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Abstract

We propose a construction of simultaneous confidence bands (SCBs) for functional parameters

over arbitrary dimensional compact domains using the Gaussian Kinematic formula of t-processes

(tGKF). Although the tGKF relies on Gaussianity, we show that a central limit theorem (CLT)

for the parameter of interest is enough to obtain asymptotically precise covering even if the

observations are non-Gaussian processes. As a proof of concept we study the functional signal-

plus-noise model and derive a CLT for an estimator of the Lipshitz–Killing curvatures, the only

data-dependent quantities in the tGKF. We further discuss extensions to discrete sampling with

additive observation noise using scale space ideas from regression analysis. Our theoretical work

is accompanied by a simulation study comparing different methods to construct SCBs for the

population mean. We show that the tGKF outperforms state-of-the-art methods with precise

covering for small sample sizes, and only a Rademacher multiplier-t bootstrap performs similarly

well. A further benefit is that our SCBs are computational fast even for domains of dimension

greater than one. Applications of SCBs to diffusion tensor imaging (DTI) fibers (1D) and spatio-

temporal temperature data (2D) are discussed.
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1. Introduction

In the past three decades functional data analysis has received increasing interest due to the

possibility of recording and storing data collected with high frequency and/or high resolution

in time and space. Many methods have been developed to study these complex data objects;

for overviews of some recent developments in this fast growing field we refer the reader to

the review articles Cuevas (2014) and Wang et al. (2016) and books among others Ferraty

and Vieu (2006) and Ramsay and Silverman (2007).
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Despite the success of functional data analysis, only recently quantification of uncertainty

with simultaneous confidence bands has received increasing attention. The existing methods

for construction of simultaneous confidence bands (SCBs) split into three groups. The

first group is based on functional central limit theorems (fCLTs) in the Banach space of

continuous functions endowed with the maximum metric and evaluation of the maximum

of the limiting Gaussian field often using Monte-Carlo simulations with an estimate of the

limiting covariance structure, cf. Bunea et al. (2011), Degras (2011, 2017), Cao et al. (2012)

and Cao et al. (2014). The second group is based on the bootstrap, among others (Cuevas et

al., 2006; Chang et al., 2017; Wang et al., 2019) and Belloni et al. (2018). Thirdly, recently

the use of a generalized Kac Rice formula for fast construction of SCBs for one dimensional

functional data has been proposed in Liebl and Reimherr (2019), which is similar to our

proposal, but limited to one dimensional domains.

Except for Liebl and Reimherr (2019) the mentioned methods are computationally

expensive, since they either simulate from an estimated limiting field or require to draw

many bootstrap samples. This hinders their use for domains of dimension greater than one.

Moreover, they often perform poorly on small samples.

In order to construct precise and efficiently computable SCBs for functional parameters over

arbitrarily dimensional domains, we propose to use random field theory (RFT). RFT was

studied extensively in Adler (1981) and Adler and Taylor (2009), and has been successfully

used in the neuroimaging community to control the FWER of statistical 3D images, among

others (Worsley et al., 1996, 2004). More precisely we use the so called Gaussian kinematic

formula (GKF) for pointwise t-distributed random fields (Taylor, 2006; Taylor and Worsley,

2007).

In a nutshell GKFs express the expected Euler characteristic (EEC) of the excursion set of

a Gaussian related random field F(Z1, … , ZN), F ∈ C2 ℝN, ℝ  in terms of a finite linear

combination of D known functions, called Euler characteristic (EC) densities. Here Z1, … ,

ZN ~ Z are i.i.d. zero-mean, unit-variance Gaussian fields with twice differentiable sample

paths over a nice compact subset of ℝD. The linear coefficients in this formula are called

Lipshitz–Killing curvatures (LKCs) and depend solely on the domain and the covariance

structure of the derivative of Z. Remarkably, the only difference between GKFs for different

Gaussian related fields is that the EC densities change, see Adler and Taylor (2009, p.315,

(12.4.2)). Takemura and Kuriki (2002) have shown that the GKF for Gaussian fields is

closely related to the Volume of Tubes formula dating all the way back to Working and

Hotelling (1929). The latter has been applied for SCBs in nonlinear regression analysis, e.g.,

Johansen and Johnstone (1990), Krivobokova et al. (2010) and Lu and Kuriki (2017). In this

sense the GKFs of Taylor (2006) can be interpreted as a generalization of the volume of tube

formula for repeated observations of functional data.

Our main contributions are the following. In Theorem 2 we show based on the main result

in Taylor et al. (2005) that, asymptotically, the error in the covering rate of SCBs for a

function-valued population parameter based on the tGKF can be bounded and is small,

if the targeted covering probability of the SCB is sufficiently high. This requires neither

Gaussianity nor stationarity of the observed fields. It only requires that the estimator of
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the targeted function-valued parameter fulfills an fCLT in the Banach space of continuous

functions with a sufficiently regular Gaussian limit field. Moreover, it requires consistent

estimators for the LKCs. The latter have been studied in Taylor and Worsley (2007) and

Telschow et al. (2020). We illustrate the general approach for the special case of SCBs of

the population mean curve and the difference of population means for functional signal-plus-

noise models, where we allow the error fields to be non-Gaussian. Especially we derive

for such models defined over sufficiently regular domains S ⊂ ℝD, D = 1, 2, consistent

estimators for the LKCs and derive CLTs for them. In order to deal with observation noise

we discuss SCBs for scale spaces. In Theorem 8 we give sufficient conditions to have weak

convergence of a scale space field to a Gaussian limit extending the results from Chaudhuri

and Marron (2000) from regression analysis to repeated observations of functional data.

Additionally, we prove that the LKCs of this limit field can be consistently estimated and

therefore Theorem 2 can be used to bound the error in the covering rate for SCBs of the

population mean of a scale space field.

Scale spaces are not the only way to deal with the observation noise and discrete sampling.

For example local polynomial estimators can be used to estimate the population mean

(Zhang et al., 2007; Degras, 2011; Zhang et al., 2016). Our proposed construction of SCBs

is applicable in these cases provided that the LKCs can be consistently estimated and a bias

correction is introduced. Note that in the ultra dense sampling case (Zhang et al., 2016)

our developed theory for the SCBs of signal-plus-noise models can be directly used, since

the bias introduced by the smoother is negligible. For less dense sampling schemes a bias

correction and consistent estimates of the LKCs need to be derived, yet Theorem 2 can then

still be applied.

The theory is accompanied by a simulation study using the Rpackage SIRF (Spatial

Inference for Random Fields), which can be found on https://github.com/ftelschow/SIRF,

and demonstrate the use of SCBs on two different data applications. In the simulation

study we compare the performance of the tGKF approach to SCBs for different error fields

mainly with bootstrap approaches and conclude that the tGKF approach does not only

often give better coverings for small sample sizes, but outperforms bootstrap approaches

computationally. Moreover, the average width of the tGKF confidence bands is lower for

large sample sizes. As a first application we demonstrate the use of SCBs for scale spaces

on a diffusion tensor imaging (DTI) experiment to detect differences in population means

between healthy subjects and patients. The second application constructs simultaneous

confidence bands for the expected increase in mean summer and winter temperatures over

North America obtained from NARCAP simulations (Mearns et al., 2013).

Organization of the article.

Section 2.1 introduces necessary notations and definitions. In Section 2.2 and Section 2.3

we describe the general idea of construction of SCBs for functional parameters using the

tGKF. In Section 2.4 we prove a theorem establishing that the SCBs from the tGKF give

accurate covering rates. Applications to the functional signal-plus-noise model are given in

Section 3. Especially, we provide consistent estimators of the LKCs and prove consistency

and a CLT for them in Section 3.2. SCBs for scale space models are discussed in Section 3.
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In Section 4 we compare the tGKF approach in different simulations to competing state of

the art methods to construct SCBs for functional signal-plus-noise models. Section 5 applies

these ideas to real data.

2. Simultaneous confidence bands

2.1. Preliminary definitions and notations

Definition 1.—A random field G is a random function from a parameter space S to ℝ. The

function Gω:S ℝ, where ω ∈ Ω is an element of the underlying probability space, is called

a sample path. Moreover, G is called Gaussian random field, if for all (s1, … , sM) ∈ SM,

M ∈ ℕ, the random vector (G(s1), … , G(sM)) has a multivariate Gaussian distribution.

A detailed treatment of random fields can be found in Adler and Taylor (2009). Another

important quantity, which we need is the Euler characteristic (EC) of a set A ⊆ S denoted

by χ(A). The EC of a topological space is an invariant that can be rigorously defined

using homology groups of a topological space (Bredon, 2013) or it can be defined using

triangulations (Flegg, 2001). Intuitively, the EC of A ⊂ ℝD is the number of connected

components for D = 1, the number of connected components minus the number of holes for

D = 2 and the number of connected components minus the number of holes plus the number

of hollows (for example the hole in the 2-sphere) for D = 3.

Classical results on functional central limit theorems (fCLTs), which we will use later, make

use of semi-metrics (Jain and Marcus, 1975). Hence we recall the definition:

Definition 2.—A semi-metric on a topological space S is a map δ:S × S ℝ such that (1.)

δ(s, s′) ≥ 0, (2.) δ(s, s′) = 0 if and only if s = s′, (3.) δ(s, s′) = δ(s′, s). This implies that

each metric is a semi-metric. A semi-metric is called continuous with respect to the topology

of S, if it is a continuous function in the product topology of S × S.

To improve readability we abbreviate higher order partial derivatives using the following

notation

fI = ∂ I f
∂sd1…∂sdK

,

where K = |I| denotes the number of elements in the multi-index I = (d1, … , dK). We denote

with C(S) the space of continuous functions from S to ℝ and with “⇒” weak convergence

in C(S) endowed with the maximum norm ‖f‖∞ = maxs∈S|f(s)|. Moreover, a letter in Fraktur

font, for example r, will always denote the covariance function of a random field.

2.2. SCBs for functional parameters

We describe a general well-known scheme for construction of simultaneous confidence

bands (SCBs) for a functional parameter s ↦ θ(s), s ∈ S, where S ⊂ ℝD is compact.

Hereafter, we assume that all functions of s ∈ S belong to C(S).
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Let s θN(s) and s ςN(s) be estimators of functional parameters θ, ς respectively,

fulfilling

τN
θN − θ

ς
N ∞ G, (E1)

ℙ lim
N ∞

ςN − ς ∞ = 0 = 1. (E2)

Here G is a zero-mean Gaussian field with covariance function r satisfying r(s, s) = 1 for all

s ∈ S, τN → ∞ is a sequence of positive numbers. Under (E1) and (E2) Slutzky’s Lemma

implies

τN
θN − θ

ςN

N ∞ G . (1)

Thus, it is easy to verify that the collection of intervals

SCB s, qα, N = θN(s) − qα, N
ςN(s)

τN
, θN(s) + qα, N

ςN(s)
τN

(2)

form (1 − α)-simultaneous confidence bands of θ, i.e.

ℙ ∀s ∈ S:θ(s) ∈ SCB s, qα, N = 1 − α,

provided that

ℙ max
s ∈ S

τN
θN(s) − θ(s)

ςN(s) qα, N = α . (3)

The quantiles qα,N are in general unknown and need to be estimated.

To the best of our knowledge there are two approaches for this. Limit approximations try to

estimate qα,N by estimation of the asymptotic covariance function and simulations of sample

paths from the corresponding Gaussian field (Degras, 2011, 2017). Better performances for

small samples can be achieved by bootstrap approaches such as the parametric bootstrap

proposed in Degras (2011) or the multiplier bootstrap (Chang et al., 2017). Compare also

Appendix A.

2.3. Estimation of the quantile using the tGKF

In this section we propose to use the Gaussian kinematic formula for t-fields (tGKF) as

proven in Taylor (2006) to approximate the quantiles qα,N.
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2.3.1. The Gaussian Kinematic Formula for t-fields—Let G1, …, GN ~
i . i . d .

G be

zero-mean, unit-variance Gaussian fields. The field T satisfying

T(s) =
NGN(s)

1
N − 1 ∑n = 1

N − 1Gn(s)2
,

is called a tN−1-field. We pose the following assumptions on G:

(G1) G has almost surely C2-sample paths.

(G2) The joint distribution of the derivative fields (G(d)(s), G(d,l)(s)) is nondegenerate

for all s ∈ S and d, l = 1, … , D.

(G3) There is an ϵ > 0 such that

E G(d, l)(s) − G(d, l) s′ 2 ≤ K log s − s′ −(1 + γ)

for all d, l = 1, … , D and for all |s − s′| < ϵ. Here K > 0 and γ > 0 are finite

constants.

(G4) E G(s)G s′ = 1 if and only if s = s′.

Remark 1.: Assumptions (G1)-(G3) imply (cf., Adler and Taylor (2009, Thm 11.3.3)) that

the paths of G are almost surely Morse functions. This is necessary since the proof of the

GKF is based on the classical Morse theorem for Whitney-stratified manifolds (Goresky

and MacPherson, 1988). Thus, (G2) is necessary to ensure that almost surely all critical

points are nondegenerate. Assumption (G3) is satisfied for any field G having almost

surely C3-sample paths and all third derivatives have a finite second C S -moment, see

Definition 3. In particular, this holds true for any Gaussian field with C3-sample paths. For

completeness the argument is carried out in more detail in Appendix B.1. Condition (G4)
excludes, for example, periodic fields.

Under these assumptions the tGKF is an exact, analytical formula of the expectation of the

Euler characteristic χ of the excursion sets A(T, u) = {s ∈ S | T(s) > u} of T. This formula as

proven in Taylor (2006) or Adler and Taylor (2009) is

E[χ(A(T , u))] = ∑
d = 0

D
Ld(S, G)ρd

tN − 1(u), D ∈ ℕ, (4)

where ρd
tN − 1, d = 0, … , D, is the d-th Euler characteristic density of a tN−1-field (Taylor

and Worsley, 2007), usually known, and Ld denotes the d-th Lipshitz–Killing curvature,

which only depends on G and the parameter space S. Note that L0(S, G) = χ(S) and hence is

usually known.
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Eq. (4) is useful, since by the expected Euler characteristic heuristic (EECH) (Taylor et al.,

2005), we expect

1
2ℙ max

s ∈ S
T(s) > u ≤ ℙ max

s ∈ S
T(s) > u ≈ E[χ(A(T , u))], (5)

to be a good approximation for large thresholds u. In the case that S ⊂ ℝ this approximation

is always from above. This is due to the fact that the Euler characteristic of one-dimensional

sets is always non-negative and hence using the Markov-inequality we obtain

1
2ℙ max

s ∈ S
T(s) > u ≤ ℙ(χ(A(T , u)) ≥ 1) ≤ E[χ(A(T , u))] .

The same argument is heuristically valid for high enough thresholds in any dimension, since

the excursion set will with high probability consist mostly of simply-connected sets. This

heuristic has been rigorously proven in Taylor et al. (2005) for T being a Gaussian field.

2.3.2. The tGKF-estimator of qα,N—Let Ld(S, G) be consistent estimators of the LKCs

Ld(S, G) for d = 1, … , D, then combining the tGKF (4) and the EEC heuristic Eq. (5)

yields the natural plug-in estimator qα, N of the quantile qα,N defined in Eq. (3) as the largest

solution u of

EECtN − 1(u) = L0(S)ρ0
tN − 1(u) + ∑

d = 1

D
Ld(S, G)ρd

tN − 1(u) = α
2 . (6)

The following result is important for the proof of the accuracy of the SCBs derived using the

tGKF estimator of qα,N.

Theorem 1.: Assume that Ld
N(S, G) is a consistent estimator of Ld(S, G). Then qα, N given

by (6) converges almost surely for N tending to infinity to the largest solution qα of

EECG(u) = L0(S)ρ0(u) + ∑
d = 1

D
Ld(S, G)ρd(u) = α

2 , (7)

where ρd are the Euler characteristic densities of a Gaussian field, which can be found in
Adler and Taylor (2009, p.315, (12.4.2)).

Remark 2.: Estimation of LKCs is not widely studied yet. For stationary random fields

this has been done in Kiebel et al. (1999). For non-stationary random fields over domains

in arbitrary dimensions, consistent estimators based on residuals have been introduced in

Taylor and Worsley (2007) and Telschow et al. (2020). The former uses a warping to

stationary transform, while the latter uses projections onto Hermite polynomials. For signal-

plus-noise models and D ≤ 2 we take a more direct approach based on normalized residuals

in Section 3.2.

Telschow and Schwartzman Page 7

J Stat Plan Inference. Author manuscript; available in PMC 2022 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.4. Asymptotic covering rates

This section discusses the accuracy of the SCBs obtained using the tGKF. Since the

expected Euler characteristic of the excursion sets is only an approximation of the excursion

probabilities, there is no hope to prove that the covering of these confidence bands is exact.

Especially, if α is large the approximation fails badly and usually will lead to confidence

bands that are too wide. However, for values of α < 0.1 typically used for confidence bands,

the EEC approximation works astonishingly well. Theoretically, this has been made precise

for Gaussian fields in Theorem 4.3 of Taylor et al. (2005), which is the main ingredient in

the proof of the next result. Additionally, it relies on the fCLT (1) and the consistency of

qα, N for qα proved in Theorem 1.

Theorem 2.—Assume (E1–E2) and assume that the limiting Gaussian field G satisfies

(G1–G3). Moreover, let Ld
N be a sequence of consistent estimators of Ld for d = 1, … , D.

Then there exists an α′ ∈ (0, 1) such that for all α ≤ α′ we have that the SCBs defined in
Eq. (2) fulfill

lim
N ∞

1 − α − ℙ ∀s ∈ S:η(s) ∈ SCB s, qα, N ≤ e− 1
2 + 1

2σc2
qα2 < e−

qα2

2 ,

where σc2 is the critical variance of an associated field of G, qα, N is the quantile estimated

using Eq. (6) and qα is defined in Theorem 1.

Typically, in our simulations we have that, for α = 0.05, the quantile qα is about 3 leading to

an upper bound of ≈ 0.011, if we use the weaker bound without the critical variance.

3. Application to the functional signal-plus-noise model

As it is an important example, we discuss in depth SCBs for the population mean in the

functional signal-plus-noise model given by

Y (s) = μ(s) + σ(s)Z(s),  for s ∈ S . (8)

Here μ, σ are continuously differentiable functions on a compact domain S ⊂ ℝD and Z
is a stochastic process with zero mean and covariance function cov Z(s), Z s′ = c s, s′  for

s, s′ ∈ S satisfying c s, s′ = 1 if and only if s = s′. Additionally, we will need regularity

conditions based on Definition 3 to guarantee that an i.i.d. sample of (8) fulfills a functional

central limit theorem.

Definition 3.

i. We say a random field Z with domain S is ℒp, δ -Lipshitz, if there exists a

(semi)-metric δ on S, continuous in the standard topology of ℝD, and a random

variable A satisfying E |A|p < ∞ such that
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Z(s) − Z s′ ≤ Aδ s, s′  for all s, s′ ∈ S (9)

and ∫0
1H1/2(S, δ, ϵ)dϵ < ∞, where H(S, δ, ϵ) denotes the metric entropy function

of the (semi)-metric space (S, δ), e.g., Adler and Taylor (2009, Def. 1.3.1.).

ii. We say a random field Z has finite pth C(S)-moment, if E ∥ Z ∥∞
p < ∞.

Proposition 1.—Any ℒp, δ -Lipshitz field over a compact set S has finite pth

C(S)-moment if E |Z(s)|p < ∞ for some s ∈ S.

Remark 3.

i. Any ℒp, δ -Lipshitz field Z has necessarily almost surely continuous sample

paths. Moreover, this property is the main ingredient in the version of a CLT in

C(S) proven in Jain and Marcus (1975) or Ledoux and Talagrand (2013, Section

10.1).

ii. Since any continuous Gaussian field satisfies the finite pth C(S)-moment

condition, cf. Landau and Shepp (1970), it is possible to prove a reverse of

Proposition 1 for continuously differentiable Gaussian fields. Moreover, finite

pth C(S)-moment conditions are often assumed, when uniform consistency of

estimates of the covariance function are required, e.g., Hall et al. (2006) and Li et

al. (2010).

3.1. Asymptotic SCBs for the one and two sample case

As an application of Theorem 2 we derive SCBs for the population mean and the difference

of population means in one and two sample scenarios of the signal-plus-noise model. We

base our assumptions on the ℒ2, δ -Lipshitz property.

Theorem 3 (Asymptotic SCBs for the Signal-plus-noise Model).—Let

Y 1, …, Y N ~
i . i . d .

Y  be a sample of model (8) and assume Z is an ℒ2, δ -Lipshitz field. Define

Y(s) = (Y1(s), … , YN(s)).

i. Then the estimators

μN(s) = Y(s) = 1
N ∑

n = 1

N
Y (s), σN

2 (s) = varN[Y(s)] = 1
N − 1 ∑

n = 1

N
Yn(s) − Y(s) 2,

fulfill the conditions (E1–2) with τN = N, θ = μ, ς = σ and r = c.

ii. Let L1, …, LD be consistent estimators of the LKCs of G. Additionally, assume

that the ℒ2, δ -Lipshitz field Z has almost surely C3-sample paths, that all

partial derivatives up to order 3 of Z are ℒ2, δ -Lipshitz and that G fulfills the
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non-degeneracy condition (G2). Then the accuracy result of Theorem 2 holds
true for the SCBs

SCB s, qα, N = μN(s) ± qα, N
σN(s)

N

with qα, N given in Theorem 1.

Remark 4.

1. Under the assumptions on Z and G in (ii), the warping estimator (Taylor and

Worsley, 2007), the Hermite Projection estimator (Telschow et al., 2020) and the

estimators discussed in Section 3.2 are all consistent estimators of the LKCs of

G. Hence the first assumption in (ii) is not restrictive.

2. A simple condition on Z to ensure that G fulfills the non-degeneracy condition

(G2) is that for all d, l ∈ {1, … , D} we have that cov [(Z(l)(s), Z(d,l)(s))] has full

rank for all s ∈ S. A proof is provided in Lemma 13 in the Appendix.

Theorem 4 (Asymptotic SCBs for Difference of Means of Two Signal-plus-

noise Models).—Let Y 1, …, Y N ~
i . i . d .

Y  and X1, …, XM ~
i . i . d .

X be independent samples,

where

Y (s) = μY (s) + σY (s)ZY (s)andX(s) = μX(s) + σX(s)ZX(s),

with ZY, ZX both ℒ2, δ -Lipshitz fields and assume that c = limN,M→∞ N/M. Then

i. Condition (E1) is satisfied, i.e.

N + M − 2 Y − X − μY + μX
1 + c−1 σN(Y)2 + (1 + c)σN(X)2

N, M ∞
G =

1 + c−1σY GY − 1 + cσXGX
1 + c−1 σY

2 + (1 + c)σX
2 ,

where GY, GX are Gaussian fields with the same covariance structures as X and
Y and the denominator converges uniformly almost surely, i.e. condition (E2) is
satisfied.

ii. If there are consistent estimators of the LKCs Ld of G and ZX, ZY have

C3-sample paths, fulfill the non-degeneracy condition (G2) and all their

partial derivatives are ℒp, δ -Lipshitz fields with finite C(S)-variances, then the

accuracy result of Theorem 2 holds for the sets

SCB s, qα, N = μN(s) ± qα, N
1 + c−1 σY

2 + (1 + c)σX
2

N + M

with qα, N given in Theorem 1.
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3.2. Estimation of LKCs

For D ≤ 2, we can obtain consistent estimators of the LKCs by directly implementing their

definitions. These estimators are conceptually easier to understand than existing estimators

(Taylor and Worsley, 2007; Telschow et al., 2020). Additionally, they allow for simple

proofs of their consistency and fulfill a CLT.

For a zero-mean, unit-variance Gaussian field G, the LKCs Ld(S, G) are intrinsic volumes of

S with respect to the pseudo-Riemannian metric Λ given in standard coordinates of ℝD as

Λdl(G, s) = Λdl(s) = cov G(d)(s), G(l)(s) , d, l = 1, …, D . (10)

Using this notation the general expression of the LKCs (Adler and Taylor, 2009, Definition

10.7.2) for D = 1 yields

L1(S, G) = vol1(S, Λ) = ∫
S

var dG
ds (s) ds . (11)

In the case of S ⊂ ℝ2 with piecewise C2-boundary ∂S parametrized by a piecewise

C2-function γ: [0, 1] ℝ2 the LKCs are given by

L1 = 1
2length(∂S, Λ) = 1

2∫
0

1
dγT

dt (t)Λ(γ(t))dγ
dt (t) dγ

dt (t) dt

L2 = vol2(S, Λ) = ∫
S

det(Λ(S))ds1ds2 .
(12)

An application of the chain rule shows that L1 is independent of the parametrization γ of S.

These formulas allow to estimate the unknown LKCs from a sample Y1, … , YN ~ Y of

model (8). The estimators are built on the normalized residuals

Rn(s) = Y n(s) − Y(s) /σN(s), s ∈ S, n = 1, …, N . (13)

To abbreviate the following formulas we define R(s) = (R1(s), … , RN(s)). In view of Eq.

(11) a natural estimator of L1 for D = 1 is given by

L1
N = ∫

0

1
Var d

ds(R(s)) ds, (14)

and Eqs. (12) suggest the estimators

L1
N = 1

2∫0

1 dγT

dt (t)ΛN(γ(t))dγ
dt (t)dt

L2
N = ∫

S
det ΛN(s) ds1ds2,

(15)
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for D = 2. Here ΛN(s) = varN[∇R(s)] is the empirical covariance matrix of the sample ∇R1,

… , ∇RN consisting of the gradients of the normed residuals. In order to prove consistency

of the LKC estimates, we establish that ΛN converges uniformly almost surely to Λ.

Theorem 5.—If Z and Z(d) for d = 1, … , D are ℒ2, δ -Lipshitz fields, then

ℙ lim
N ∞

ΛN = Λ = 1.

If Z and Z(d) for d = 1, … , D are even ℒ4, δ -Lipshitz, we obtain

N ι ΛN − ι(Λ)
N ∞

G(0, t)

with ι:Sym(2) ℝ3 mapping

a b
b c (a, b, c)

and the matrix valued covariance function t:S × S Sym(3) is given componentwise by

tdl s, s′ = cov Z(d)(s)Z(l)(s), Z(d) s′ Z(l) s′ (16)

for all s, s′ ∈ S and d, l = 1, … , D.

This theorem is the backbone in the proof of consistency and the CLT for the estimators (14)

and (15).

Theorem 6 (Consistency of LKCs).—Under the setting of Theorem 3(ii) it follows for
d = 1, 2 that

ℙ lim
N ∞

Ld
N = Ld = 1.

Remark 5.—Our proposed sample estimator of Λ through residuals is only one viable

possibility. In general consistent estimation of the LKCs can be achieved by any estimator

of Λ, which converges uniformly almost surely to Λ. Especially, this means that it is not

necessary to observe complete fields as our residual approach suggests.

Theorem 7 (CLT for LKCs).—Assume Z and Z(d) for d = 1, 2 are ℒ4, δ -Lipshitz fields.

Then, if S ⊂ ℝ,

N L1
N − L1

1
2∫S

G(S)
Λ(S)ds,
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and, if S ⊂ ℝ2, we obtain

N L1
N, L2

N − L1, L2
1
2∫0

1 1
γ′(s)TΛ(γ(s))γ′(s)

tr(Λ(γ(s))ι(G(γ(s))))ds,

∫S
1

det(Λ(s)) tr(Λ(s)ι(diag(1, − 1, 1)G(s)))ds .

where G(s) is a Gaussian field with zero-mean and covariance function t as in Theorem 5

and γ is a parametrization of the boundary ∂S.

Corollary 1.—Assume additionally to the Assumptions of Theorem 7 that Z is Gaussian
with covariance function c and S ⊂ ℝ. Then, we have the simplified representation

N L1
N − L1

N ∞
N 0, τ2 ,

where

τ2 = 1
2∫S∫S

ċ s, s′ 2
ċ s, s′ ċ s, s′ dsds′witℎ ċ s, s′ = ∂2c

∂s∂s′ s, s′

Estimation of LKCs in the scenario of two independent samples can be achieved along the

same lines as in the one sample case. Here the independence of the samples implies that the

covariance matrix Λ of the partial derivatives of the limiting field in Theorem 4(i) splits into

a sum of covariance matrices depending on GX and GY, i.e.,

Λ(G) = Λ
1 + c−1σY GY

1 + c−1 σY
2 + (1 + c)σX

2 + Λ
1 + cσXGX

1 + c−1 σY
2 + (1 + c)σX

2 .

Under the assumptions of Theorem 4(ii) these summands can be separately consistently

estimated using the respective normalized residuals

RnY =
1 + M/N ⋅ Yn − Y

(1 + M/N)σN(Y) + (1 + N/M)σN(X)

RnX =
1 + N/M ⋅ Xn − X

(1 + M/N)σN
2 (Y) + (1 + N/M)σN

2 (X)

and the sum of these estimators is a uniformly almost surely consistent estimator of Λ(G).

Thus it yields a consistent estimator of the LKCs in the two sample scenario.
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3.3. Discrete sampling and additive noise: A scale space approach

In applications data of a signal-plus-noise model is usually observed on a discrete grid with

possible additive measurement noise yielding the model

Y sp = μ sp + σ sp Z sp + ε sp ,  for p = 1, …, P, (17)

where S = s1, …, sp ∈ S ⊂ ℝD × P  is a random (or deterministic) sampling of the domain S,

ε is a random field on S with finite second C(S)-moment representing the observation noise

and covariance function e and ε, Z and S are mutually independent.

A generic way to estimate μ and perform inference on it is via local polynomial smoothers.

Degras (2011) discussed construction of SCBs for these estimators. Since he proved that

local linear smoothers under certain conditions similar to ours satisfy a fCLT, it is easy to

extend our previous results of the signal plus noise model to his setup. However, there is no

satisfactory solution to the question of choosing a data-driven bandwidth for finite sample

sizes. Therefore, we consider scale spaces and their SCBs for inference on the population

mean μ instead. This concept was originally introduced for regression in Chaudhuri and

Marron (1999, 2000). Our goal is to construct SCBs for the smoothed population mean

simultaneously across different bandwidths. For simplicity we restrict ourselves to the

Priestley–Rao smoothing estimator. Extensions to local polynomial or other appropriate

linear smoothers are possible.

Definition 4 (Scale Space Field).—We define the Scale Space field with respect

to a continuous kernel function K:S × ℎ0, ℎ1 ℝ with S ⊃ S and 0 < h0 < h1 < ∞

corresponding to Model (17) as

Y (s, ℎ) = 1
P ∑

p = 1

P
Y sp K s − sp, ℎ

with mean

μ(s, ℎ) = 1
P ∑

p = 1

P
μ sp K s − sp, ℎ .

In order to apply the previously presented theory we have to obtain first a functional CLT.

The version we present is similar to Theorem 3.2 of Chaudhuri and Marron (2000) with

the difference that we consider the limit with respect to the number of observed curves and

include the case of possibly having the (random) measurement points depend on the number

of samples, too. The regression version in Chaudhuri and Marron (2000) treats the limit of

observed measurement points going to infinity for one noisy observed function.

Theorem 8.—Let Y 1, …, Y N ~
i . i . d .

Y  be a sample from Model (17), where P is allowed to

depend on N and assume that Z has finite second C(S)-moment. Further assume maxs∈S σ(s)

≤ B < ∞ and
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r (s, ℎ), s′, ℎ′ = lim
N ∞

1
P2 ∑

p, p′ = 1

P
E σ sp σ sp′ c sp, sp′ + e sp, sp′ K

s − sp, ℎ K s′ − sp′, ℎ′
(18)

exists for all (s, h), s′, ℎ′ ∈ S × ℋ, where the expectation is w.r.t. the sampling distribution

of S = (s1, … , sP). Finally, assume that the smoothing kernel (s, h) ↦ K(s, h) is α-Hölder
continuous. Then in C(S × ℋ)

N N−1 ∑
n = 1

N
Y n(s, ℎ) − E[μ(s, ℎ)]

N ∞
G(0, r) .

Remark 6.—Suppose S ⊂ [0, 1] is non-random. If P independent of N and sp = (p − 0.5)/P

for p = 1, … , P for all n = 1, … , N and ε s1 , …, ε sP ~
i . i . d .

N 0, η2 , then Assumption (18)

is trivially satisfied. If instead P → ∞ as N → ∞ it is sufficient that the following integral

exists and is finite for all (s, h), s′, ℎ′ ∈ S × ℋ

r (s, ℎ), s′, ℎ′ = ∫S∫S
σ(τ)σ τ′ c τ, τ′ + e τ, τ′ K(s − τ, ℎ)K s′ − τ′, ℎ′ dτdτ′,

in order to have Assumption (18) satisfied. For example, this is the case if c and e are

continuous.

In order to use Theorem 2 it remains to show that the LKCs can be consistently estimated

and the assumptions of the GKF from Section 2.3 are satisfied.

Proposition 2.—Under the setting of Theorem 8 assume additionally that the kernel

K ∈ C3(S × ℋ). Define

μ(s, ℎ) = 1
N ∑

n = 1

N
Y n(s, ℎ) andσ(s, ℎ) = 1

N ∑
n = 1

N
Y n(s, ℎ) − μ(s, ℎ) 2

and assume that r has continuous partial derivatives up to order 3 and the covariance
matrices of

lim
N ∞

1
P ∑

p = 1

P
σ sp Z sp + ε sp

∂K s − sp, ℎ
∂x ,

∂2K s − sp, ℎ
∂s∂ℎ , x = sorℎ,

have rank 2. Then μ(s, ℎ) and σ(s, ℎ) satisfy Assumptions (L), (E2) and (G3). Thus, all
assumptions of Theorem 2 are satisfied.

Remark 7.—Assume the situation of Remark 6. Then the assumption that r has continuous

partial derivatives up to order 3 follows directly from the assumption K ∈ C3(S × ℋ).
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4. Simulations

All simulations are based on 5000 Monte Carlo simulations in order to estimate the covering

rate of the SCBs. We compare SCBs constructed using the tGKF, the non-parametric

bootstrap-t (Boots-t) and the multiplier-t with Gaussian (gMult-t) or Rademacher (rMult-t)

multipliers. For the Gaussian simulations we include the fast and fair bands (ffscb) from

Liebl and Reimherr (2019). Bootstrap methods are based on 5000 bootstrap replicates.

4.1. Coverage: Smooth Gaussian case

This first set of simulations deals with the most favorable case for the tGKF method. We

simulate samples from the following smooth signal-plus-noise models (8)

ModelA (1D) : Y A(s) = sin(8πs)exp( − 3s) + (0.6 − s)2 + 1
6 ⋅ a

TKA(s)
KA(s)

, s ∈ [0, 1]

ModelB (1D) : Y B(s) = sin(8πs)exp( − 3s) + (0.6 − s)2 + 1
6 ⋅ b

TKB(s)
KB(s)

, s ∈ [0, 1]

ModelC   (2D):Y C(s) = s1s2 +
s1 + 1
s2
2 + 1

⋅ c
TKC(s)
KC(s)

, s = s1, s2 ∈ [0, 1]2

with a~N 0, I7 × 7 , b~N 0, I21 × 21  and c~N 0, I36 × 36 . The vector KA(s) has entries

Ki
A(s) = 6

j si(1 − s)6 − i, the (i, 6)-th Bernstein polynomial for i = 0, … , 6, KB(s) has entries

Ki
B(s) = exp −

s − xi
2

2ℎi2
 with xi = i/21, hi = 0.04 for i < 10, h11 = 0.2 and hi = 0.08 for i > 10

and KC(s) is the vector of all entries from the 6 × 6-matrix Kij(s) = exp −
s − xij 2

2ℎ2  with xij

= (i, j)/6 with h = 0.06. Examples of sample paths of the signal-plus-noise models and the

error fields, are shown in the top two rows of Fig. 1.

We simulated samples from Model A and B on an equidistant grid of 200 points of [0, 1].

Model C was simulated on an equidistant grid with 50 points in each dimension.

According to the results of this simulation, shown in the bottom row of Fig. 1, the

tGKF and the rMult-t method perform best since they are close to nominal level for all

considered sample sizes; ffscb converges to the nominal level, too. Table 1 summarizes

the computation times of the compared methods. It shows that the tGKF SCBs do not

only provide the correct covering rates, it is also approximatively 20 times faster than its

competitors. That ffscb has similar computation times as bootstrap methods is surprising.

Personal communication with the authors suggests that their R-code needs to be optimized.
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4.2. Coverage: Smooth non-Gaussian case

The tGKF method is based on a formula valid for Gaussian fields only. However, we have

seen in Section 2.4 that under appropriate conditions the covering is expected to be good

asymptotically even if this condition is not fulfilled. For the simulations here we use Model

A with the only change that a has i.i.d. entries of a Student’s t3/ 3 random variable, which

is non-Gaussian, but still symmetric. A second simulation study tackles asymmetry of the

noise distribution and increasing similarity to Gaussianity. Here we use Model B where

b has i.i.d. entries of χv2 − v / 2v random variables for different parameters of ν. These

random variables are non-symmetric, but for ν → ∞ they converge to a standard normal.

Fig. 2 shows that in the symmetric distribution case of Model A the tGKF has some over

coverage for small sample sizes, but eventually it is in the targeted region for 95% coverage.

For the particular process used in this simulation, ffscb seems to converge faster to nominal

than tGKF SCBs. A possible explanation might be that the slight undercovering, which

was present in the Gaussian case, is compensated due to the non-Gaussianity. A careful

comparison of these cases will be part of future research. For this symmetric non-Gaussian

distribution the rMult-t still works well. This is probably because it preserves all moments

up to the fourth. The case of non-symmetric distributions produces usually undercovering

for the tGKF. However, as predicted by Theorem 3 eventually for large N it gets close to the

targeted covering. In this case, the bootstrap-t converges faster to the correct covering rate

because it does not require symmetry (see Fig. 3).

4.3. Average width and variance of different SCBs

An important feature of confidence bands is its pointwise width averaged over the domain

and the variance of this average width over repeated experiments. It is preferable to have

the smallest possible width that still has the correct coverage. Moreover, the width of a SCB

should remain stable, meaning that its variance should be small.

Here we focus on the estimation of the quantile qN, α, which for all methods except for ffscb

is closely related to the width of the confidence band averaged over the domain. We decided

to present this estimate, since it can be compared to its theoretical value and is easier to

interpret. We simulate estimates of the quantile qN, α obtained from different methods for the

Gaussian Model B and the non-Gaussian Model B with ν = 7. The optimal quantile qα is

simulated using a Monte-Carlo simulation with 50,000 replications. Since the ffscb method

from the R-package ffscb is not based on the quantile qα we instead compute for this method

qN, α
ffscb (s) = N  ffscb.up (s) −  ffscb.low (s)

2σN(s)

and report its average value over S. This quantity is comparable to the quantile qN, α from

the other methods and closely related to the average width of the ffscb.

We compare ffscb from the R-package ffscb, Degras’ asymptotic method from the R-

package SCBmeanfd, SCBs based on the GKF and the tGKF, the non-parametric bootstrap-

t, multiplier-t, non parametric bootstrap and a simple multiplier bootstrap. Here the latter
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two methods use the variance of the original sample instead of its bootstrapped version,

compare Appendix A.

Tables 2 and 3 show the simulation results. We can draw two main conclusions from these

tables. First, the tGKF method has the smallest standard deviation among the compared

methods in the quantile while still having good coverage (at least asymptotically in the

non-Gaussian case). Second, the main competitor – the bootstrap-t – has a much higher

standard error in the width, but its coverage converges faster in the highly non-Gaussian and

asymmetric case. This shows that the tGKF method is the most stable among the compared

methods.

4.4. The influence of observation noise

In order to study the influence of observation noise, we evaluate the dependence of the

covering rate of the smoothed mean of a signal-plus-noise model with added i.i.d. Gaussian

observation noise on the bandwidth used in a local linear smoother (Degras, 2011) and the

standard deviation of the observation noise. For the simulations we generate samples from

the Gaussian Model A and Model B on an equidistant grid of [0, 1] with 100 points and

add N(0, σ)-distributed independent observation noise with σ ∈ {0.02, 0.1, 0.2}. Afterwards

we smooth the samples with a Gaussian kernel with bandwidths h ∈ {0.02, 0.03, 0.05, 0.1}.

The smoothed curves are evaluated on an equidistant grid with 400 points. The results of

these simulations are shown in Figs. 4 and 5. In most cases the nominal covering is achieved

independent of N. Only for small smoothing bandwidths and large standard deviation of

the observation errors a slight overcoverage is present. This might be a problem with the

estimation of LKCs, since they depend on numerical derivatives of the sample paths, which

are in these particular scenarios highly variable.

We also study the covering rate of the population mean of the scale space field of Model

B. The generation of the samples is the same as for the previous simulations. The only

difference is that instead of smoothing with one bandwidth we construct the scale space

field. Here we use a equidistant grid of 100 points of the interval [0.02, 0.1]. The results can

be found in Fig. 6 and show that the covering rate of the tGKF SCB is close to nominal.

4.5. SCBs for the difference of population means of two independent samples

Since the single sample scenario was studied in great detail, we only present the case of

one dimensional smooth Gaussian noise fields in the two sample scenario. Moreover, we

only report the results for the tGKF approach. The previous observations regarding the other

methods carry over to this scenario.

The simulations are designed as follows. We generate two samples of sizes N and M such

that N/M = c ∈ {1, 2, 4}. We are interested in four different scenarios. The first scenario

is the most favorable having the same correlation structure and the same variance function.

Here we use for both samples the Gaussian Model A from Section 4.1. In all remaining

scenarios one of the samples will always be this error field. In order to check the effect

of the two samples having different correlation structures, we use Gaussian Model B as

the second sample from Section 4.1. For dependence on the variance, while the correlation
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structure is the same, we change the variance function in the Gaussian Model A to σ2(s)

= 0.04 for the second sample. As an example field where both the correlation and the

variance are different we use Gaussian Model B with the modification that the error field

has pointwise variance σ2(s) = 0.04. The results of these simulations are shown in Fig. 7 and

show that, except for very unbalanced sample sizes between the two groups, the covering

rate of the tGKF SCB is close to nominal.

5. Applications

5.1. DTI fibers

Our first data example (1D) concerns the impact of the eating disorder anorexia nervosa

on white-matter tissue properties during adolescence in young females. The experimental

setup and a different methodology to statistically analyze the data using pointwise testing

and permutation tests can be found in the original article (Travis et al., 2015). The data

set consists of a control group of 15 healthy subjects and 15 patients. For each subject

27 different neural fibers were extracted. The data for each fiber consists of fractional

anisotropy values sampled on an equidistant grid of length 100.

In order to locate differences in the DTI fibers between the two groups, we computed for

each fiber defined on the domain S = [0, 100] the two-sample 95%-SCBs for the difference

of the population mean of the control group and the patients as explained in Section 3.

Robustness of detected differences across scales is tested by computing the SCBs for the

corresponding scale space fields, see Section 3. For the latter we used a Gaussian smoothing

kernel and the considered bandwidth range ℋ = [1.5, 10] was sampled at 200 equidistant

bandwidths.

The results for the three fibers for which we find significant differences are shown in Fig.

8. Our results are mostly consistent with the results from Travis et al. (2015) in the sense

that both approaches find significant differences at similar locations in the right thalamic

radiation and the left superior longitudinal fasciculus (SLF). Additionally, SCBs detect

significant differences in the right cingulum hippocampus. Travis et al. (2015) claim further

significant findings. However, these belong to criteria, which do not take simultaneous

testing along the fibers into account. Therefore SCBs might not be able to detect them, since

they correct for multiplicity along the fiber.

5.2. Climate data

Our second data example (2D) concerns the change in temperature over North America

within the next century. The data was obtained from the North American Regional Climate

Change Assessment Program (NARCCAP) project (Mearns et al., 2013). It consist of two

sets of 29 spatially registered arrays of mean seasonal temperatures for summer (June–

August) and winter (December–February) evaluated at a fine grid of fixed locations 0.5

degrees apart in geographic longitude and latitude over the time periods 1971–1999 and

2041–2069. Sommerfeld et al. (2018) analyzed this data set with the aim to detect regions

at risk of exceeding a 2 °C temperature increase. To complement their analysis, we use their

model and data processing and provide 90% SCBs for the estimated difference of mean
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temperatures between the two time periods assuming that the two samples have the same

covariance structure.

Our results are shown in Fig. 9. From the 2 °C contour lines (yellow) of the lower bound

for the SCBs we conclude that there is likely an increase of at least 2 °C in the time period

2041–2069 compared to 1971–1999 during the summer months in the region of the Rocky

Mountains and the Sierra Madre Occidental mountains of Mexico, since in this region the

lower bound of the SCBs is here larger than 2 °C. Similarly we obtain that for mean winter

temperatures, small regions around the Hudson Bay and in the Canadian Shield are at risk of

having an increase of more than 2 °C. The area enclosed by the 2 °C contour lines for the

upper bound of the SCBs show that during summer large areas in Canada and Alaska as well

as smaller patches at the Hudson Bay and the Gulf of Mexico are not at risk experiencing an

temperature increases of more than 2 °C. For winter mean temperature there are only small

regions for which we are certain that the temperature does not rise above 2 °C.

The aforementioned areas within the contour lines of the lower and upper bounds of

the SCBs are similar to the COverage Probability Excursion (CoPE) sets introduced in

Sommerfeld et al. (2018). CoPE sets are a pair A+ ⊂ A−
 of data driven random sets, for

which A−
 completely contains with a preset probability the true excursion set, while the set

A+
 is completely contained in the true excursion set.

The interior of the yellow contour lines, i.e., thresholding of the lower bound of the SCB

yields a set similar to A+
, while thresholding the upper bound can be compared to A−

. In

fact, we believe thresholding SCBs can be interpreted as conservative CoPE sets, explaining

why our analysis is comparable to the results in Sommerfeld et al. (2018). Exploring this

connection between CoPE sets and SCBs will be future research.
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Appendix A.: Bootstrap methods

Parametric bootstrap-t for qα,N (Degras, 2011).

Assume that the estimators s ηN(s) and s ςN(s) are obtained from a sample

Y 1, …, Y N
i . i . d . Y  of random functions, then the parametric bootstrap-t estimator of qα,N

is obtained as follows:

1. Resample from Y1, … , YN with replacement to produce a bootstrap sample

Y 1*, …, Y N* .

2. Compute ηN*  and ςN*  using the sample Y 1*, …, Y N* .
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3. Compute T* = maxs ∈ SτN ηN* (s) − ηN(s) /ςN* (s).

4. Repeat steps 1 to 3 many times to approximate the conditional law

ℒ* = ℒ T* ∣ Y 1, …, Y N  and take the (1 − α) · 100% quantile of ℒ* to estimate

qα,N.

Remark 8.

Note that the variance in the denominator is also bootstrapped, which corresponds to the

standard bootstrap-t approach for confidence intervals, cf. DiCiccio and Efron (1996). This

is done in order to mimic the l.h.s. in (1) and improves the small sample coverage.

According to our simulations in Section 4 this estimator works well only for large enough

sample sizes, although Degras (2011) introduced it especially for small sample sizes.

Moreover, it is well known that confidence intervals for finite dimensional parameters based

on the bootstrap-t have highly variable end points for small sample sizes, cf., Good (2005,

Section 3.3.3). Evidence that this remains the case in the functional world is provided in

Tables 2 and 3.

Multiplier-t bootstrap for qα,N.

The second bootstrap method builds on residuals and a version of the multiplier (or wild)

bootstrap as introduced in Chang et al. (2017). Here we assume that we can construct

residuals Rn
N for n = 1, … , N satisfying ∑Rn

N = 1 and ∑Rn
N(s)Rn

N s′ r as N →

∞ uniformly almost surely. For example for the signal-plus-noise model the residuals

Rn
N = N

N − 1 Y n − μN  do satisfy these conditions, if the error field Z is ℒ2, δ -Lipshitz and

has finite second C(S)-moment. Here as before ηN = μN and ςN = σN denote the pointwise

sample mean and the pointwise sample standard deviation. Algorithmically, the multiplier

bootstrap estimates qα,N are as follows:

1. Compute residuals R1
N, …,RN

N and multipliers g1, …, gN
i.i.d.g with E[g] = 0 and

var[g] = 1

2. Compute σN* (s), i.e. the sample standard deviation of g1R1
N(s), …, gNRN

N(s).

3.
Compute T*(s) = 1

N ∑n = 1
N gn

RnN(s)
σN* (s) .

4. Repeat steps 1 to 3 many times to approximate the conditional law

ℒ* = ℒ T* ∣ Y 1, …, Y N  and take the (1 − α) · 100% quantile of ℒ* to estimate

qα,N.

In our simulations we use Gaussian and Rademacher multipliers. The latter perform much

better for small sample sizes than Gaussian multipliers. This is the reason why they probably

have been used in Chang et al. (2017).
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Appendix B.: Proofs

B.1. Proof of Claim in Remark 1

Using the multivariate mean value theorem and the Cauchy–Schwarz inequality yields

G(d, l)(s) − G(d, l) s′ 2 ≤ max
t ∈ S

∇G(d, l)(t) 2 s − s′ 2 .

Applying the expectation to both sides and then taking the maximum of the resulting sums

we obtain

E G(d, l)(s) − G(d, l) s′ 2 ≤ D max
k = 1, …, D

E max
t ∈ S

G(d, l, k)(t) 2 s − s′ 2 .

The proof follows now from the following two observations. Firstly, by Remark 3 each of

the expectations we take the maximum of is finite (Landau and Shepp, 1970, Thm 5), since

all components of the gradient of ∇G(d,l) are Gaussian fields with almost surely continuous

sample paths. Secondly, |log‖x‖|−2 ≥ x2 for all 0 < x < 1.

B.2. Proof of Theorem 1

Lemma 9.

Let the function fN(u) and its first derivative fN′ (u) be uniformly consistent estimators

of the function f(u) and its first derivative f′(u), respectively, where both are uniformly
continuous over u ∈ ℝ. Assume there exists an open interval I = (a, b) such that f is strictly
monotone on I and there exists a unique solution u0 ∈ I to the equation f(u) = 0. Define
uN = sup u ∈ I:fN(u) = 0 . Then u is a consistent estimator of u0.

Proof.

Assume w.l.o.g. that f is strictly decreasing on I. Thus, for any ε > 0 we have f(u0 − ε) > 0 >

f(u0 + ε) by f(u0) = 0. The assumption that fN(u) is a consistent estimator of f(u) yields

ℙ fN u0 − ε > 0 > fN u0 + ε 1,

which implies that with probability tending to 1, there is a root of f  in I0,ε = (u0 − ε, u0 +

ε). On the other hand the monotonicity of f guarantees the existence of an δ > 0 such that

inf{|f(u)| : u ∈ I \ I0,ε } > δ. Moreover, by the uniform consistency of f , we have that

ℙ sup
u ∈ I

fN(u) − f(u) < δ/2 1.

Therefore, using the inequality
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inf
u ∈ I\I0, ε

fN(u) ≥ inf
u ∈ I\I0, ε

f(u) − sup
u ∈ I\I0, ε

fN(u) − f(u) ,

we can conclude that

ℙ inf
u ∈ I\I0, ε

fN(u) > δ/2 ≥ ℙ inf
u ∈ I\I0, ε

f(u) − sup
u ∈ I\I0, ε

fN(u) − f(u) > δ/2

= ℙ sup
u ∈ I\I0, ε

fN(u) − f(u) < inf
u ∈ I\I0, ε

f(u) − δ/2 1,

which implies that with probability tending to 1, there is no root of fN outside I0,ε. Hence

from the definition of uN, it is clear that uN is the only root of fN in I with probability

tending to 1. As an immediate consequence we have that

ℙ uN − u0 < ε = ℙ uN ∈ I0, ε 1,

which finishes the proof that u is a consistent estimator of u0.

Lemma 10.

Let Ld
N be a consistent estimator of Ld and EECG(u) given in Eq. (7).

1. EECG(u) − EECtN − 1(u) ∞
N ∞ 0 almost surely.

2. EECG′ (u) − EEC′tN − 1(u) ∞
N ∞ 0 almost surely.

Proof.

Part 1.: This is a direct consequence of the consistency of the LKC estimates and the

observation that the EC densities ρtν of a tν-field with ν = N − 1 degrees of freedom

converges uniformly to the EC densities of a Gaussian field ρG as N tends to infinity, i.e.

lim
v ∞

max
u ∈ ℝ

ρtν(u) − ρG(u) = 0.

The latter follows from Worsley (1994, Theorem 5.4), which implies that the uniform

convergence of EC densities is implied by the uniform convergence of

lim
v ∞

max
u ∈ ℝ

1 + u2
v

−v − 1
2 − e− u2

2 = 0.

To see this, note that the distance
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ℎv(u) = 1 + u2
v

− v − 1
2 − e− u2

2 ≥ 0,  for u ∈ ℝ

fulfills limu→ ± ∞ hν(u) = 0. Thus, there is a Cv = maxu ∈ ℝ ℎv(u)  by continuity of hν.

Moreover, note that hν(u) ≥ hν+1(u) for ν ≥ 1, all u ∈ ℝ and limν→∞ hν(u) = 0. Hence, Cν
converges to zero for ν → ∞.

Part 2.: This follows similar by the same arguments as above applied to the derivatives of

the EC densities.

Proof of Theorem 1.

In order to prove the almost sure convergence qα, N
N ∞ qα, note that for u large enough u

↦ EECG(u) is strictly monotonically decreasing and therefore combining Lemmas 9 and 10

yields the claim.

B.3. Proof of Theorem 2

By Taylor et al. (2005, Theorem 4.3) we have for Z a zero-mean Gaussian field over a

parameter set T that

lim inf
u ∞

− u2log ℙ max
t ∈ T

Z(t) ≥ u − EECZ(u) ≥ 1
2 1 + 1

2σc2
,

where σc2 is a variance depending on an associated field to Z. This implies that there is a u
such that for all u ≥ u we have that

ℙ max
t ∈ T

Z(t) ≥ u − EECZ(u) ≤ e− 1
2 + 1

2σc2
u2

. (19)

Equipped with this result using the definition M = maxs∈S G(s) and |M| = maxs∈S|G(s)| we

compute

1 − α − ℙ ∀s ∈ S:η(s) ∈ SCB s, qα, N ≤ −α + ℙ max
s ∈ S

τN
ηN(s) − η(s)

ςN(s) > qα, N

≤ ℙ M > qα, N − α + ℙ max
s ∈ S

τN
ηN(s) − η(s)

ςN(s) > qα, N − ℙ M > qα, N = I + II .

Here II converges to zero for N tending to infinity by the fCLT for ηN and the consistent

estimation of ςN from (E1–2). Therefore it remains to treat I.

To deal with this summand, note that
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ℙ M > qα, N = ℙ max
s ∈ S

G(s)
2

> qα, N
2 = ℙ max

(s, v) ∈ S × S0
Z(s, v) > qα, N ,

where the Gaussian random field Z over T = S × S0, where S0 = {1, −1}, is defined by

Z(s, v) = v ⋅ G(s).

Using the above equality, EECtN − 1 qα, N = α/2, i.e. the definition of our estimator qα, N

from Eq. (6) and Lemma 10 we have that

I = ℙ max
s ∈ S × S0

Z(s, v) > qα, N − 2EECtN − 1 qα, N

N ∞ ℙ max
(s, v) ∈ S × S0

Z(s, v) > qα − 2EECG qα .

Thus, using the fact that Ld(T,Z) = L0 S0 Ld(S, G) = 2Ld(S, G) and (19) and the observation

that qα is monotonically increasing in α for α small enough, we can bound I by

I = ℙ max
(s, v) ∈ S × S0

Z(s, v) > qα − EECZ qα ≤ e
− 1

2 + 2σc2
qα2

for all α smaller than some α′, which finishes the proof.

Remark 9.

The specific definition of σc associated with the Gaussian field Z can be found in Taylor et

al. (2005).

B.4. Proof of Proposition 1

Assume that Z is ℒp, δ -Lipshitz, then using convexity of |·|p we compute

E Z ∞
p ≤ 2p − 1E max

s ∈ S
Z(s) − Z s′ p + 2p − 1E max

s ∈ S
Z s′ p

≤ 2p − 1E A p max
s ∈ S

δ s, s′ p + 2p − 1E Z s′ p < ∞ .

Hence Z has also a finite pth C(S)-moment.

B.5. Proofs of Theorems 3 and 4

The following Lemma provides almost sure uniform convergence results and will be used

often in the following proofs.
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Lemma 11.

Assume that X1, …, XN
i . i . d .X and Y 1, …, Y N

i . i . d .Y  are ℒ1, δ -Lipshitz, Then

X N ∞ E[X] uniformly almost surely. If X and Y are ℒ2, δ -Lipshitz, then

covN[X, Y] N ∞ cov[X, Y ] uniformly almost surely.

Proof.

First claim: Using the generic uniform convergence result in Davidson (1994, Theorem

21.8), we only need to establish strong stochastical equicontinuity (SSE) of the random

function X − E[X], since pointwise convergence is obvious by the SLLNs. SSE, however, can

be easily established using Davidson (1994, Theorem 21.10 (ii)), since

N−1 ∑
n = 1

N
Xn(s) − Xn s′ − E X(s) − X s′ ≤ N−1 ∑

n = 1

N
An + E[A] δ s, s′ = CNδ s, s′

for all s, s′ ∈ S. Here A1, …, AN
 i.i.d. A denote the random variables from the ℒ1, δ -Lipshitz

property of the Xn’s and X and hence the random variable CN converges almost surely to the

constant 2E[A] by the SLLNs.

Second claim: Adapting the same strategy as above and assuming w.l.o.g.

E[X] = E[Y ] = 0, we compute

1
N ∑

n = 1

N
Xn(s)Yn(s) − Xn s′ Yn s′ ≤ 1

N ∑
n = 1

N
Xn ∞Bn + Yn ∞An δ s, s′

≤ ∑
n = 1

N Xn ∞
2

N ∑
n = 1

N Bn2
N + ∑

n = 1

N Yn ∞
2

N ∑
n = 1

N An2
N δ s, s′ ,

where X ∞ = maxs ∈ S |X(s)| and B1, …, BN
i . i . d .B denote the random variables from

the ℒ2, δ -Lipshitz property of the Yn’s and Y. Again by the SLLNs the random

Lipshitz constant converges almost surely and is finite, since X and Y have finite second

C(S)-moments and are ℒ2, δ -Lipshitz.

Lemma 12.

Let c be a covariance function. Then

i. If c is continuous and has continuous partial derivatives up to order K, then the

zero-mean Gaussian field with covariance c has CK-sample paths with almost
surely uniform and absolutely convergent expansions

GI(s) = ∑
i = 1

∞
λiAiφiI(s),
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where λi, φi are the eigenvalues and eigenfunctions of the covariance operator of
Z and Ai i ∈ ℕ are i.i.d. N(0, 1).

ii. If Z and all its partial derivatives ZI with |I| = K′ ≤ K, K ∈ ℕ, are ℒ2, δ -Lipshitz

fields with finite C(S)-variances, then c is continuous and all partial derivatives

∂|I | + I′ c s, s′ / ∂sI ∂s′I′ for |I|, |I′| ≤ K exist and are continuous for all s, s′ ∈ S.

Proof.

i. Since c is continuous the field G is mean-square continuous. Hence there is a

Karhunen–Loéve expansion of the form

G(s) = ∑
i = 1

∞
λiAiφi(s),

with λi, φi are the eigenvalues and eigenfunctions of the covariance operator

associated with c and Ai i ∈ ℕ are i.i.d. N(0, 1). From Ferreira and Menegatto

(2012, Theorem 5.1) we have that φI ∈ CK(S). Moreover, it is easy to deduce

from their equation (4.3) that

GI(s) = ∑
i = 1

∞
λiAiφI(s),

is almost surely absolutely and uniformly convergent.

ii. The continuity is a simple consequence of the ℒ2, δ -Lipshitz property and the

finite C(S)-variances. Let X be a field with these properties, then using the

Cauchy–Schwarz inequality

c(s, t) − c s′, t′ ≤ E Xs − Xs′ Xt + Xt − Xt′ Xs′
≤ E Xs − Xs′ Xt + E Xt − Xt′ Xs′

≤ E Xs − Xs′
2 E max

t ∈ S
Xt2 + E Xt − Xt′ 2 E max

s′ ∈ S
Xs′

2

≤ C δ s, s′ + δ t, t′

for some C < ∞ and therefore c and the covariances of ZI are continuous. We

only show that ∂c s, s′ / ∂sd exists and is continuous. The argument is similar for

the higher partial derivatives. From the definition we obtain for all s, s′

lim
ℎ 0

ℎ−1 c s, s′ − c s + ℎed, s′ = lim
ℎ 0

E ℎ−1 Z(s) − Z s + ℎed Z s′ ,

where ed denotes the dth element of the standard basis of ℝD. Thus, we only

have to prove that we can interchange limits and integration. The latter is an

immediate consequence of Lebesgue’s dominated convergence theorem, where
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we obtain the ℒ1 majorant from the ℒ2, δ -Lipshitz property as AZ(s′), where

A ∈ ℒ2.

Proof of Theorem 3.

i. Since Z is ℒ2, δ -Lipshitz the main result in Jain and Marcus (1975)

immediately implies (E1) with τN = N and r = c. Condition (E2) is obtained

from the second part of Lemma 11, since σ(s)Z(s) is ℒ2, δ -Lipshitz and has

finite second C(S)-moment.

ii. We only need to show that the Gaussian limit field with the covariance c fulfills

(G1) and (G3). Note that condition (G3) is a consequence of (G1) and the

C3-sample paths by Remark 1. But (G1) is already a consequence of Lemma 12.

Lemma 13.

Let Z fulfill the assumptions of Theorem 3(ii) except for (G2) and for all d, l ∈ {1, … , D}

suppose that cov [(Z(d)(s), Z(d,l)(s))] has full rank for all s. Then G = G(0, c) fulfills (G2).

Proof.

Using the series expansions from Lemma 12 we have that for multi-indices I1, … , IK, K ∈ ℕ
and all v ∈ ℝK it follows that

∂ I1 G(s)/ ∂sI1, …, ∂ IK G(s)/ ∂sIK vT = ∑
i = 1

∞
λiAi ∑

k = 1

K
vkφi

Ik(s)

is convergent for all s (even uniformly). Note that we used here that the expansions are

absolutely convergent such that we can change orders in the infinite sums. Thus, it is easy to

deduce that (GIk, … , GIk) is a Gaussian field.

Therefore (G(d)(s), G(d,l)(s)) is a multivariate Gaussian random variable for all s ∈ S, which

is non-degenerate if and only if its covariance matrix is non-singular. But this is the case by

the assumption, since it is identical to the covariance matrix cov [(Z(d)(s), Z(d,l)(s))].

Proof of Theorem 4.

The proof is almost identical to the proof of Theorem 3 and therefore omitted.

B.6. Proof of Theorem 5

First note that using the definition of Rn from Eq. (13) we obtain

Rn(d) = μ − Y
σN

(d)
+ σ

σN
(d)

Zn + σ
σN

Zn(d) .

Thus, the entries of the sample covariance matrix ΛN are given by

Telschow and Schwartzman Page 28

J Stat Plan Inference. Author manuscript; available in PMC 2022 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



var[Z] σ
σN

(d) σ
σN

(l)
+ cov Z, Z(d) σ

σN
σ

σN

(l)

+ cov Z, Z(l) σ
σN

σ
σN

(d)
+ cov Z(d), Z(l) σ2

σN
2

(20)

Now, the second part of Lemma 11 applied to Z, Z(d) and Z(l) and the fact that by

σN
2 (s)/σ2(s) = var[σ(s)Z(s)]/σ2(s) = var[Z(s)] (21)

σN
2 (s)/σ2(s) (l) = 2cov Z(s), Z(l)(s) . (22)

the terms involving σ’s convergence uniformly almost surely to one and zero by Lemma 11

implies

covN R(d), R(l) N ∞ cov Z(d), Z(l) = Λdl

uniformly almost surely. Thus, ΛN Λ uniformly almost surely.

Now let X, Y be ℒ4, δ -Lipshitz, then

X(s)Y (s) − X s′ Y s′ ≤ X ∞A + Y ∞B δ s, s′

with A, B the random variables in the ℒ4, δ -Lipshitz property of Y, X. Note that

E X ∞A + Y ∞B 2 ≤ 2E X ∞A 2 + Y ∞B 2

≤ 2 E X ∞
4 E A4 + 2 E Y ∞

4 E B4 < ∞ .

by (a + b)2 ≤ 2a2 + 2b2 for all a, b ∈ ℝ and the Cauchy–Schwarz inequality. Thus, a sample

X1Y 1, …, XNY N
i . i . d . XY  fulfills the assumptions for the CLT in C(S) given in Jain and

Marcus (1975). Therefore, the following sums converge to a Gaussian field in C(S):

N(var[Z]),   Ncov Z, Z(l) ,   Ncov Z(d), Z(l)  for d, l = 1, …, D .

Thus, using the latter together with Eq. (20) and the uniform almost sure convergence from

(21) and (22), we obtain

N cov R(d), R(l) − Λdl
N ∞

G 0, tdl
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with tdl s, s′ = cov Z(d)(s)Z(l)(s), Z(d) s′ Z(l) s′ . This combined with the standard

multivariate CLT yields the claim.

B.7. Proof of Theorem 7

By Theorem 5 the claim follows from the functional delta method (Kosorok, 2008, Theorem

2.8), if we prove that the corresponding functions are Hadamard differentiable and can

compute this derivative.

Case 1D:

We have to prove that the function

H: C(S), ⋅ ∞ ℝ,   f ∫S
f(s)ds

is Hadamard differentiable. Therefore, note that the integral is a bounded linear operator and

hence it is Fréchet differentiable with derivative being the integral itself. Moreover, f f
is Hadamard differentiable by Kosorok (2008, Lemma 12.2) with Hadamard derivative

DHf(α) = 1/ 4fα tangential even to the Skorohod space D(S). Combining this, we obtain

the limit distribution N L1
N − L1  from the fCLT for ΛN given in Theorem 5 to be

distributed as

DHΛ(G) = 1
2∫S

G(s)
Λ(s) ds,

where G(s) is the asymptotic Gaussian field given in Theorem 5.

Case 2D:

The strategy of the proof is the same as in 1D, i.e. we need to calculate the Hadamard

(Fréchet) derivative of

H: C(S) × C(S) × C(S), ⋅ ∞ ℝ2,

f1, f2, f3
1
2∫0

1 dγ
dt

T
(t)ι f1(γ(t)), f2(γ(t)), f3(γ(t)) dγ

dt (t)dt,∫S
det(Λ(s))ds1ds2 .

The arguments are the same as before. Thus, using the chain rule and derivatives of matrices

with respect to their components the Hadamard derivative evaluated at the field G is given

by

dHΛ(G) = 1
2∫0

1 1
dγ
dt

T
(t)Λ(γ(t))dγ

dt (t)
tr(Λ(γ(t))ι(G(γ(t))))dt,

∫S
1

det(Λ(s)) tr(Λ(s)ι(diag(1, − 1, 1)G(s)))ds .
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B.8. Proof of Corollary 1

Note that it is well-known that the covariance function of the derivative of a differentiable

field with covariance function c is given by ċ s, s′ = Ds
1Ds′

1 c s, s′ . Moreover, using the

moment formula for multivariate Gaussian fields we have that

cov Z′(s) 2, Z′ s′ 2 = E Z′(s) 2 − ċ(s, s) Z′ s′ 2 − ċ s′, s′

= E Z′(s) 2 Z′ s′ 2 − ċ(s, s)ċ s′, s′
= ċ(s, s)ċ s′, s′ + 2ċ s, s′ − ċ(s, s)ċ s′, s′
= 2ċ s, s′ .

Combining this with the observation that the variance of the zero mean Gaussian random

variable 1
2∫S

G(s)
Λ(s)ds is given by

τ2 = 1
4∫S∫S

cov Z′(s) 2, Z′ s′ 2

Λ(s)Λ s′ dsds′

yields the claim.

B.9. Proof of Theorem 8

We want to apply Pollard (1990, Theorem 10.6). Therefore, except for the indices we adapt

the notations of that theorem and define the necessary variables. Recall that maxs∈S σ(s) ≤ B
< ∞. We obtain

fNn(s, ℎ) = 1
NP ∑

p = 1

P
σ sp Zn sp + εnp K s − sp, ℎ

FNn = 2
N B max

s ∈ S
Zn(s) + max

s ∈ S
εn(s)

XN(s, ℎ) = ∑
n = 1

N
fNn(s, ℎ) .

We have to establish the assumptions (i), (iii) and (iv) as (v) is trivially satisfied in our case

and (ii) is Assumption (18). As discussed in Degras (2011, p.1759) the manageability (i)

follows from the inequality

fNn(s, ℎ) − fNn s′, ℎ′ ≤ 1
N

1
P ∑

p = 1

P
σ sp Zn sp + εn sp

2 1
P ∑

p = 1

P
K s − sp, ℎ − K s′ − sp, ℎ′ 2

≤ 2
N B max

s ∈ S
Zn(s) + max

s ∈ S
εn(s) L (s, ℎ) − s′, ℎ′ α

= LFNnϵ,

if ‖(s, h) − (s′, h′)‖ < ϵ1/α. Assumption (iii) follows since we can compute
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∑
n = 1

N
E FNn

2 = NE FN1
2 ≤ 4B2E max

s ∈ S
Z1(s) 2 + 4E max

s ∈ S
ε1
2(s) < ∞

and (iv) is due to

∑
n = 1

N
E FNn

2 I FNn > ϵ = NE FN1
2 I NFN1 > Nϵ N ∞ 0

for all ϵ > 0, which follows from the convergence theorem for integrals with monotonically

increasing integrands and the fact that by Markov’s inequality

E I NFN1 > Nϵ = Pr NFN1 > Nϵ ≤ E NFN1
Nϵ

N ∞ 0, (23)

for fixed ϵ > 0.

The weak convergence to a Gaussian field now follows from Pollard (1990, Theorem 10.6).

B.10. Proof of Proposition 2

The first step is to establish that for each N the field with C3-sample paths

Z(s, ℎ) = 1
P ∑

p = 1

P
σ sp Z sp + ε sp K s − sp, ℎ ,

has finite second C(S)-moment. Moreover, the constant is uniformly bounded over all N.

Additionally, we require that the field itself and its first derivatives are ℒ2, δ -Lipshitz

again uniformly over all N, since then the same arguments as in Lemma 11 will yield the

consistency of the estimators of the LKCs from Theorem 6. Therefore, note that

Z(s, ℎ) ≤ 1
P ∑

p = 1

P
σ sp Z sp + ε sp ⋅ K s − sp, ℎ

≤ 1
P ∑

p = 1

P
σ sp Z sp + ε sp

2 1
P ∑

p = 1

P
K s − sp, ℎ 2

≤ B max
s ∈ S

Z(s) + max
s ∈ S

ε(s) K(s, ℎ) .

This yields using (a + b)2 ≤ 2(a2 + b2) that

E max
(s, ℎ) ∈ S × ℋ

Z(s, ℎ)
2

≤ 2 B2E max
s ∈ S

Z(s)
2

+ C max
(s, ℎ) ∈ S × ℋ

K(s, ℎ)2 < ∞,
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where the bound is independent of N. Basically, the same argument yields the

ℒ2, ⋅ -Lipshitz property for Z(s, ℎ) and all of its partial derivatives up to order 3 with a

bounding ℒ2 random variable independent of N. The differentiability of the sample paths of

the limiting Gaussian field follows again from Lemma 12(i).
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Fig. 1.
Simulation results for smooth Gaussian fields. Top row: samples from the signal-plus-noise

models. Middle row: samples from the error fields. Bottom row: simulated covering rates.

The solid black line is the targeted level of the SCBs and the dashed black line is twice the

standard error for a Bernoulli random variable with p = 0.95.
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Fig. 2.
Simulation results for smooth non Gaussian fields (Model A). Left: samples from the error

fields. Right: simulated covering rates. The solid black line is the targeted level of the SCBs

and the dashed black line is twice the standard error for a Bernoulli random variable with p
= 0.95.
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Fig. 3.
Simulation results for smooth non Gaussian fields (Model B). Left: samples from the error

fields. Right: simulated covering rates. The solid black line is the targeted level of the SCBs

and the dashed black line is twice the standard error for a Bernoulli random variable with p
= 0.95.
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Fig. 4.
Simulation results for Gaussian fields (Model A) with observation noise. Top row: samples

from the error fields. Bottom row: simulated covering rates. The solid black line is the

targeted level of the SCBs and the dashed black line is twice the standard error for a

Bernoulli random variable with p = 0.95.
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Fig. 5.
Simulation results for Gaussian fields (Model B) with observation noise. Top row: samples

from the error fields. Bottom row: simulated covering rates. The solid black line is the

targeted level of the SCBs and the dashed black line is twice the standard error for a

Bernoulli random variable with p = 0.95.
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Fig. 6.
Simulation results for the scale space field from the Gaussian fields of Model B with added

observation noise. Left two panels: samples from the error fields. Right panel: simulated

covering rates. The solid black line is the targeted level of the SCBs and the dashed black

line is twice the standard error for a Bernoulli random variable with p = 0.95.
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Fig. 7.
Simulation results for the SCBs of the difference between mean curves of two samples of

smooth Gaussian fields for varying c = M/N. The solid black line is the targeted level of the

SCBs and the dashed black line is twice the standard error for a Bernoulli random variable

with p = 0.95.
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Fig. 8.
DTI fibers with significant differences in the mean function. Top row: data and sample

means. Middle row: estimated difference of the mean function and 95%-SCBs constructed

using the tGKF and the Multiplier-t. Bottom row: areas where the confidence bands for the

difference in the mean function for the scale field do not include 0.
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Fig. 9.
Visualization of the difference of mean temperatures in summer (left) and winter (right) of

the time periods 2041–2069 and 1971–1999. To visualize regions at risk to experience an

increase of more than 2 °C we report in each figure the 2 °C contour line. Top row: upper

bound of the SCBs. Middle row: point estimate. Bottom row: lower bound of SCBs.
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Table 1

Comparison of the runtime for different methods to construct SCBs. The reported runtime is the average over

1000 calls to construct a SCB for a sample of size N = 50 from Model A in 1D and Model C in 2D.

tGKF ffscb Boots-t gMult-t rMult-t

Model A (1D) 4.2 s 115.2 s 88.4 s 86.6 s 83.9 s

Model C (2D) 92.8 s - 2039.6 s 1858.4 s 1864.9 s
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Table 2

Bias of average estimate of q0.05, N and twice its standard error for different methods of SCBs and the

Gaussian Model B. The simulations are based on 1000 Monte Carlo simulations.

N 10 20 30 50 100 150

true 4.118 3.382 3.211 3.081 2.993 2.960

tGKF −0.140 ± 0.033 −0.016 ± 0.011 −0.008 ± 0.007 +0.003 ± 0.004 +0.007 ± 0.002 +0.013 ± 0.001

GKF −1.190 ± 0.016 −0.459 ± 0.008 −0.289 ± 0.005 −0.159 ± 0.003 −0.072 ± 0.002 −0.039 ± 0.001

Degras −1.252 ± 0.021 −0.500 ± 0.011 −0.324 ± 0.007 −0.191 ± 0.005 −0.100 ± 0.003 −0.063 ± 0.003

Boots −1.427 ± 0.023 −0.569 ± 0.012 −0.360 ± 0.010 −0.202 ± 0.007 −0.096 ± 0.005 −0.058 ± 0.004

Boots-t + 1.701 ± 0.604 +0.226 ± 0.050 +0.083 ± 0.019 +0.027 ± 0.009 +0.006 ± 0.005 +0.010 ± 0.004

gMult −1.121 ± 0.159 −0.460 ± 0.031 −0.297 ± 0.016 −0.168 ± 0.009 −0.080 ± 0.005 −0.048 ± 0.004

gMult-t −0.688 ± 0.046 −0.292 ± 0.017 −0.200 ± 0.011 −0.121 ± 0.007 −0.060 ± 0.005 −0.035 ± 0.004

rMult −1.428 ± 0.179 −0.616 ± 0.032 −0.403 ± 0.015 −0.232 ± 0.009 −0.111 ± 0.005 −0.067 ± 0.004

rMult-t −0.018 ± 0.122 −0.000 ± 0.023 −0.009 ± 0.013 −0.003 ± 0.008 +0.001 ± 0.005 +0.005 ± 0.004

ffscb −0.530 ± 0.055 −0.181 ± 0.027 −0.111 ± 0.018 −0.057 ± 0.013 −0.022 ± 0.009 −0.048 ± 0.007
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Table 3

Bias of average estimate of q0.05, N and twice its standard error for different methods of SCBs and the

non-Gaussian Model B with ν = 7. The simulations are based on 1000 Monte Carlo simulations.

N 10 20 30 50 100 150

true 4.532 3.628 3.373 3.190 3.048 3.004

tGKF −0.558 ± 0.040 −0.262 ± 0.014 −0.170 ± 0.008 −0.106 ± 0.004 −0.048 ± 0.002 −0.031 ± 0.001

GKF −1.606 ± 0.019 −0.705 ± 0.010 −0.451 ± 0.006 −0.268 ± 0.004 −0.127 ± 0.002 −0.083 ± 0.001

Degras −1.666 ± 0.022 −0.749 ± 0.011 −0.488 ± 0.008 −0.301 ± 0.005 −0.156 ± 0.003 −0.108 ± 0.003

Boots −1.835 ± 0.025 −0.809 ± 0.013 −0.516 ± 0.010 −0.307 ± 0.007 −0.147 ± 0.005 −0.099 ± 0.004

Boots-t + 1.618 ± 0.699 +0.218 ± 0.098 +0.080 ± 0.042 +0.023 ± 0.016 +0.006 ± 0.006 +0.001 ± 0.004

gMult −1.471 ± 0.205 −0.703 ± 0.036 −0.457 ± 0.018 −0.278 ± 0.009 −0.135 ± 0.005 −0.091 ± 0.004

gMult-t −1.104 ± 0.047 −0.544 ± 0.018 −0.371 ± 0.012 −0.240 ± 0.008 −0.128 ± 0.005 −0.090 ± 0.004

rMult −1.763 ± 0.234 −0.870 ± 0.039 −0.574 ± 0.018 −0.352 ± 0.009 −0.175 ± 0.005 −0.116 ± 0.004

rMult-t −0.422 ± 0.133 −0.278 ± 0.027 −0.194 ± 0.015 −0.130 ± 0.009 −0.064 ± 0.005 −0.044 ± 0.004

ffscb −0.947 ± 0.053 −0.427 ± 0.026 −0.274 ± 0.018 −0.166 ± 0.013 −0.077 ± 0.008 −0.092 ± 0.006
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