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Abstract

In this study, we introduce and validate a computational method to detect lifestyle change that 

occurs in response to a multi-domain healthy brain aging intervention. To detect behavior change, 

digital behavior markers (DM) are extracted from smartwatch sensor data and a Permutation-based 

Change Detection (PCD) algorithm quantifies the change in marker-based behavior from a pre-

intervention, one-week baseline. To validate the method, we verify that changes are successfully 

detected from synthetic data with known pattern differences. Next, we employ this method to 

detect overall behavior change for n=28 BHI subjects and n=17 age-matched control subjects. 

For these individuals, we observe a monotonic increase in behavior change from the baseline 

week with a slope of 0.7460 for the intervention group and a slope of 0.0230 for the control 

group. Finally, we utilize a random forest algorithm to perform leave-one-subject-out prediction 

of intervention versus control subjects based on digital marker delta values. The random forest 

predicts whether the subject is in the intervention or control group with an accuracy of 0.87. This 

work has implications for capturing objective, continuous data to inform our understanding of 

intervention adoption and impact.
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1 INTRODUCTION

The connection between behavior and health is undeniable. Unhealthy behaviors and habits 

are implicated in as much as 40% of premature deaths, in addition to their unfavorable 

effects on health disparities, quality of life, and economics [1]. Advances in sensor-

driven technologies for behavior monitoring suggest that these technologies can monitor 

intervention adherence and impact in the wild [2]-[4]. However, our current understanding 

of intervention on a person’s entire lifestyle is limited because studies have been based 

on static “snapshots” or assessment of a specific set of behavior parameters (e.g. sleep 
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quality, activity level), rather than data-driven analysis of overall behavior change. Given 

this limitation, there is a need to introduce algorithmic methods for quantifying behavior 

change that is characterized by a person’s entire pattern of behavior.

In this work, we introduce an automated method to perform continuous monitoring and 

change detection of daily activities, in naturalistic settings, using sensor-based observation 

and machine learning-based data analysis. To do this, we perform the steps shown in Figure 

1. We collect wearable sensor data for two months, while subjects perform their daily 

routines. We process the collected sensor data by merging data from multiple watches, 

imputing missing values, and automatically associating data sequences with corresponding 

activity labels. Next, we extract digital behavior markers from activity-labeled data that 

summarize the key features of each person’s behavior on an hourly and daily basis. Finally, 

we apply a behavior change detection to the digital behavior markers. This algorithm 

quantifies and describes behavior differences between time points.

To validate our approach, we analyze data from the active condition of a pilot multi-domain 

Brain Health Intervention (BHI) for midlife and older adults. We also compare the data 

with an age-matched control group that did not receive an intervention. The seven-week 

pilot intervention, called B-Fit, was designed to improve engagement in aging brain 

health behaviors by providing brain health psychoeducation combined with individual 

behavior goal setting, group problem solving, and social support [5]. Participants wore 

smartwatches during the intervention that tracked behaviors. Control participants similarly 

wore smartwatches. Seven risk factors were targeted by the intervention: nutrition, stress, 

social engagement, cognitive engagement, cardiovascular risk factors, physical activity, 

and sleep. To promote new patterns of engagement in healthy brain aging behaviors and 

better sustain behavior change, participants set individualized, intrinsically motivating, and 

manageable new goals (5-10 minute) each week (e.g., take stairs rather than elevator). 

Results from the primary analysis revealed that self-reported engagement in healthy brain 

aging behaviors was higher for the B-Fit condition and an education-only condition at 

post-intervention, while there was no difference for the waitlist condition. Furthermore, after 

adjusting for baseline brain health behaviors, compared to the waitlist condition, participants 

in the B-Fit condition self-reported greater engagement in healthy brain aging behaviors 

post-intervention [5].

Because BHI is a multi-domain intervention where participants set their own diverse goals, 

computational methods are needed to compliment self-report data by providing a method 

to objectively detect and quantify change in overall behavior patterns, rather than analyzing 

a small set of target markers. We initially apply our proposed computational approach to 

synthetic data to validate their ability to detect known embedded changes in behavior data. 

We then apply our methods to smartwatch data collected from BHI and control subjects. We 

hypothesize that behavior change over time will be exhibited among BHI subjects. Because 

change can be attributed to natural behavior variability, we further postulate that behavior 

change will be larger for BHI subjects than for control subjects. In addition to quantifying 

change over time for the participants, we also employ supervised learning to automatically 

classify each subject as belonging to the intervention or control group, based solely on 
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changes in the extracted digital markers between baseline and the end of the data collection 

period.

This article makes the following contributions: (1) We offer a novel method to extract digital 

markers from time series sensor data that characterize a person’s activity routine. (2) We 

introduce a way to analyze behavior across time based on a permutation detection algorithm. 

(3) We computationally analyze the impact of a multi-domain brain intervention study, 

contrasting behavior change of intervention participants with an age-matched control group.

2 RELATED WORK

2.1 Activity Learning

To characterize a person’s overall behavior routine, we extract digital behavior markers 

from sensor data that are automatically labeled with corresponding activity categories. 

Performing human activity recognition from wearable sensors has become a popular topic 

for researchers to investigate [6], [7]. Because we can collect uninterrupted data in all 

locations each person visits, wearable sensors are a natural choice for this investigation. 

Earlier approaches to activity recognition consider many diverse learning models, including 

decision trees, nearest neighbors, clusters, and classifier ensembles [8]-[10]. With the rising 

popularity of deep learning, these methods have also been explored for their ability to learn 

deep features that are useful in expressing sensed activities [11]-[14]. The field has matured 

to the point that numerous public datasets are now available for comparative analysis of 

recognition methods [11].

Limitations with many of these existing methods is that they focus on basic, repetitive 

movement types and are typically evaluated in laboratory settings. Recognizing postures 

and ambulatory motions such as sitting, standing, climbing, lying down, and running are 

useful for monitoring gait characteristics and activity levels. However, we are interested in 

determining change to a person’s entire behavioral routine. This is frequently characterized 

by more complex patterns, such as basic and instrumental activities of daily living (iADLs) 

[15], [16]. A few researchers consider activity categories that combine ambulation with 

context (e.g., standing indoors versus outdoors) [8], [17], [18]. They accomplish this by 

adding location information. This location information is provided by ambient motion 

sensors inside a specific physical environment [17] or a grid location within a specific 

physical region [8]. A challenge with analyzing specific locations is that the insights do 

not generalize well to new individuals. Lin and Hsu [19] introduced generalizable location 

features that we employ in our method, including heading change rate, distance covered, and 

velocity change rate. We further integrate ideas from Boukhechba et al. [20], who cluster 

location readings to detect person-specific frequented spots. While we extend these previous 

methods to perform real-time activity labeling of smartwatch sensor data in naturalistic 

settings, the success these researchers have documented in recognizing a wide assortment of 

activities suggests the general applicability of activity learning and labeling for smartwatch 

data.
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2.2 Digital Behavior Markers

Sensor data offer substantial insights on a person’s behavior as well as their health. 

Now that wearable sensors are decreasing in cost and are deployable in real-world 

settings, researchers have discovered that they can link behavior interventions with specific, 

sensor-observed target behavior outcomes. As wearable sensor systems also become more 

ubiquitous, researchers have increasingly used these platforms to impact and measure 

change in human behavior. Typically, these prior works target a specific behavior. Popular 

target behaviors include activity levels [21], [22] and sleep [23]. In these cases, change 

can be quantified by a single variable such as step counts, sleep duration, or a clinical 

score [24]. Jain et al. designed a method to analyze the univariate change in the state of 

a person or place, such as the amount of activity in a region of the home [25]. Wang et 

al. calculated the variability of a single variable, then joined the variability of multiple 

features into a single vector to predict personality traits [26]. In a method that utilizes mobile 

platforms for intervention delivery as well as evaluation, Costa et al. [27] delivered haptic 

feedback to participants intended to slow their heart beats while completing math tests. They 

observed impacts based on self-reported anxiety, sensor-measured heart rate variability, and 

test performance. In a study conducted by Stanley et al. [28], individuals with dementia 

received coaching in behavior techniques designed to reduce anxiety. Here, outcomes were 

measured through clinician-rated and collateral report clinical scores targeted at assessing 

anxiety. Additional studies monitor single wearable markers to assess intervention impact 

for target conditions such as substance use disorder [29] and diabetes management [30].

In other work, researchers targeted specific sensor-observed behavior markers as a 

mechanism for assessing the relationship between lifestyle and health. Specifically, Dhana 

et al. [31] quantify healthy behavior as a combination of nonsmoking, physical activity, 

alcohol consumption, nutrition, and cognitive activities. Individuals who scored higher on 

this behavior metric had lower risk of Alzheimer dementia. Other researchers have also 

found that sensor-based behavior patterns are predictive of cognitive health [32],[33]. Li et 

al. [33] found that physical activity was predictive of Alzheimer’s disease, while Aramendi 

et al. [32] were able to predict cognitive health and mobility from activity-labeled sensor 

data.

These studies provide evidence that wearable sensors afford the ability to monitor 

intervention impact and to assess a person’s cognitive health. Within this area of 

investigation, our proposed approach is unique because we investigate a computational 

method to analyze intervention impact on the pattern of a person’s activity-based routine. 

This holistic approach to sensor analysis of behavior is motivated by the design of a holistic, 

customized, sustainable healthy behavior intervention.

2.3 Time Series Change Detection

A critical component of this work is automatically detecting and quantifying change 

in behavior data observed longitudinally. Multiple options are available for computing 

change between two windows of multivariate time series data [34]. Supervised methods 

can classify a pair of time windows as “no change” or “change”. Such methods can also 

identify changes of a specific nature (e.g., a change from sedentary to active behavior), 
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but these algorithms must be supplied with a sufficient amount of labeled training data 

[35]. Unsupervised approaches have been introduced as well. While some methods rely on 

pre-designed parametric models [36], [37], others introduce more flexible non-parametric 

variations by directly estimating the ratio of probability densities for the two samples. In 

these cases, a larger ratio implies a greater likelihood that a change occurred between the 

two samples. Methods that fit in this category are KLIEP which employs Kullback-Leibler 

(KL) divergence as a ratio estimator [38], uLSIF which employs Pearson divergence [38], 

and Relative uLSIF (RuLSIF) [38]. In this work, we utilize a permutation-based change 

detection method. This method is not only suited to comparing larger windows of sensor 

data but also incorporates a novel permutation mechanism to determine the significance of 

change over time.

2.4 Brain Health Intervention

An accumulating body of research suggests that adopting preventative health behaviors 

may promote healthy brain aging and slow cognitive decline [39]. Given that the etiology 

of dementia is heterogeneous and influenced by multiple risk factors, several recent large 

scale prevention trials have focused on evaluation of multi-domain interventions [40], [41]. 

However, these interventions are currently limited by expensive treatment regiments and 

highly prescriptive goals that are difficult to sustain post-intervention. Furthermore, research 

has found that intervention success is promoted by healthy behavior education as well as 

designing interventions that are transferable out of the lab and into daily lives [42], [43]. 

In contrast with prior methods, the pilot group brain health intervention involved creating 

individualized behavior change goals across multiple risk factor domains that could be 

integrated into the everyday lifestyles of participants and more easily sustained over time.

3 BRAIN HEALTH INTERVENTION STUDY

The objective of the pilot brain health intervention study was to develop and evaluate an 

intervention designed to promote changes in healthy brain-behavior for midlife and older 

adults that is practical and easily replicated. The rationale is that a preventative brain health 

intervention designed to reduce disability in older age will be most successful if it meets 

individuals where they are and promotes healthy behavior change goals that can be more 

easily sustained. Furthermore, the approach is motivated by findings that multiple risk 

factors influence the development of dementia. Researchers estimate that almost half of 

dementia cases are attributable to modifiable risk factors including physical inactivity and 

depression [44]. Studies [45] indicate that engaging in healthy lifestyles behaviors across 

multiple domains including physical activity, cognitive engagement, and stress management 

can slow cognitive decline [46]-[51] and promote brain neuroplasticity [52], [53]. There 

currently exists a gap in the design of methods to assist midlife and older adults in learning 

to incorporate such healthy behaviors into their everyday lives in a way that leads to 

sustained, holistic behavior change.

3.1 Intervention Design

Our brain health intervention, called B-Fit, is a seven-week intervention focused on 

providing brain health psychoeducation combined with individual behavior goal setting, 
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group problem solving, and social support. The primary pilot clinical intervention study 

included 3 conditions: B-Fit, education-only, and waitlist [5]. Of the 68 participants 

allocated to the B-fit intervention in the primary study, 28 of the participants wore a 

smart watch during the intervention. These individuals were members of three separate 

B-fit groups. The B-fit intervention was delivered by two clinicians with groups of 8-13 

participants. One learning topic was introduced to the group each week. During didactics, 

information about each topic was discussed with an emphasis on empirical research 

describing mechanisms by which lifestyles changes can improve brain health (e.g., reduce 

blood pressure and oxidative stress, increase cerebral blood flow) and contribute to a healthy 

aging phenotype. This approach is based on literature indicating the importance of linking 

healthy lifestyle behaviors with brain health and prevention research [54], [55]. The goal of 

this paper is to introduce and validate a mechanism for assessing broad-spectrum lifestyle 

changes associated with this individualized, multi-domain intervention.

Table 1 lists the primary health topics covered during the weekly sessions. Each week, 

following the educational material presentation, participants developed a plan to integrate a 

personalized, realistic, sustainable, and positive lifestyle change into their everyday life (e.g., 

take a 10-minute walk daily after lunch). Health goals were built across multiple lifestyle 

domains consistent with the education topics (e.g., diet, socialization, sleep). Because a new 

goal was introduced each week, participants were assisted with developing goals for each 

topic that could be completed in about 5-10 minutes. At the beginning of each session, 

for each defined goal, participants indicate whether they made no change (0), partly met 

(1), completely met (2), or exceeded (3) their goal(s). 26 of the 28 participants that wore 

a smartwatch regularly reported these values. The average self-reported adherence over the 

8-week intervention was 1.7 (range [0.5, 2.3], standard deviation 0.44).

3.2 Data Collection

In addition to evaluating self-reported outcomes, determining the impact of interventions 

such as B-Fit on the pattern of behaviors can be implemented by passively and 

continuously monitoring behavior across time. Automated approaches to such ecologically-

valid monitoring and assessment pave the way for designing more effective treatment and 

quantitatively measuring the outcome of pharmaceutical and behavioral interventions. This 

ability will be particularly valuable in rural locations where access to the clinic or lab 

is limited [56]. Ecologically-valid monitoring implies that a person’s routine behavior is 

observed in naturalistic settings, rather than asking individuals to perform scripted activities 

in controlled settings. This is particularly important for the B-Fit intervention because we 

want to assess the impact of the intervention on a person’s entire set of activities, not 

on a few selected markers. Currently, holistically assessing change in overall behavior 

patterns in such a manner is difficult outside of manually observing a person’s daily routine. 

We determine whether behavior change exists using a computational behavior change 

detection method. We further evaluate the pattern of behavior change over the course of 

the intervention.

To provide objective behavior routine and change measures, we gave 28 of the B-Fit 

participants two Apple Watches to wear continuously, one during the day and one at night 
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(one watch was charged while the other was worn). We collected timestamped readings at 

10Hz for the following sensors: 3d acceleration, 3d rotation and rotation rate, course, speed, 

and 3d location. Participants received two motivational quotes through the smartwatch at 

random times during the day to support their lifestyle changes. Data were continuously 

collected at baseline (before intervention) and each week of the intervention. All data were 

collected before quarantine restrictions due to COVID-19.

3.3 Participants

All study participants are community-dwelling adults. We recruited participants from eastern 

Washington and northern Idaho. Exclusion criteria included a clinical diagnosis of dementia, 

inability to provide own consent, unstable or severely disabling disease (e.g., organ failure), 

and inability to complete assessment and intervention protocols due to communication, 

vision, hearing, or other medical difficulties. Prior to participation, participants were 

screened by phone with a medical/health interview and the Telephone Interview of Cognitive 

Status (TICS, [57]). Participants were excluded if they fell in the Impaired range on 

the TICS (score < 26) or met study exclusion criteria. The study was approved by the 

Washington State University Institutional Review Board.

We analyze data for 28 study participants who received the active brain health education 

and goal-setting intervention (B-Fit) described in Section 2.1 and continuously wore 

smartwatches. This group is labeled brain health intervention, or ‘BHI’. To provide a 

comparison (non-intervention) group for behavior change detection, we analyze continuous 

smartwatch sensor data collected for 17 additional community-dwelling older adults who 

did not differ in age, t(43) = 1,08 p = 28, education, t(43) = ,17 p = .87, or sex, X2 (1, N 
= 45) = .33, p = .57, from the BHI group. This group is labeled ‘NI’. These participants 

were older adults who transformed their homes into smart homes and participated in a 

non-intervention, monitoring study designed to help validate smart home health algorithms. 

Table 2 summarizes the demographics for these participants.

4 PROCESSING COLLECTED DATA

We collected multiple weeks of smartwatch sensor data for each of the subjects, totaling 

28,615,680 sets of readings for BHI participants and 18,464,560 sets of readings for the 

non-intervention group. We examine the first nine weeks of data collection for each subject. 

This length of time corresponds to the one week of baseline, seven weeks of intervention 

and one post intervention week for the BHI participants. Our goal is to examine change 

in behavior that occurs over the course of the intervention. Before analyzing the data, we 

first merge data from multiple watches, impute missing data, and label collected data with 

activity labels.

4.1 Data Preparation

Participants were given a white watch to wear during the day and a black watch to wear 

at night, affording time to charge the devices. The smartwatches indicate when they are on 

and off the charging station, allowing us to determine when data should be analyzed from 

one device or the other. However, participants were not consistent in wearing the designed 
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watches during the specified times. To ensure we analyze the appropriate data, we examine 

the acceleration and rotation-based movement throughout each day. We merge day and night 

data collections into one by identifying “swapping” periods, or time points at which the 

subject swapped one watch for another. This was defined as a change point in the time series 

when one watch was at rest (total movement below a threshold amount) and the other was 

active. We create one merged set of sensor readings for each day by incorporating data at 

each time unit from the active watch.

Additionally, gaps occurred during data collection. Data for participants were 94.24% 

complete. Gaps in the data collection occurred during times when subjects forgot to charge 

and wear the watch. In these cases, we impute missing feature values based on the median 

value for the particular sensor given the day of the week, time of day, and neighboring 

context (readings before and after the gap).

4.2 Activity Labeling

We automatically label each set of sensor readings with a corresponding activity name. 

Activity labeling offers several benefits for our analysis. First, activities provide a 

vocabulary for expressing human behavior. From activity-labeled sensor data we can see 

how a person spends their day and observe changes in these activity routines over time. 

Second, given activity-labeled data we can target specific activity categories, such as work, 

exercise, and sleep, to ascertain whether the amount of time that is spent on these specific 

activities is changing, if the location where they occur changes, and if they occur at regular 

times.

We label sensor data using an activity recognition algorithm. Activity recognition maps a 

sequence of sensor readings onto an activity label. A time series data stream is an infinite 

sequence of elements S={x1,..,xi,..}, where xi is a d-dimensional data vector arriving at time 

stamp i. Given a set of predefined activity categories, A, an activity recognition algorithm 

maps a sequence of time series data points {xm,..,xk,..,xn}, observed as part of time series S, 

onto an activity label aj∈A. We map a fixed-length sequence of elements onto the activity 

label using the process illustrated in Figure 2.

To ensure that we label and monitor complex activities as well as basic movement-based 

activities, we also incorporate location information. Because we want to ensure that the 

model generalizes to multiple persons, we do not utilize specific location values. Instead, we 

construct person-invariant location features. This approach supports generalization without 

needing to employ techniques such as domain adaptation, that requires a large number 

of labeled training instances for the initial group of subjects [58]-[60]. One such person-

invariant location feature is the location type, obtained through reverse geocoding using 

an OpenStreetMap. We group these location categories into residence, workplace, road, 

and other. Other location features are calculated for each sensor sequence and include the 

number of changes in orientation in the sequence, number of stops/starts, the sequence 

overall trajectory, and the distance traversed.

Attempting to perform real-time human activity recognition “in the wild” in naturalistic 

settings raises numerous challenges. One such challenge is collecting ground-truth labeled 
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data. Users can be queried for their activities. However, these queries need to be answered 

in-the-moment to avoid retrospective error. While active learning and semi-supervised 

learning can reduce the number of queries [61], [62], the resulting interactions will interrupt 

many of the activities we wish to monitor for our brain health study. To make the 

intervention as naturalistic as possible, we do not ask the subjects to provide labels for 

their daily activities. Instead, we train an activity recognition algorithm using past data 

collected from 388 different smartwatch wearers. These earlier volunteers provided labels 

for their current activity when prompted at random times. These prompts resulted in 59,610 

labeled instances for 12 activity categories. These activity categories are reflective of routine 

behavior and include: chores, eat, entertainment, errands, exercise, hobby, hygiene, relax, 
school, sleep, travel, and work.

Each five-second sequence of sensor data is considered as a separate instance. While shorter 

sequences have been used with success for ambulation recognition [63], we found that 

slightly longer durations are needed to capture context for recognizing complex activities in 

naturalistic settings. A feature vector is extracted from each five-second sensor sequence. 

The feature vector consists of standard statistical operations applied to each of the sensor 

types [64]. The vector also contains person-invariant location features. We experimented 

with multiple types of supervised learning algorithms and found random forest to perform 

the best for these data. The random forest also generates a prediction for one sequence 

before the next sensor reading arrives, allowing the activity recognition to occur in real time. 

The random forest employs bootstrapping and is configured to contain 100 trees with a 

depth limit of 10. Because the training data are not uniformly distributed across the activity 

classes, we weight instances inversely proportionate to the relative size of the corresponding 

activity class. Applying 3-fold cross validation to our labeled data, activity recognition 

yielded an accuracy of 0.86 for the 12 activity classes. For the remainder of this paper, we 

analyze sensor data that is labeled using a random forest model trained on all the labeled 

instances.

4.3 Extracting Digital Behavior Markers

Once continuous wearable sensor data are collected and labeled with activity classes, we 

extract digital markers that describe the person’s behavior patterns. Extracting features 

from longitudinal sensor data is popular for analyzing specific behavior parameters. As 

mentioned in Section 2, researchers typically extract indicators that are specific to a behavior 

of interest. Depending on the goal of the study they may include amount of screen time, 

activity level, steps, incoming/outgoing phone calls and texts, number of steps, amount of 

screen time, and sleep. We are interested in characterizing a person’s behavior routine. This 

is expressed as a set of digital markers that express how a person’s time is spent on different 

activities, the locations a person frequents and the amount of time they spend there, and the 

traditional measures of overall movement types and durations. Obtaining digital behavior 

markers that express activity routines as well as direct sensor measurements of location and 

behavior are possible because we automatically label sensor sequences with activity labels, 

as described in Section 4.2. Thus, in addition to generating statistical summaries of raw 

sensor readings as listed in Figure 2 [65]-[68] we also extract markers that indicate how each 
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subject divides their time among the activity categories and where they spend their time on a 

routine basis.

Table 3 summarizes all of these digital behavior markers that we extract and analyze. Our 

activity recognition algorithm applies statistical operators (listed in Figure 2) to raw sensor 

readings, yielding a feature vector that is mapped to an activity label. When assembling 

digital behavior markers, we apply these same statistical operators to aggregated daily 

and hourly sensor values, activity information, and location information. Additionally, we 

compute a regularity index to each variable as defined by Wang et al. [26]. The regularity 

index determines how repetitive a person’s behavior routine is. This is computed as the 

difference between hourly statistics occurring during the same hours across two different 

days. To calculate this index, data are first scaled to the range [−0.5, 0.5]. The regularity 

index comparing days a and b is then defined as shown in Equation 1.

RIa, b∑t = 1
T xtaxtb

T (1)

For our analysis, T is 24 hours and xta represents the value of a behavior marker for hour t of 

day a. We average the regularity index over all pairs of days occurring within the same week, 

all pairs of weekdays occurring within the same week, and between different weeks for the 

same day-of-the-week value. Finally, we compute the diurnal and circadian rhythms for each 

of the hourly values. We follow guidelines by Depner et al. [69] to define circadian phase as 

constancy in the behavior routine. We quantify this definition by generating a periodogram 

for the marker values and calculating the normalized periodogram values for a 24-hour cycle 

(circadian) and for the 12 hours following the end of nighttime sleep (diurnal). Based on 

Fourier analysis, the spectral energy of each cycle frequency can be calculated as shown in 

Equation 2.

R = ( 2
N ∑i = 1

N xi cos (2πjti
N ))2 + ( 2

N ∑i = 1
N xi sin (2πjti

N ))2 (2)

In Equation 2, N represents the number of samples in the time series, xi represents 

the value of the measured variable at time i, and the spectral energy is computed 

for a particular frequency, j. We calculate the spectral energy for a range of possible 

frequencies. The resulting periodogram generates values for a set of possible cycle lengths. 

The corresponding circadian rhythm parameter is then represented by the normalized 

periodogram-derived value for a 24-hour cycle, while the 12-hour post-sleep cycle is 

computed for the diurnal parameter. At the completion of the feature extraction process, 

our system has constructed a vector containing 102 behavior features for each observed day, 

40 features for each observed hour, and 863 overall features for each person.

5 DETECTING CHANGES IN ACTIVITY PATTERNS

We next consider the challenge of detecting and quantifying change in behavioral routine 

patterns. To address this problem, we introduce a method called Permutation-based Change 
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Detection, or PCD, that determines if a change exists between two windows of activity-

labeled multivariate time series data. PCD quantifies the amount of change and determines 

the significance of the change. Algorithm 1 outlines the process. Let X denote a sample of 

multivariate time series data segmented into days. Each day, D, is further segmented into 

equal-sized time intervals, D={x1, x2,..,xm}. We let W denote a window of n days such that 

W⊆X.

We compare windows of data within time series X. Let Wi refer to a window that starts 

at day i. Then Wi = X[i: i+n-1] = {Di, Di+1, .., Di+n-1}. The compared windows may 

represent consecutive time periods (e.g., days, weeks, months), or overlapping windows. 

In our case, we compare a single baseline window with each subsequent time period. 

Specifically, we compare the first week of observed behavior data, W1, with each following 

week Wi, i={2..9}. In our analysis, W1 data were collected before the intervention began, 

and W2..W9 were collected during the intervention, and W2 data were collected one week 

post-intervention. We compute the change that occurs between week 1 and weeks 2 through 

9.

ALGORITHM 1: Permutation-based Change Detection(X)

Input: X = time series data
Output: Vector V of (distance, significance) pairs
Initialize: n = 7 # window length in number of days
Initialize: i = 1; j = i + n
for each pair of windows, W i, W j ⊆ X do

W i = X[i: i + n]
W j = X[j: j + n]
k = 0; N = 1000
C = KL_Divergence(W i, W j)

V ∗ = vector of length N
while k < N do

W i∗, W j∗ = Shuffle time intervals of W iand W j

C∗ = KL_Divergence(W i∗, W j∗)

V ∗ = append(V ∗, C∗)
k = k + 1

end while

sig = BoxplotOutlierDetection(C, V ∗)
V = append(V , (C, sig))
j = j + n

end for
return V

We propose a small-window Permutation-based Change Detection approach to quantifying 

the amount of change, C, between two windows of time series sensor data. This algorithm 

is uniquely suited for analyzing activity-labeled sensor data. PCD is based on the notion of 

an activity curve [70], a compilation of m=24 probability distributions Rt = {dt,1,dt,2,..,dt,A} 
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over A possible activities per time interval t in a day (t = 1, 2, .., m). Distribution dt,l 

represents the probability of activity Al occurring during time interval t. Windows spanning 

multiple days (in our analysis, spanning one week) are averaged into an aggregate activity 

curve A. To compute a distance between two activity curves Ai and Aj, the two curves 

are first aligned by dynamic time warping. Second, a symmetric version of KL divergence 

computes the distance between each pair of distributions at time interval t, as shown in 

Equation 3.

KLsymmetric = ∑k = 1
a di, k ⋅ log di, k

dj, k
+ ∑k = 1

a dj, k ⋅ logdj, k
di, k

(3)

We adapt a test introduced by Ojala and Garriga [71] to determine whether the distance 

results are statistically significant. Statistical significance calculation is not easily available 

for prior methods such as uLSIF and RuLSIF. Our adaptation allows a permutation test to 

determine the significance of change scores calculated for a small number (n=7) of days. 

As shown in Algorithm 1, change score C is computed between windows Wi and Wj. 

Next, Wi and Wj are joined to form a new longer window. All time intervals within W are 

shuffled, then W is re-split into new windows, W i
∗ and W j

∗. A change score C* is computed 

between the new windows and added to a permutation-result vector V*. The process is 

repeated N times. Finally, PCD compares C to the permutation vector V* using boxplot 

outlier detection. Here, an outlier is defined as a value that is outside the interquartile range 

(75th percentile – 25th percentile) of V*. The p-value estimated by computing the distance 

between C is an outlier, then the score is considered statistically significant. We employ 

boxplot outlier detection for this task because many alternative methods such as Grubb’s test 

require that the data follow a normal distribution, an assumption which frequently does not 

apply to human behavior data. The output of the PCD algorithm is a vector V of change 

scores and associated significance vectors, each of which compares one week of observed 

human behavior data to the first baseline week.

6 EXPERIMENTAL RESULTS

We are interested in analyzing the impact of the B-Fit brain health intervention on the 

pattern of behaviors for the study participants. We start by analyzing one specific targeted 

behavior, then look at overall behavior. We hypothesize that study participants changed their 

behavior in response to the brain health intervention. We further postulate that these changes 

will be detected by PCD applied to activity-labeled smartwatch sensor data. Additionally, we 

want to determine whether overall behavior change in the intervention group will reflect a 

steadier increase over the nine weeks than for the non-intervention control group, consistent 

with the integration of new goals and maintenance of the earlier defined goals.

6.1 Validating PCD on Synthetic Data

First, we verify the reliability of our computational methods that apply PCD-based change 

detection to digital behavior markers as a method of quantifying change in overall behavior 

routine. To verify that PCD computes change scores as expected for digital marker data, 

we examine scores that are generated for synthetic data. We use real digital markers 
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from one randomly-selected intervention subject. We then add white Gaussian noise with 

monotonically-increasing values for the Gaussian distribution standard deviation. Table 4 

verifies that the PCD-based change score increases monotonically with the amount of noise, 

or change, that is added to the real collected data.

6.2 Assessing Change in Target Activity

Next, we analyze the collected sensor data to determine how much change occurs for one 

of the targeted activities. Our primary goal for this paper is to determine whether our 

computational method can be used to detect and quantify change in overall behavior activity 

patterns as promoted by the intervention. However, we also posit that the same method can 

be used to detect change in a specific activity. The set of activities that are automatically 

recognized are listed in Section 2. The digital markers reflect these specific activities as 

well as parameters such as visited locations and movement statistics. Here, we pick a 

representative activity to demonstrate that the computational method can be used to analyze 

individual activities as needed.

We select exercise as the individual activity to analyze. One rationale for this choice is 

because the week discussing physical activity occurs early in the intervention. If behavior 

change is sustained per the intervention goal, change should be sustained throughout 

the data collection period in comparison with the week 0, pre-intervention baseline. A 

second motivation is that exercise represents a small set of possibilities for the participants 

(primarily walking and swimming). In contrast, the intervention topic that occurs the week 

before, cognitive engagement, is manifest through a large variety of individualized healthy 

behavior choices (e.g., play guitar, read a book, learn a new language), not all of which can 

be easily detected by smartwatch sensors. We include a subset of the digital markers for this 

analysis, namely, the amount of time spent per day on the automatically-labeled exercise 

activity, time of day that exercise occurs, the regularity of these activity on a daily basis, and 

statistical operations applied to these markers.

Table 5 summarizes the results of this analysis. The Permutation-based Chance Detection 

values indicate that there is a greater change in Exercise habits for the intervention group 

than for the control group. These changes are statistically significant for more than half 

of the group. Because PCD provides change amounts without indicating the nature of the 

change, we also compute linear regression for exercise time and note that the slope for 

the intervention group is slightly higher than for the non-intervention group. In fact, the 

coefficient for the non-intervention group is close to zero, indicating that the PCD-detected 

changes may be due in some cases to natural variation in exercise regimens rather than 

intentional increase in exercise amount.

6.3 Assessing Overall Change in Behavior Routine

The analysis of change in exercise markers confirms that some behavior changes can be 

detected by wearable sensors and that our PCD algorithm can quantify these changes. These 

findings align with prior work that detects changes in exercise patterns [72]. On the other 

hand, we are particularly interested in observing the impact of a behavioral intervention 

on a person’s entire pattern of behavior. Researchers have discovered interplay between 
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many behaviors, including but not limited to exercise and work [73], work, travel time, and 

social life [74], and diet and sleep [75]. Therefore, we hypothesize that engagement in the 

brain health intervention will impact overall behavior patterns. We analyze the complete set 

of digital markers collected for study participants and for the non-intervention group and 

compute PCD scores that compare the baseline week with the end-of-collection week.

The results of this analysis appear in Table 6. As anticipated, the changes are greater for 

the intervention group than for the control group. However, weekly changes were still fairly 

high for the non-intervention group. When we plot weekly change scores for individuals 

within the two groups, we gain new insights on the nature of the change. Almost all of 

the individuals in the intervention group exhibited consistently increasing change from 

baseline, as shown in Figure 3 (left). In contrast, the trends were highly varied for the 

non-intervention group. Figure 3 (right) provides one such example illustrating a common 

theme among non-intervention participants. To quantify these trends, we compute the linear 

regression coefficient for the change scores.

6.4 Assessing Change in Location

Next, we examine the widespread impact of a brain health intervention on a person’s entire 

daily routine by assessing change in the types of locations where a person spends their time. 

To visualize the impact that intentional change can have on location patterns, we plotted 

the normalized, aggregated time spent in the home, outside the home (work, socializing, 

hobbies, or exercising) the week before intervention initiation and the last week of the 

intervention. Figure 4 shows this visualization for a 24-hour timeframe. As the graph shows, 

end-of-intervention routines include more time spent at home in the late-night and early-

morning hours. One possible explanation for this is a change in behavior to incorporate more 

regular sleep hours and patterns. Furthermore, the midday hours reveal less time spent in 

travel (driving or riding other public transportation) and more time spent in other locations 

out of the home. This could potentially be attributed to incorporating more exercise, social 

times, and hobbies into the person’s daily routine. Change in location markers between 0 

and 9 were much greater for the intervention group, averaging 0.8469, while change for the 

non-intervention group averaged 0.3279.

6.5 Predicting Subject Group based on Delta Markers

In our final analysis, we employ a supervised learning algorithm to classify each subject 

into their corresponding group (intervention or control) based on digital behavior markers. 

Because we are focused on behavior changes related to the brain health intervention, we 

compute delta features to perform the classification. Specifically, we calculate the numeric 

change in each marker from week 0 to week 9. The set of delta features is mapped to 

the predicted subject group using a range of alternative supervised learning algorithms. To 

quantify the impact of the intervention on a person’s overall activity routine, we compare 

the results using all delta features with those derived from using a subset of the available 

features. Specifically, we compute predictive accuracy using only delta features derived from 

movement-based sensors, labeled activity features, or location type features.
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The results of this analysis are summarized in Table 7. We utilize a random forest with 

100 trees and a varied number of features. Results are computed using leave-one-subject-out 

validation. As the table reflects, the delta values (calculated between the first and last weeks 

of data collection) were predictive of the subject group with an accuracy of 0.87 when all the 

features were included in the learned model. The ROC curve for this problem is shown in 

Figure 5. As the figure indicates, the corresponding AUC (area under the receive operating 

characteristic curve) is 0.95.

Using subsets of features still resulted in an accuracy that was better than random chance. 

However, considering changes in only movement features, activity features, or location 

features did not produce as strong results as considering changes in the entire set of features, 

corresponding the person’s larger behavior routine context.

7 DISCUSSION AND CONCLUSION

In this study, we investigate methods to detect targeted and secondary behavior changes 

in response to a multi-modal brain health behavior intervention. By collecting continuous 

wearable sensor data, we can now monitor intervention impact in an objective, ecologically-

valid manner. Through application of Permutation-Based Change Detection, we can quantify 

change in a subset of target behavior markers or in a person’s overall pattern of behavior. 

For the brain health intervention, we did observe that targeted and secondary behaviors 

changed throughout the data collection process. While change was also observed for 

the non-intervention group, linear regression revealed that the amount of change steadily 

increased more for the intervention group than the non-intervention group. This may be 

an indication of intentional introduction of new, healthy behaviors into the subjects’ daily 

routines.

The system we describe for detecting and quantifying behavior change relies on numerous 

interacting components. A limitation of this study is the error that can be introduced by 

each component in the system. The average self-reported compliance with the intervention 

was 1.7, falling between “partly met” and “completely met” participant-defined goals. As 

a result, not all intended healthy behaviors were regularly incorporated into the subjects’ 

lives. Furthermore, weekly self-report may introduce error due to poor recall and objective 

assessment of behavior adherence. In future work, we will compare the reliability of 

smartwatch-detected behavior adherence, weekly paper-based self-reporting, and daily self-

reporting using ecological momentary assessment techniques delivered through the watch 

interface.

While the smartwatches are designed to continuously collect data, there are gaps in the 

data collection when the participant did not charge and/or wear the watch. This may 

introduce error as a function of collecting data when a person is not wearing the watch 

or imputing missing data. The sensors themselves can occasionally report erroneous location 

or movement values [76], affecting the quality of the activity labels and digital markers. 

Similarly, the activity recognition model is based on a large sample of participant-labeled 

data. Because recognition accuracy was not perfect even on this sample, activity label error 

may be introduced into the final set of markers, as may error in labeling location categories.
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The findings from this work have important health care implications. By observing 

behavior patterns before, during, and after a clinical intervention, we can better understand 

mechanisms and person-characteristics that lead to short-term and long-term change after an 

intervention. With continued development, this introduced architecture will provide a more 

continuous, objective measurement of the impact of behavioral interventions on changes in 

behavior patterns, something that has been difficult to capture clinically but is an important 

part of interventions. These insights can help design more adaptive, efficacious, community-

based preventive interventions for midlife and older adults at risk of developing dementia.
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CCS CONCEPTS

• Ubiquitous and mobile computing systems and tools

• Machine learning approaches

• Health informatics
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Figure 1: 
Process of detecting behavior change with smartwatches. Data are continuously collected, 

merged, completed, and labeled with inferred activities. From these data, digital markers are 

extracted for each hour and day. We quantify the amount of change from begin to end of data 

collection for the experiment and non-intervention groups using behavior change detection 

and compare amount of change between the two groups.
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Figure 2: 
Activity labeling. A feature vector is extracted from five seconds of sensor data. A random 

forest maps the feature vector onto one of the activity choices, based on training data 

provided in real time by smartwatch users.
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Figure 3: 
PCD score trends. (left) A plot of the PCD scores for a subject in the intervention group. 

(right) A plot of PCD scores for a subject in the non-intervention group.

COOK et al. Page 24

ACM Trans Comput Healthc. Author manuscript; available in PMC 2022 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Visualization of time spent at location types for the intervention group. The x axis shows 

a 24-hour time period starting at midnight. Bar sizes indicate the aggregated, normalized 

duration spent at the corresponding location type.
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Figure 5: 
ROC curve for random forest-based prediction of subject group, using pre- and post-

intervention changes in digital markers as predictive features. The corresponding AUC is 

0.95.
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Table 1:

Didactic topics discussed in group sessions

Session Education Materials Discussed

Session 1 Overview of the brain, cognitive aging, MCI, and dementia

Session 2 Cognitive engagement

Session 3 Physical activity and cardiovascular risk factors

Session 4 Nutrition and diet

Session 5 Social engagement

Session 6 Sleep and stress reduction

Session 7 Compensatory strategies and assistive technology
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Table 2:

Participant demographics

Group Age
(Mean / SD)

Years of Education
(Mean / SD) Male Female Caucasian Other Ethnicity

BHI (n=28) 63.18 / 9.19 16.00 / 1.86 5 25 26 4

NI (n=17) 67.22 / 15.89 15.89 / 2.49 4 13 16 1
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Table 3:

Behavioral markers

Type Features

Daily Amount of time (in minutes) spent on each activity
Time of day (hours and minutes past midnight) of first and last occurrence for each activity
Amount of time spent at each location type
Step count, activity level, distance traveled
Number of missing values (minutes with no sensor readings)

Hourly Amount of time spent on each activity type and each location type
Total rotation, acceleration, distance traveled

Overall Regularity index (within week, within weekdays, between weeks)
Diurnal and Circadian rhythm
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Table 4:

PCD values for digital markers with white additive Gaussian noise.

σ

0.0 0.1 0.2 0.3

0.0005 0.8243 0.8510 0.8908
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Table 5:

Change in Exercise activity from baseline to end of intervention. The table summarizes the average PCD 

value for the intervention group and the control group together with the number of persons that experienced a 

statistically significant change. The table also summarizes the average linear regression coefficient and R value 

for each of the groups.

PCD-intervention (%sig) PCD-control (%sig) Coefficient-intervention (R) Coefficient-control (R)

0.3500 (53.57%) 0.1478 (29.41%) 0.1016 (0.25) 0.0008 (0.40)
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Table 6:

Change in overall activity routine from baseline to end of intervention. The table summarizes the average PCD 

value for the intervention group and the control group together with the number of persons that experienced a 

statistically significant change. The table also summarizes the average linear regression coefficient and R value 

for each of the groups.

PCD-intervention (%sig) PCD-control (%sig) Coefficient-intervention (R) Coefficient-control (R)

0.7460 (50.00%) 0.4428 (17.64%) 0.1598 (0.76) 0.0230 (0.37)
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Table 7:

Accuracy of predicting whether a subject is in the intervention group or control group using a random forest. 

Results for are reported for leave-one-subject-out classification and for alternative sets of features.

movement activity location all

0.76 0.73 0.80 0.87
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