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Abstract: Polyoxometalates (POMs) demonstrate potential for application in the development of
integrated smart energy devices based on bifunctional electrochromic (EC) optical modulation
and electrochemical energy storage. Herein, a nanocomposite thin film composed of a vanadium-
substituted Dawson-type POM, i.e., K7[P2W17VO62]·18H2O, and TiO2 nanowires were constructed
via the combination of hydrothermal and layer-by-layer self-assembly methods. Through scanning
electron microscopy and energy-dispersive spectroscopy characterisations, it was found that the TiO2

nanowire substrate acts as a skeleton to adsorb POM nanoparticles, thereby avoiding the aggregation
or stacking of POM particles. The unique three-dimensional core−shell structures of these nanocom-
posites with high specific surface areas increases the number of active sites during the reaction
process and shortens the ion diffusion pathway, thereby improving the electrochemical activities
and electrical conductivities. Compared with pure POM thin films, the composite films showed
improved EC properties with a significant optical contrast (38.32% at 580 nm), a short response
time (1.65 and 1.64 s for colouring and bleaching, respectively), an excellent colouration efficiency
(116.5 cm2 C−1), and satisfactory energy-storage properties (volumetric capacitance = 297.1 F cm−3

at 0.2 mA cm−2). Finally, a solid-state electrochromic energy-storage (EES) device was fabricated
using the composite film as the cathode. After charging, the constructed device was able to light up a
single light-emitting diode for 20 s. These results highlight the promising features of POM-based
EES devices and demonstrate their potential for use in a wide range of applications, such as smart
windows, military camouflage, sensors, and intelligent systems.

Keywords: polyoxometalate; TiO2 nanowire; composite film; bifunctional electrochromic energy
storage

1. Introduction

With the continuing development of sustainable resources, devices for energy storage
and conversion, such as solar cells, supercapacitors, and electrochromic (EC) devices,
have attracted increasing attention [1–3]. EC devices are known to change colour via
charge insertion/extraction or reversible redox reactions driven by an external electric
field [4,5]. Simultaneously, the ion intercalation/deintercalation steps taking place during
the reversible redox reactions of the EC process can also generate a pseudocapacitive
behaviour [6,7], thereby resulting in EC devices and supercapacitors having similar working
mechanisms and device structures. Based on this principle, one can envisage that these
two functions could be integrated into a single electrochromic energy-storage (EES) device
using the same material. As such, several EES devices have been widely explored. For
example, Feng et al. [8] utilised exfoliated graphene/V2O5 as the active material of a micro-
supercapacitor to judge its charge-discharge state via the observed colour. In addition,
Xue et al. [9] synthesised a smart EC supercapacitor device using a porous co-doped NiO
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film as the positive electrode. This device exhibited a high specific capacitance, high energy
density, and good cycle stability. After charging, these two devices were able to light up
light-emitting diodes (LEDs).

Among the various EES materials reported to date, polyoxometalates (POMs) demon-
strate a multi-electron reaction specificity during the electrochemical redox process, which con-
tributes to their chromatic transitions and high-efficiency energy-storage performances [10–12].
As an example, Ma et al. [13] synthesised a POMs-based supramolecular crystalline material,
namely, H3PMoVI

12O40·(BPE)2.5·3H2O (BPE = 1,2-Bis(4-pyridyl)ethylene), via a one-step
hydrothermal method. The compound had a high specific capacitance (i.e., 137.5 F g−1 at
2 A g−1) and good cycle stability (i.e., 92.0% after 1000 cycles) than parent H3PMoVI

12O40.
This work provided an alternative method for improving the performance of POMs-based
capacitor electrode materials. In addition, Wang et al. [14] reported a high-performance
PW12-based EC device, wherein the optical contrast of the optimised device containing an
I−/I3− redox couple in the electrolyte reached 59.4%. The PW12-EC device also showed
a fast response time for bleaching and colouration. However, POM materials tend to
aggregate or stack to form dense structures, which can hinder ion diffusion and affect their
electrochemical properties. To overcome this issue, the incorporation of POMs into nanos-
tructures or composite materials has been investigated to increase their surface areas [15].
For example, L et al. [16] prepared graphene oxide/W18O49 nanorod (rGO-WNd) compos-
ites through the high-temperature thermal reduction of ammonium tungstate and graphene
oxide (GO). Compared with the cycle stability, capacitance, and EC properties of the pure
WNd film, the corresponding properties of the Rgo-WNd composite film were significantly
enhanced. This could be attributed to a higher degree of ion diffusion and the acceleration
of charge transfer after the addition of rGO. As a result, the response times of such materials
are improved.

Titanium dioxide is recognised as a promising candidate for EC and energy-storage
applications owing to its excellent electrochemical stability, optical modulation, reversibil-
ity, and mass transport properties, as well as the fact that it enhances contact with the
electrolyte and improves the resulting reaction kinetics [17]. In recent years, various TiO2
nanostructures, such as nanorods, nanotubes, and nanowires, have received attention
as excellent composite materials because of their large specific surface areas and orderly
structures. For example, Khanna et al. [18] fabricated a TiO2@NiTi system for use as an
electrode in energy-storage applications, and this material produced a specific capacitance
of ~1 F g−1. This result reveals that their system is a promising material for energy-storage
applications. In addition, Ji et al. [19] designed and fabricated a novel bilayer composite
with an excellent energy-storage performance by combining an aligned TiO2 nanoarray
(TNA) and random TiO2 nanowires (TiO2 NWs) with a poly(vinylidene fluoride) (PVDF)
matrix. A superior discharge energy density of 16.13 J cm−3 was obtained for the 5 vol%
TiO2 NW/TNA-PVDF composite, which was 2.0 times higher than that of the pure PVDF
matrix (8.23 J cm−3). Furthermore, Lv et al. [20] synthesised TiO2 nanotube membrane
electrodes that exhibited excellent EC performances, combining a high colouration contrast
with a transmittance of 65% in the visible spectrum, in addition to a good cycle stability
(88.2% for initial optical modulation after 1000 cycles). Zhang et al. [21] reported a novel
EC device based on polyaniline nanofibers wrapped with antimony-doped tin oxide/TiO2
nanorods (ATO/TiO2@PANI film) as an EC electrode material. Compared with the pure
PANI film, the EC device based on ATO/TiO2@PANI film shows better electrochromic
performance.

Based on the above considerations, our group previously designed a series of
POM-based EC thin film materials [22,23]. In 2020, we reported the first dual-function
electrochromic-energy storage material based on POMs and TiO2 nanowires [24]. However,
the response time of the film is long, and its capacitive performance is relatively low. As
we know, the structure and composition of POMs have a great influence on their electro-
chemical activity; therefore, the electrochromic-energy storage properties could be adjusted
easily by changing the type of POMs. In general, the lacunary and substituted Dawson
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structures can show enhanced electrochromic performances [25]. Thus, in the current study,
to improve the performances of these materials, we chose vanadium-substituted Dawson-
type polyoxotungstate K7[P2W17VO62]·18H2O (P2W17V) and TiO2 nanowires to fabricate a
nanocomposite thin film via hydrothermal and layer-by-layer (LbL) self-assembly methods.
The microstructure of TiO2 is regulated by a hydrothermal treatment, allowing its nanowire
array to be employed as the substrate for the composite film. The synergistic effects of the
TiO2 NWs and the POMs could improve the EC properties of the composite film. Scan-
ning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force
microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) are used to investigate
the surface morphology, structure, and chemical properties of the obtained nanocomposite
film. Finally, the EC and energy-storage properties of the composite film are compared
with those of the pure P2W17V-modified fluorine-doped tin oxide (FTO) film.

2. Materials and Methods
2.1. Chemicals and Materials

All reagents were of analytical grade and used as received without further treat-
ment. The FTO-coated glasses (<10 ohm sq−1) were purchased from Pilkington (Toledo,
Ohio, USA). (3-Aminopropyl)trimethoxysilane (APS), polyetherimide (PEI), and propy-
lene carbonate (PC) were purchased from the Aladdin Chemical Co., Ltd. and were
used without further treatment. P2W17V was prepared according to a method reported
in literature [26,27], and it was characterised by infrared (IR) spectroscopy (Figure S1),
ultraviolet-visible (UV-vis) absorption spectroscopy (Figure S2), and cyclic voltammetry
(CV) (Figure S3).

2.2. Preparation of the Composite Films

The TiO2 nanowire arrays were prepared via a hydrothermal synthesis method ac-
cording to our previous report [22], and this was followed by the preparation of the
composite films. More specifically, the surface of the FTO substrate was cleaned in
NH3/H2O/H2O/H2O2 (volume ratio 1:1:1) at 80 ◦C for 20 min and then rinsed with
deionised water. This step was repeated 3–5 times to remove any inorganic and organic
impurities from the FTO substrate. The composite film was prepared via the LbL assem-
bly method. Initially, the cleaned FTO substrate was modified with TiO2 NWs. Subse-
quently, the pure FTO and the modified FTO were immersed in APS overnight. After
this time, the samples were placed in HCl (pH 2.0) for 20 min, rinsed with deionised
water, and dried under a stream of nitrogen to give the precursor. Finally, the com-
posite film (NW−P2W17V) was constructed by depositing negatively charged P2W17V
(5 × 10−3 mol L−1 in 0.2 mol L−1 HOAc-NaAc at pH 3.99) and positively charged PEI
(5 × 10−3 mol L−1 at pH = 4) onto the TiO2 NWs, according to the LbL method. For com-
parison, an additional film was prepared on the pure FTO substrate using the same method,
and this was designated as FTO−P2W17V. A schematic outline of the fabrication process is
shown in Figure 1a.

2.3. Characterisation

SEM images were measured on FEI Verious 460 L scanning electron microscope (Hills-
boro, OH, USA). AFM images were investigated by Icon Bruker microscope (Ettlingen, Ger-
many). TEM images were measured on a FEI Tecnai G2F20 S-TWIN microscope equipped
with an energy-dispersive spectrometer (EDS) (Hillsboro, OH, USA). XPS analysis were
measured on a Thermo ESCALAB 250 spectrometer (Shanghai, China). The EC and capac-
itive properties of the films were determined by combining the in-situ TU-1901 PERSEE
UV-vis spectrophotometer (Beijing, China) with an CHI660B Chenhua electrochemical
workstation (Shanghai, China) in a three-electrode configuration, where the nanocompos-
ites served as the working electrodes; a Pt plate/Pt wire acted as the counter electrode, and
Ag/AgCl was used as the reference electrode.
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3. Results and Discussion
3.1. Characterisation of the NW−P2W17V and FTO−P2W17V Materials

The multilayer growth process of composite film on the precursor-coated quartz sub-
strate (on both sides) was monitored by UV-Vis spectroscopy (Figure 1b). It exhibited strong
absorption of P2W17V with two characteristic absorption peaks at 201 and 289 nm. The
peak at 201 nm originates from the terminal oxygen to tungsten charge-transfer transition
(Od→W), whereas the peak at 289 nm corresponds with the charge-transfer transition from
the bridging-oxygen to tungsten (Ob/Oc→W). The inset of Figure 1b shows the plots of
the absorbance values at 201 and 289 nm as a function of the layer number and suggests
that growth is uniform during each cycle.

SEM-EDS and TEM were then performed to obtain the detailed information about
the surface morphologies and homogeneities of the composite materials. The SEM images
of the FTO−P2W17V film are shown in Figure S4, wherein it can be visualised that the
FTO substrate was covered by aggregated P2W17V anions. In addition, the cross-sectional
view of the FTO−P2W17V film gave a thickness of ~150 nm. As shown in Figure S5, the
FTO substrate was covered with densely grown TiO2 NWs, and the cross-sectional image
confirmed that the height of the nanowires was approximately 600 nm. After the LbL
process, it was apparent that the interspaces of the NWs were filled, and the NWs became
wider and more compact owing to the deposition of P2W17V and PEI (Figure 2a). Moreover,
the EDS mapping of P, W, Ti, and V confirmed the feasibility of the hydrothermal treatment
and LbL process (Figure 2b), since the POMs and the TiO2 NWs were evenly distributed on
the surface of the FTO substrate.

Subsequently, AFM was employed to study the surface morphologies and roughness
properties of the FTO−P2W17V and NW−P2W17V films (Figure 2c,d and Figure S6). Two-
dimensional (2D) and three-dimensional (3D) images of the two films confirmed that their
surface microstructures were quite different. More specifically, the AFM images of the
FTO−P2W17V film displayed some uniformly sized spherical particles, which resulted from
the FTO substrate being covered with cross-linked POM anions with a thickness of 100 nm
(Figure S6b). From Figure 2d, it was apparent that the surface of the NW−P2W17V film
shows a regular cylindrical microstructure, suggesting the presence of TiO2 NWs substrate.
The height of the NWs anchored with the POMs was ~500 nm, which corresponded well
with the SEM observations. In addition, the root mean square (RMS) roughness for each
film was calculated from an area of 5 × 5 µm2 in the AFM image, wherein the surface
roughness (i.e., RMS) values of the NW−P2W17V and FTO−P2W17V films were found to
be 73.6 and 20.5 nm, respectively. A higher roughness could lead to a larger reactive surface
area, thereby improving the electrochemical performance of the material.
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The surface chemical compositions of the as-prepared films were further determined
and quantified by XPS analysis. The high-resolution XPS spectra of the prepared composite
film shown in Figure 2 indicates that the composite material mainly contains C, P, Ti, and
W [28,29], wherein the Ti should originate from the TiO2 NWs on the FTO substrate. This
result further confirms that the POMs and the TiO2 NWs are distributed on the surface of
the FTO substrate. As shown in Figure 2e, the most intense doublet peaks are observed at
35.6 and 37.7 eV, which correspond to the binding energies of the electrons in the W4f7/2
and W4f5/2 levels of W in the W(VI) valence state. These results indicate that the majority
of W atoms were in a highly oxidised state and could be reduced to W(V), which is the
key reaction in the EC process of polyoxotungstate-based materials. With respect to the
high-resolution Ti2p peaks, they could be split into peaks at 458.9 and 464.6 eV, which were
both attributed to TiO2 (Figure 2f), thereby indicating that the main matrix component
was TiO2. Furthermore, the prepared film exhibited a peak corresponding to the C1s level
(284.8 eV) of the carbon present in the PEI polycation, whereas the P2p signal (at 133.0 eV)
and the V2p signal (at 532.4 eV) [30] were ascribed to P2W17V (Figure S7). Thus, the XPS
data suggest that PEI cations and P2W17V anions were incorporated into the TiO2 NW
substrate, which is consistent with the UV-vis results.

TEM is indispensable for the characterisation of nanostructured materials, particularly
when the particle shape is important in determining its function, and so TEM was employed
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herein to evaluate the microstructure of the composite and the spatial relationship between
TiO2 NWs and P2W17V. Figure 3a–b show the typical TEM images of the TiO2 NWs with
a diameter of ~50 nm. The EDS elemental mapping patterns of the TiO2 NW−P2W17V
film were also recorded, as shown in Figure 3c–f and Figure S8. Combined with the
TEM morphological observations, the distributions of W, P, Ti, and V suggest a uniform
distribution of P2W17V on the TiO2 NWs. As shown in the TEM image (Figure 3b), following
the LbL assembly process, the P2W17V coating layer covered the surface of the NWs,
forming a core-shell structure. As indicated by the arrows, the darker columnar area is
a TiO2 NW and the lighter part surrounding it are P2W17V particles. The selected area
electron diffraction pattern showed the specific diffraction spots of TiO2 nanowires, and it
can be attributed to the rutile phase [23].
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3.2. EC Performance

To explore the potential of the prepared composite material for application as EC super-
capacitor, its EC properties were investigated and compared with those of the FTO−P2W17V
film. As demonstrated in Figure 4a–b, the transmittance was reduced along potentials
ranging from 0 to −1.0 V. In addition, as shown in Figure 4c, the maximum transmittance
modulation of the NW−P2W17V film (38.32%) was significantly higher than that of the
FTO−P2W17V film (22.25%) at 580 nm, thereby indicating that the effective combination
of two cathodic EC materials could indeed improve the overall performance. For the
switching kinetics, the fast switching speed (i.e., the time required to achieve 90% of full
modulation) for each of the two prepared films was determined, as shown in Figure 4d.
Notably, FTO−P2W17V (tc = 1.49 s and tb = 1.65 s) and NW−P2W17V (tc = 1.65 s and
tb = 1.64 s) films could undergo relatively rapid colouring and bleaching processes, which
are important processes in the context of EC applications. Furthermore, as shown in the
optical photograph presented in Figure 4e, the P2W17V-modified film turned blue, and
became deeper in colour upon increasing the applied potential; this colour was attributed
to the intervalence charge-transfer band (WV–O–WVI or WVI–O–WV). The transmittance
showed a good linear relationship with the applied potential, indicating that the colouration
state could be adjusted precisely, thereby rendering this system suitable for practical use in
industry.
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The CE is a crucial factor in evaluating the correlation between the change in colour and
the number of injected charges. The CE can be calculated from Equations (1) and (2) [31–33]:

CE = ∆OD/(Q/A) (1)

∆OD(λ) = log Tb/Tc (2)

where Q is the charge density, A is the area of the composite film, and Tb and Tc are the
transmittances of the film in the bleached and coloured states at a certain wavelength (λ),
respectively. Figure 4f shows the variation in the optical density with respect to the extent
of electric charge exchange from the electrolyte to the EC film. The CE can be obtained
from the slope of the line that fits the linear region of the plot. Thus, the CE values of
samples were calculated to be 116.5 cm2 C−1 for NW−P2W17V and 15.2 cm2 C−1 for
FTO−P2W17V, wherein the larger value obtained for the NW−P2W17V system indicates
that a large transmittance modulation can be realised through the introduction of a small
amount of charge.

The electrochemical stability of a film is vital for determining its EC performance.
Thus, the cycling stabilities of the FTO−P2W17V and NW−P2W17V films were tested by
chronoamperometry at 580 nm over 1000 cycles. As shown in Figure 4g–h, NW−P2W17V
exhibited a superior cycling stability with an initial transmittance variation of approx-
imately 38.32%, wherein ~86% of the initial value was retained after 1000 cycles. This
outstanding cycling stability should permit long-term application in real environments.

3.3. Energy-Storage Performance

The electrochemical performances of the thin films were then evaluated using CV
and galvanostatic charge-discharge (GCD) tests. Figure 5a shows the CV curves of the
NW−P2W17V film measured at different scan rates, wherein it can be seen that upon
increasing the scan rate from 50 to 150 mV s−1, no obvious changes in shape were observed
for the CV curves, although the peak potential moved slightly. The presence of characteristic
symmetric reversible peaks for the NW−P2W17V film also indicate its good capacitive
behaviour upon ion insertion/extraction. Furthermore, the inset of Figure 5a shows a good
linear relationship between the current density and the scan rate, indicating a fast electron
transfer kinetic characteristic in these redox-active materials, which therefore represents
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a typical surface-controlled process. Figure 5b shows the CV curves of the NW−P2W17V
and FTO−P2W17V films obtained using a three-electrode system at the same scan rate in
a solution of HOAc-NaAc at pH 3.5. The composite film displayed three pairs of redox
peaks, which can be attributed to the redox reaction between WVI and WV, indicating a
typical faradic behaviour. The redox peaks of the NW−P2W17V film have higher peak
current values than those of the FTO−P2W17V film, indicating the high conductivity and
low internal resistance of the NW−P2W17V film. These increased peak current values can
be attributed to the influence of faradaic reactions and to hydrogen ion (H+) intercalation
at the electrode/electrolyte interface.
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Figure 5. (a) CV for the NW−P2W17V film at different scan rates (from inner to outer): 50, 70, 90,
110, 130, and 150 mV s−1. The inset shows plots of the anodic and the cathodic peak currents for
C-c against scan rates; (b) CV for NW−P2W17V and FTO−P2W17V films at a scan rate of 50 mV/s;
(c) Charge/discharge curves of NW−P2W17V film at various current densities; (d) Volumetric capaci-
tance at various current densities of NW−P2W17V and FTO−P2W17V films; (e) In situ transmittance
evolution at 580 nm with the charging and discharging process of the NW−P2W17V film; (f) Cycle
performance of NW−P2W17V film measured under a current density of 0.2 mA cm−2.

The diffusion coefficient of H+ ions for insertion and extraction can be estimated based
on the measured peak current, Ip (A) [34,35]:

Ip = 2.69 × 105AC
√

Dvn3 (3)

where Ip is the peak current, A is the area of the film (cm2), n is the number of electrons, D
is the diffusion coefficient of the H+ ions (cm2 s−1), C is the concentration of the H+ ions
in the electrolyte solution (mol cm−3), and v is the scan rate (V s−1). The diffusion rate of
H+ in NW−P2W17V was faster than that in FTO−P2W17V. This enhanced diffusion rate for
NW−P2W17V therefore accounted for the superior electrical conductivity of this material.

Owing to their fast ion intercalation/deintercalation properties and excellent cycling
stabilities, we envisaged that the composite films could have great potential for use in
energy-storage applications. Thus, to further evaluate the capacitive behaviours of the com-
posite films, a series of GCD measurements were carried out at different current densities.
Figure 5c shows the potential responses of the NW−P2W17V film under different currents,
in addition to the dependence of the volumetric capacitance of the composite film on the
current density. The GCD curves collected under different current densities are displayed
in Figure 5c, which shows that the shapes of the CD profiles were essentially retained for
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all the applied current ranges, demonstrating the superior charge/discharge reversibility of
the sample [36]. Plateau regions are observed in the GCD curves, and the positions of the
three plateaus are consistent with the CV curves, thereby indicating that the capacitance
is mainly caused by the faradaic redox reaction, whereas the existence of plateaus in the
curves illustrates a sound pseudocapacitive behaviour [37,38]. The calculated volumetric
capacitance as a function of the current density is shown in Figure 5d. The volumetric
capacitance gradually declines as the current density increases, mainly because the limited
ion diffusion rate is inaccessible, and so adequate surface redox reactions of the active
materials cannot be ensured at high current densities. Furthermore, the value obtained for
the NW−P2W17V film was higher than that of the FTO−P2W17V film, which was ascribed
to the interactions and synergistic effects between the P2W17V and TiO2 NW materials.
Furthermore, the GCD curves at 0.3 mA cm−2 and the corresponding in situ transmit-
tance at 580 nm were collected and plotted in Figure 5e. During the charging process, the
NW−P2W17V electrode gradually became coloured, and the decrease in transmittance was
distinguishable. In contrast, the colour of the electrode was reversibly bleached during the
discharge process.

The long-term cycling stability is another vital index for evaluating the properties
of electrode materials [39,40]. As shown in Figure 5f, the NW−P2W17V film revealed an
excellent cyclic stability with its volumetric capacitance being almost fully maintained after
1000 cycles at 0.2 mA cm−2 in a voltage range of −0.5 to 0.2 V.

Subsequently, electrochemical impedance spectroscopy (EIS) was employed to investi-
gate the inner resistances and capacitance properties of the thin films [30]. Figure 6a shows
the Nyquist plots of the NW−P2W17V and FTO−P2W17V films with a frequency range of
0.01–100,000 Hz and a signal amplitude of ±5 mV. The electrode system can be described
by a simple equivalent circuit (see the inset of Figure 6a), which was selected to fit the
obtained impedance data for the NW−P2W17V composite film. The high-frequency part
of the semicircle in the EIS spectrum indicates the speed of the electron transfer process,
and the diameter is closely related to the electron transfer resistance (Rct). The Rct of the
FTO−P2W17V film was significantly smaller than that of the NW−P2W17V film, indicating
the lower Rct and the higher electron transfer rate of NW−P2W17V composite film. As
outlined in Figure 6b, we constructed an EES device using LiClO4/PC as the electrolyte, the
NW−P2W17V composite film as the negative electrode, and FTO as the positive electrode.
Importantly, this EES device was capable of lighting a red LED (Figure 6c). After charging
for 10 s, the device became dark blue in colour, and the system lit the red LED for a total
of 20 s. These results indicate that the energy-storage states were directly reflected by the
colour change. More specifically, as the charge stored inside the device increased, its colour
deepened. Overall, these observations verify the potential practical application of our
device in energy-storage smart windows and visual monitoring systems.
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4. Conclusions

In this work, a suitably designed nanocomposite film composed of vanadium-substituted
Dawson-type POMs were fabricated on a TiO2 nanowire array substrate. Compared
with the dense packing structure, the core—shell nano structure exhibited enhanced EC
and electrochemical properties with significant optical contrast (38.32% at 580 nm), short
response time (1.65 and 1.64 s for colouring and bleaching, respectively), and satisfactory
volumetric capacitance (297.1 F cm−3 at 0.2 mA cm−2), which mainly originate from the
unique three-dimensional structure of a nanocomposite with low tortuosity and a high
specific surface area. TiO2 NW not only provided a transparent substrate with greater
adhesion, but it also shortened the electrons/ions diffusion pathway, resulting in uniform
and fast reaction kinetic characteristics. A solid-state EES device was fabricated using the
composite film as the cathode. In terms of its potential practical applications, the developed
device was demonstrated to light up a red LED, and the energy-storage state of the device
was easily monitored by observing its change in colour, so as to achieve the purpose of
real-time monitoring, and avert the damage caused by overcharging and over-discharging
to the supercapacitor. These results therefore confirm the promising features of POM-based
EES devices and demonstrate their potential for use in a wide range of multifunctional
supercapacitors, such as self-charging supercapacitors, smart energy storage windows, and
electrochromic supercapacitors.
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