Skip to main content
. 2022 Jul 8;9(4):045501. doi: 10.1117/1.JMI.9.4.045501

Table 10.

OR-to-RMH algorithm for computing parameter values for the RMH model that correspond to specified OR parameter values.

Step 1. Solve for x1 and x2:
x1=Φ1(θ^1)  and  x2=Φ1(θ^2)
Step 2. Solve for x3, using the values for x1 and x2 obtained in step 1:
x3={0x3<1:σ^R:OR2FBVN(x1,x2;x3)+Φ(x1)Φ(x2)=0}
From the relationship FBVN(x,y;ρ1)<FBVN(x,y;ρ2) if ρ1<ρ2,33 where F(·,·;ρ) is the standardized bivariate normal distribution function with correlation ρ, it follows that σ^R:OR2FBVN(x1,x2;x3)+Φ(x1)Φ(x2) is an increasing function of x3 and hence x3 can be easily determined numerically. Numerical solutions for x4,x5,x6, and x7 can be similarly determined in steps 3 and 6.
Step 3. Solve for x4, using the values for x1 and x2 obtained in step 1:
x4=max[x3,{0x4<1:σ^TR:OR2+σ^R:OR2.5i=12{FBVN(xi,xi;x4)[Φ(xi)]2}=0}]
Step 4. Solve for b using one of the following b_method options. The resulting value of b is used for the remaining steps.
b_method = unspecified: Solve for b, using the values for x1,x2, and x4 obtained in steps 1 and 3:
b={b>0:σ^ε:OR212i=12m=14cmFBVN(xi,xi;ρm(1x4)+x4)=0}
where ρ1=1,ρ2=11+b2,ρ3=11+b2,ρ4=0. With this option there can be 0, 1, or 2 possible solutions for b. The algorithm returns the largest solution such that 0.001b1 if it exists; otherwise, it returns the smallest solution such that 1b4 if it exists, or a missing value if it does not exist.
b_method = specified: Use the specified value of b.
b_method = mean_to_sigma: Solve for the value of b that corresponds to a specified mean-to-sigma ratio and the minimum of the specified values for the expected test 1 and test 2 AUCs. (See Sec. B.2 for details.)
Step 5. Compute OR covariance estimates to be used in step 6.
(a) If b_method = unspecified was used in step 4, compute
Cov^i=r^iσ^ε:OR2,i=1,2,3.
(b) If one of the other two methods was used in step 4, then using the computed value of b and the inputted correlations r^1,r^2 and r^3, compute a new value for the OR error variance, given by σ˜ε:OR2=12i=12m=14cmFBVN(xi,xi;ρm(1x4)+x4), where ρ1=1,ρ2=11+b2,ρ3=11+b2,ρ4=0. Then compute
Cov^i=r^iσ˜ε:OR2,i=1,2,3.
Step 6. Solve for x5,x6, and x7, using the following equations and the values for x1,x2,x4, b and Cov^i,i=1,2,3, obtained in steps 1, 3, and 5:
x5={0x5<1:Cov^3m=14cmFBVN(x1,x2;ρm(1x4))=0}
where ρ1=x5,ρ2=x51+b2,ρ3=x51+b2,ρ4=0
x6=max[x5,{0x6<1:Cov^212i=12m=14cmFBVN(xi,xi;ρm(1x4))=0}]
where ρ1=x6,ρ2=x61+b2,ρ3=x61+b2,ρ4=0
x7=max[x5,{0x7<1:Cov^1m=14cmFBVN(x1,x2;ρm(1x4)+x3)=0}]
where ρ1=x7,ρ2=x71+b2,ρ3=x7(1+b2),ρ4=0
Step 7. Solve for the estimated RMH parameter values as functions of the estimated alternative RMH parameter values using the mapping given in Table 7c.

Notes: θ^1 and θ^2 denote specified values of the reader-averaged performance empirical AUCs for tests 1 and 2, respectively; σ^R:OR2,σ^TR:OR2, and σ^ε:OR2 denote specified values of the corresponding OR parameters, and r^1,r^2, and r^3 denote specified values for the OR correlations defined by ri=Covi:OR/σε:OR2. These specified values can be computed from real data or conjectured. FBVN(.,.;ρ) is the standardized bivariate normal distribution function with correlation ρ. Note that constraints Eq. (23) in Table 7 have been incorporated into the preceding steps.