 years (range 20–76 years). Intracerebral masses
comprise 17 cases of glioblastomas (WHO grade IV), 2 cases of H3K27M mutant diffuse
midline glioma (WHO grade IV), 7 cases of anaplastic astrocytoma (WHO grade III), 6 cases
of oligodendroglioma (WHO grade II), and 14 cases of diffuse astrocytoma (WHO grade II).
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3.2. Probabilistic Fiber Tracking

The mean probabilistic value extracted from fibers between neoplastic foci of all
patients is 0.23 ± 0.22, the mean connectivity value is 18,967 ± 2251, and the mean FA of
the fibers is 0.32 ± 0.11.

3.3. Hierarchical Clustering

The result of hierarchical clustering analysis is shown as a dendrogram in Figure 2.
The estimate of the optimal clusters is the value that maximizes the gap statistic, at which
point the clustering structure is maximally distant from the random uniform distribution.
The gap statistic plot (Figure 2) shows the statistics by number of clusters (k), with standard
errors shown as vertical segments, and the optimal value of k marked with the vertical
dashed blue line: k = 2 in this dataset (Figure 2).
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hierarchical clustering.

Subsequent analysis mainly focuses on these two subgroups (subgroups 1 and 2,
indicated in red and blue, respectively, in Figure 2); 19 patients (41%) were placed in
subgroup 1, and 27 patients (59%) in subgroup 2. Figure 3 shows, illustratively, the
PROBTRACK results of two selected patients, one from each subgroup.

The radiologist reviewed the T2WI and FLAIR images of each patient in the subgroups:
in subgroup 1, there is no abnormal signal observed between the foci, while in subgroup 2 all
except three patients show contiguous abnormal signal between the foci (Supplementary
Figure S4).

Combining the cluster analysis with visual assessment, subgroup 1 shows a trend
towards widely separated lesions with no anatomical connections, which may be termed
the true multicentric gliomas, while subgroup 2 shows anatomical continuity between
lesions, which may be termed the multifocal gliomas [31].
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Figure 3. Illustrative PROBTRACK results from each subgroup. ((A–H) (left panel) Subgroup 1,
(I–P) (right panel) Subgroup 2). (A,B) Two neoplastic foci (orange arrows) at the right temporal lobe
and parietal lobe exhibit slight enhancement in T1-weighted MR images. (C,D) No abnormal FLAIR
signal between the foci. (E,F) White matter connectivity between lesions derived from probabilistic
fiber tracking (blue regions are the two neoplastic foci; the red region is the likelihood of a path
between them). (G,H) The probabilistic path extracted from the probabilistic fiber tracking (blue
region). (I,J) Two neoplastic foci (orange arrows) at the splenium of corpus callosum exhibit obvious
enhancement in T1-weighted images; (K,L) A continuous hyperintense area on T2WI and FLAIR
between the foci. (M,N) White matter connectivity between neoplastic foci derived from probabilistic
fiber tracking (blue regions are the neoplastic foci, the ‘hot’ region is the likelihood of a path existing
between them). (O,P) Probabilistic path extracted from the probabilistic fiber tracking (blue region).

3.4. Subgroup Differences

Table 2 shows the demographic, histopathological, and MRI/MRS characteristics of
the two subgroups. The subgroups do not differ with respect to age or sex distribution,
nor in the status of IDHmut and ATRX loss, the Ki-67-labeled proliferation index, or WHO
grades. Subgroup 1 comprises 10 glioblastomas, 2 anaplastic astrocytomas, 1 oligoden-
droglioma, and 6 diffuse astrocytomas; subgroup 2 comprises 7 glioblastomas, 2 H3K27M
mutant diffuse midline gliomas, 5 anaplastic astrocytomas, 5 oligodendrogliomas, and
8 diffuse astrocytomas.

The average white matter connectivity between multiple foci of subgroup 1 is signifi-
cantly less than in subgroup 2. The subgroups show no significant differences in FA.

By 1H-MRS, there is no significant difference between the subgroups in NAA/Cr,
Cho/Cr, Lac/Cr, or Cho/NAA. The ratio Lip/Cr is significantly higher in subgroup 1:
Figure 4 shows illustrative spectral data analysis from the two subgroups.
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Table 2. Demographic, histopathological, and MR imaging and spectroscopy results in the two subgroups.

Characteristic Subgroup Statistical Analysis

1 2 Statistic p

Demographics

Age (y) 42.3 ± 14.2 41.8 ± 13.2 0.027 0.98
Sex (male/female) 8/11 17/10 1.96 0.16

Histopathology

Low grade (II) 7 (37%) 13 (48%) 0.58 0.45
High grade (III + IV) 12 (63%) 14 (52%) - -

IDHmut (with/without) 10/9 11/16 0.64 0.44
MGMTmet (with/without) 12/7 10/17 3.05 0.081
ATRX loss (with/without) 9/10 12/15 0.038 0.85
Ki-67 proliferation index 0.15 ± 0.12 0.20 ± 0.16 −1.07 0.29

MR imaging

Connectivity 2675 ± 1098 30432 ± 22707 −5.23 p = 0.000016 *
FA 0.34 ± 0.116 0.30 ± 0.108 1.15 0.26

rCBV 2.31 ± 0.95 1.73 ± 0.48 −3.11 0.002 *
rADC 1.32 ± 0.25 1.21 ± 0.27 −1.58 0.12

MR spectroscopy

Cho/Cr 0.52 ± 0.26 0.74 ± 0.57 −1.49 0.14
NAA/Cr 0.96 ± 0.62 0.77 ± 0.41 −1.43 0.14

Cho/NAA 1.07 ± 0.54 1.34 ± 0.42 −1.49 0.13
Lip/Cr 0.32 ± 0.22 0.060 ± 0.051 −2.71 0.006 *
Lac/Cr 0.62 ± 0.85 0.45 ± 0.32 −0.72 0.47

Results are mean ± SD or numbers in two categories (x/y). Abbreviations: IDHmut, isocitrate dehydroge-
nase mutation; MGMTmet, O6-methylguanine-methyltransferase promoter methylation; ATRX loss: alpha
thalassemia/mental retardation syndrome X-linked loss; FA, fractional anisotropy; rCBV, relative cerebral blood
volume; NAA, N-acetylaspartate; Cr, creatine; Cho, choline; Lac, lactate; Lip, lipid; and rADC, relative apparent
diffusion coefficient. * p is less than 0.05.
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Figure 4. Illustrative results of analysis of magnetic resonance spectroscopy data. (A) A patient from
subgroup 1. (B) A patient from subgroup 2.

By DSI-PWI and DWI, mean rCBV is significantly higher in subgroup 1 than sub-
group 2. Figure 5 shows illustrative CBV maps from the two subgroups. There are no
significant differences in mean rADC between the subgroups. Figure 6 summarizes the
advanced MR imaging measurements as box plots.
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Figure 5. Illustrative cerebral blood volume (CBV) maps from the two subgroups. ((A–D) (left panel)
subgroup 1, (E–H) (right panel) subgroup 2). (A,B) Enhanced T1-weighted MRI showing 3 neoplastic
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2 neoplastic foci. (G,H) CBV map showing elevated CBV at the foci.
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4. Discussion

Many studies address the classification of multiple gliomas, seeking to define different
subgroups based on origin and growth pattern. For example, multifocal and multicentric
gliomas are defined based on physical connection between the foci [20,32,33]: multifocal
gliomas result from dissemination or spreading via established pathways, such as white
matter fibers and cerebrospinal fluid, or local metastasis; in contrast, multicentric gliomas
exhibit widely separated foci in different lobes or hemispheres, whose distribution cannot
be explained by any of these pathways or mechanisms [2,34]. As conventional MRI is
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unable to delineate microscopic tumor infiltration along white matter fibers [35], it is not
useful for making this distinction. Here, we used probabilistic fiber tractography with DTI
to detect subtle white matter connections between the foci, hoping, thereby, not only to aid
the identification of multicentric vs. multifocal gliomas, but also provide new insight into
the nature of this tumor.

Using cluster analysis, we identify two distinct patterns of white matter connection
in multiple gliomas: increased and decreased connectivity of the inter-focal white matter.
In methodological terms, this connectivity quantifies the likelihood of a path between
the seed focus and target focus: the higher the connectivity, the greater the likelihood
of connection [26]. In subgroup 1, the smaller inter-focal connectivity indicates weak
white matter linking, tending to suggest independent origin; in subgroup 2, the relative
greater connectivity suggests that the multiple foci develop through metastasis along white
matter pathways, and it is tempting to speculate that the neoplastic foci are, therefore, of
common origin and may share the same genetic aberrations. It is worth noting that in
subgroup 2, all except three patients show contiguous abnormal signal between the foci.
After carefully checking the location, distance, and foci volume of these three exceptions,
the main difference is that their probability values are much larger than the mean value of
subgroup 1. This may suggest that glioma can spread along white matter tracts that cannot
be identified visually. If so, then cluster analysis, based on probabilistic fiber tracking, may
be a more reliable tool to evaluate whether there are microscopic connections between foci.
These findings should, of course, be viewed as preliminary, but do suggest a direction for
future research.

Notably, the two subgroups do not differ in molecular characteristics (IDHmut, ATRX
loss, MGMTmet, and Ki-67-labeled proliferation index) or WHO grades. In contrast, a previ-
ous study of 14 cases of multicentric glioma finds no IDH1 mutation or ATRX loss [36]. An
earlier study of 10 cases (predating modern molecular methods) finds multicentric gliomas
to be histologically of low-grade, with gradual evolution, whereas multifocal gliomas are
of high-grade malignancy [37]. These differences are likely due to the limitations that prior
studies acknowledged: possible false negative results due to lack of DNA sequencing for
IDH1 mutation or ATRX loss, and relatively small sample size [36].

1H-MRS, DSC-PWI, and DWI provide information on metabolism, vascularity, and
cellularity, respectively. Subgroup 1 has a higher rCBV and Lip/Cr ratio than subgroup 2.
As both these findings can result from rapid tumor growth, related to a higher tumor
grade [38,39], this might suggest that foci of independent origin in multicentric glioma
tend to have higher vascularity and more intratumoral necrosis. However, there are no
significant differences in WHO grades between the two subgroups. Future studies, with a
larger number of patients, should investigate this further.

Thus, our study reveals two distinct subgroups of multiple gliomas, based on the
probabilistic fiber tracking and cluster analysis. This finding has some practical significance:
while the foci of multifocal glioma, which are homologous tumors, can be treated with the
same therapeutic strategy, the foci of multicentric glioma tend to have different origins
and, potentially, biologic characteristics, so focus-based treatment planning is required.
A previous study shows that the median survival in patients with multicentric glioblas-
tomas treated with aggressive multiple-craniotomy resection of all lesions is 12.9 months,
compared to 9.6 months in patients with multifocal disease [40]. Thus, differentiating
multicentric gliomas from multifocal gliomas has practical clinical value, and evidence
from probabilistic fiber tractography may provide information for the choice of surgical
approach, and the estimation of prognosis.

This study has several limitations. Firstly, although the patient population is larger
than previous studies, it may still be insufficient to fully reveal the heterogeneity of multiple
gliomas. Further studies, with larger sample sizes and using a higher order model, are
therefore needed to validate our findings, and improve the identification of subgroups
of multiple gliomas. Secondly, this is a single-center study and requires validation with
data from multiple centers. Finally, most patients included have two foci, while only
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two patients have three foci; sub-analysis taking into account number of foci will be
valuable in future studies.

5. Conclusions

Using cluster analysis, we identified two subgroups of patients with multiple gliomas
having low and high probabilistic connections of white matter. Multiple gliomas, with
smaller inter-focal connectivity, tend to have independent origins, i.e., are true multicentric
glioma; other gliomas, with greater connectivity, tend to share a common origin and
develop through early white matter spreading. The two categories of multiple gliomas
differ in some metabolic and vascularity characteristics. These findings may be helpful for
preoperative evaluation and personalized treatment planning.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jcm11133693/s1, Figure S1: ROI placement from a representative
case. Figure S2: The procedure to calculate the ADC value. Figure S3: Measuring Euclidean distance
in a representative case. Figure S4. Patients show contiguous abnormal signal between the foci in the
subgroup 2.
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