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Abstract

Predicting rain from large-scale environmental variables remains a challenging problem for 

climate models and it is unclear how well numerical methods can predict the true characteristics 

of rainfall without smaller (storm) scale information. This study explores the ability of three 

statistical and machine learning methods to predict 3-hourly rain occurrence and intensity at 

0.5° resolution over the tropical Pacific Ocean using rain observations the Global Precipitation 

Measurement (GPM) satellite radar and large-scale environmental profiles of temperature and 

moisture from the MERRA-2 reanalysis. We also separated the rain into different types 

(deep convective, stratiform, and shallow convective) because of their varying kinematic and 

thermodynamic structures that might respond to the large-scale environment in different ways. Our 

expectation was that the popular machine learning methods (i.e., the neural network and random 

forest) would outperform a standard statistical method (a generalized linear model) because of 

their more flexible structures, especially in predicting the highly skewed distribution of rain rates 

for each rain type. However, none of the methods obviously distinguish themselves from one 

another and each method still has issues with predicting rain too often and not fully capturing the 

high end of the rain rate distributions, both of which are common problems in climate models. 

One implication of this study is that machine learning tools must be carefully assessed and are 

not necessarily applicable to solving all big data problems. Another implication is that traditional 

climate model approaches are not sufficient to predict extreme rain events and that other avenues 

need to be pursued.
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1 Introduction

Rainfall is fundamental to water resources, agriculture, and ecosystems and can cause 

massive damage in the form of too little or too much rain. However, rainfall can vary 

strongly in space and time making it hard to measure and even harder to predict. The rain 

rate distribution of most global climate models (GCMs) is far different than observed, with 
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too much weak rain and not enough heavy rain (e.g., Stephens et al., 2010; Fiedler et al., 

2020), which hinders predictions of extreme events. The goal of this study is to analyze 

the ability of advanced statistical and machine learning techniques to predict the occurrence 

and rain rate distribution of tropical rainfall using environmental temperature and humidity 

profiles as predictors. A salient question is if any of these techniques can improve upon 

existing GCM parameterizations in producing accurate rain characteristics from large-scale 

variables.

Rain is produced two main ways in GCMs. Convective rain is output from the convective 

parameterization, which typically involves a trigger function to activate the convection 

and a closure assumption to determine the intensity of the convection; convective 

parameterizations are used to represent the aggregate effect of many subgrid-scale 

convective clouds (Arakawa, 2004). Some convective parameterizations have shallow and 

deep schemes, while some models produce shallow convection in the boundary layer 

parameterization, although these clouds are often non-precipitating (e.g., Bretherton and 

Park, 2008). The rest of the rain in a GCM is produced explicitly at the grid scale as 

large-scale rain using a microphysical scheme (e.g., Dai, 2006). Recent studies have shown 

that the manner in which a GCM distributes rain between the convective and large-scale 

components strongly impacts the model’s climate projections (e.g., Kooperman et al., 

2018; Stephens et al., 2019; Norris et al., 2021). Thus, it is important to analyze rain 

types separately when assessing a GCM’s efficacy in producing realistic total rain fields, 

especially when considering changes to precipitation extremes in a warming climate.

The real world does not produce rain the same way as GCMs, but it is possible to separate 

observed rainfall into types that have some analogies to GCM convective and large-scale 

rain. In particular, we focus on the separation of rain into deep convective, stratiform, 

and shallow convective components using radar measurements. Figure 1 shows an example 

convective system observed by the Global Precipitation Measurement (GPM; Hou et al., 

2014) spaceborne radar over the tropical West Pacific. The most intense reflectivity in the 

horizontal and vertical indicates regions of active deep convection, while the more moderate 

and more horizontally homongeneous reflectivity indicates regions of less convectively-

active stratiform rain (Houze, 1997; Schumacher and Houze, 2003a). Together, these rain 

types cover a region greater than 100 km that can span multiple GCM grid boxes. It has 

been shown that over half of the total rainfall in the tropics and warm season mid-latitudes 

comes from large, organized rain systems like this one (Nesbitt et al., 2006; Schumacher 

and Rasmussen, 2020). Shallow convection is ubiquitous over the tropical ocean and occurs 

regularly over some continental locations, but is much more isolated and does not produce 

nearly as much rain (Schumacher and Houze, 2003b; Funk et al., 2013).

Radar-observed deep convection most closely aligns with rain produced by a model’s 

convective parameterization. A similar argument can be made for radar-observed shallow 

convection if a shallow convective scheme is included in the GCM formulation. GCM 

large-scale rain may also be equated to radar-observed stratiform rain that forms in the 

extratropics when large-scale lifting (like a warm front) is the main synoptic forcing 

and convection is minimal. In the tropics and warm-season midlatitudes, radar-observed 

stratiform rain forms as a result of the deep convection (Houze, 1997), so is not equivalent 
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to GCM large-scale rain produced by a microphysics scheme that acts separately from 

the convective parameterization. Despite this physical disconnect over large swaths of the 

globe, radar-observed stratiform rain is often compared to GCM large-scale rain, but should 

only be done within the framework of comparing precipitation processes not produced by 

the strongest convection (either in the model or real world). As discussed by Mapes et 

al. (2006), these three rain types form the building blocks of larger convective systems 

ranging from mesoscale convective systems (with scales on the order of 100 km and 12 h) 

to the Madden-Julian Oscillation (with scales on the order of 1000 km and many weeks), so 

predicting each of these rain types is important to studies of weather and climate. However, 

the ability of GCMs to simulate these building blocks and their interactions remains a 

challenge, which was a main motivation of this work.

There are currently a number of efforts to use tools from data science to improve the 

representation of subgrid processes in climate models. Since there is often very limited 

amount of data available for unresolved processes, especially in situ measurements, many 

of these efforts apply machine learning techniques to conventional model parameterizations 

or a large ensemble of higher resolution simulations (Brenowitz and Bretherton, 2018; 

O’Gorman and Dwyer, 2018; Rasp et al., 2018). Training on conventional parameterizations 

can improve computational efficiency, but does not address the physical deficiencies. The 

higher resolution simulations also have their own built-in assumptions about a different set 

of smaller scale unresolved processes.

Yang et al. (2019) considered a data-centric approach, using a large satellite rainfall data set 

and reanalysis fields to show that a generalized linear model (GLM) can perform well at 

predicting the occurrence of different rain types in the tropics, but it fails at capturing the tail 

of the rain rate distributions. This is mainly due to the restriction of parametric probability 

distributions used for the rain rates. Although distributions such as Gamma, log-normal, or 

Weibull are commonly used for rain rates due to their shape of density curves with long 

tails, they are often not flexible enough to capture the heaviest rain rates. This study builds 

on Yang et al. (2019) by applying two machine learning techniques, i.e., a random forest 

(RF) and deep feedforward neural network (NN), to a similar data set to determine how 

well these methods compare to one another and the GLM in predicting rain occurrence 

and capturing the high rain rate end of the distribution for multiple rain types. RL and 

NN can potentially handle nonlinearities better, and are not constrained to follow a specific 

probability distribution like GLM. The purpose of the next section is to provide general 

background on each method so that readers can better understand the implications of the 

results shown in Section 4.

2 Statistical and Machine Learning Methods

2.1 Generalized Linear Model

GLMs (McCullagh and Nelder, 1989) are a popular class of statistical models used to 

predict a response variable whose mean is assumed to be some parametric function of 

covariates. It is a more general modeling framework than multiple linear regression in that 

response variables may not follow a Gaussian distribution. Furthermore, unlike multiple 

linear regression models, which often use the least squares method for model fitting, GLMs 
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are fitted using a maximum likelihood estimation (MLE) method. The MLE method utilizes 

the distribution function of the response, thus giving generally better statistical properties of 

estimators than the least squares method. A GLM does not necessarily assume a direct linear 

relationship between the response and covariates, and often their nonlinear relationship is 

introduced by a link function. For instance, a common log-link function assumes that the log 

transformed mean of the response can be written as a linear combination of covariates. 

Widely used examples for distributions and link functions for GLMs include logistic 
regression (a Bernoulli distribution for the response and log link), loglinear regression 
(a Poisson distribution for the response and log link), and Poisson regression (a Poisson 

distribution for the response and log link).

In this work, we adopt the two-step modeling procedure used in Yang et al. (2019). Two 

separate GLMs, a logistic regression and a Gamma regression, are employed to deal with 

rain occurrence and rain amount, respectively. At a given time, let p(s) denote the probability 

of rain at a grid point s. Then the rain event is assumed to follow a Bernoulli distribution 

with

log p(s)
1 − p(s) = β0 + β1z1(s) + ⋯ + βpzp(s), (1)

where zi(s) denotes predictors (i.e. covariates) at the grid point s. If y(s) denotes the rain 

amount at s, we assume that y follows a Gamma distribution with

log[E y(s) ] = η0 + η1z1(s) + ⋯ + ηpzp(s) . (2)

For both models, parameters, including the coefficients βi and ηi in (1) and (2), are estimated 

using the MLE method. We fit the GLM models using data aggregated over space and time 

altogether, similar to Yang et al. (2019). Although models (1) and (2) do not have explicit 

temporal structure in them, the temporal structure of the covariates effectively account for 

that of the responses, and it did not seem necessary to add more temporal terms in (1) or (2).

Statistical inference on the estimated parameters, including the significance of coefficients, 

is made possible by using GLMs, and the estimated coefficients are readily interpretable. 

On the other hand, a possible drawback of the approach outlined above is the linearity 

assumption given in (1) and (2), as well as the distribution assumption on rain amount. 

In particular, the Gamma distribution may be too restrictive to account for some heavy 

rain events (Yang et al., 2019). Other commonly used distributions such as log-normal and 

Weibull distributions have similar problems, due to their particular parametric forms and 

restrictions. In view of the potentially restrictive nature of GLMs, we explore two popular 

machine learning methods, RF and artificial NNs, which operate under much weaker (i.e., 

non-linear) assumptions compared to GLMs. RF and NNs offer the most competitive 

predictive performances in many applications, and are now standard tools for machine 

learning.
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2.2 Random Forest

Random forest (Breiman, 2001) is an ensemble learning method that makes predictions 

based on multiple decision trees. A random forest is built upon these many decision trees. A 

decision tree is a simple model that predicts the label associated with a sample by a series 

of splitting rules. An example decision tree is shown in Figure 2, where a tree is used to 

determine if a binary response Y is 1 or 0. The root node has a splitting condition: “X1 > 0?” 

If the observation fulfills this condition, it will be passed to the next condition: “X2 < 10?” 

Otherwise, the tree predicts Y = 0. The procedure is applied recursively until the tree reaches 

a prediction of Y. For the construction of a decision tree, we refer the readers to Breiman 

(2001). In the above example, the underlying goal is classification, where the response is 

categorical. Decision trees can also be modified to handle a regression problem, where the 

response is quantitative.

The core idea of ensemble methods like RF is to combine weak predictive models to achieve 

strong predictive performance. A RF is usually trained with two “random” ideas. The first 

is bagging – for each tree, the training set is formed by resampling from the original data 

set with replacement. The second is feature randomness – each tree in a RF is trained with a 

random subset of features. Bagging lowers variance while feature randomization reduces the 

dependence across trees. They are beneficial to ensemble learning. The prediction of the RF 

is obtained by a majority vote over the predictions of the individual trees.

Similar to the GLM analysis, a two-step modeling procedure was implemented for RF in 

our work. Namely, we trained an RF model on rain occurrence and another RF model on 

rain amount. For both models, we used the default setting of the “randomForest” function 

from the R package“randomForest”, except that we restricted the number of decision trees to 

100 when predicting rain amount in order to alleviate the computational burden. As opposed 

to GLM, RF is a nonparametric method and can produce a highly nonlinear regression 

function. On the other hand, it is significantly more difficult to interpret the results of the RF 

model, although RF provides a measure of variable importance. In practice, one might also 

examine individual classification trees within the random forest to understand the results.

2.3 Neural Network

In recent years, artificial NNs (especially those with deep architecture) have become one 

of the most prominent models for complicated functions. A NN is based on a collection of 

connected nodes. Different ways to connect the nodes result in different NN architectures, 

such as fully connected (Hsu et al., 1990), sparsely connected (Ardakani et al., 2016), 

convolutional (Lo et al., 1995), and recurrent (Mikolov et al., 2010). Nodes are typically 

organized into layers, which can be classified as input, hidden and output. Networks with 

multiple hidden layers are said to have deep architectures, and are referred to as deep NNs. 

Deep architectures are commonly used nowadays, due to their strong empirical performance 

in many areas.

In our analysis, we adopt a deep feedforward NN in which consecutive layers are fully 

connected (Svozil et al., 1997; Schmidhuber, 2015) because it is one of the most standard 

forms of deep NN. Figure 2 depicts an example. We use X(l) ∈ ℝnl to represent the nodes 
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at layer l, where nl is the number of nodes at layer l. Take X(0) as the input and X(L) as the 

output. The hidden and output layers are generated as follows. Let xk
(l) be the node k of layer 

l, where l = 1, …, L and k = 1, …, nl. Then

xk
(l) = σk

(l) bk
(l) + ∑

i = 1

nl − 1
wi, k

(l) xk
(l − 1) ,

Where σk
(l) is the activation function, and bk

(l) and wi, k
(l)  are parameters to be trained by 

the data. For simplicity, it is common to use the same activiations within the same layer: 

σ(l): = σk
(l), for k = 1, …, nl.

Similar to the previous two models (GLM and RF), we adopted the two-step approach for 

the NN analysis. More specifically, we trained one NN to perform the binary classification 

on rain occurrence and another NN using training samples with positive rain values only to 

predict the rain amount. We considered different number of layers for NN. More specifically, 

we considered L = 2, 3, …, 10. Note that n0 = 80 and nL = 1 for all L since they are 

representing the input size and the output size. For any existing hidden layer, the number 

of nodes are set as follows: n1 = 40, n2 = 20, n3 = ··· = nL−2 = 6 and nL−1 = 3. For 

instance, for L = 1, there is only one hidden layer and so only n1 is relevant. For l 

= 1, …, L −1, the corresponding activation functions σk
(l) were chosen as the rectified 

linear unit (ReLU) functions (σ(x) = max(0, x)). The activation function for the output layer 

had to be chosen based on the response type, i.e., classification or regression. We used 

σ(L)(x) = 1/(1 + exp( − x)) for the classification, while we used the exponential function for 

the regression since the response is positive. For the loss functions, we adopted the binary 

cross entropy loss for the classification and the mean squared error for the regression. As for 

the estimation of the NN, we adopted mean square error as the loss function and trained the 

network via the popular algorithm Adam (Kingma and Ba, 2014).

To prevent over-fitting, we also adopted the dropout procedure, which is a common 

regularization method for training deep neural networks (Baldi and Sadowski, 2013; Gal 

et al., 2017). In the dropout procedure, neurons are stochastically dropped out during the 

training at each layer. In our implementation, the dropout rate was set to be the same at every 

layer and three possible values 0, 0.2, 0.5 were considered. Both the dropout rate and the 

number of layers, L, were regarded as the hyper-parameters and were chosen via a validation 

procedure — we randomly separated 20% of the training data as the validation set to select 

the best combination of dropout rate and number of layers.

3 Training and Test Data

We used two years of observations from the GPM dual-frequency precipitation radar (DPR) 

to calculate rain occurrence and rain rates, which were the predictands of the study. The 

full year of 2017 was used for training and the full year of 2018 was used for testing. The 

rain type classifications (i.e., deep convective, stratiform, and shallow convective; Funk et 

al., 2013) and associated rain rates were retrieved from 2ADPR V6 files. Figure 1 shows 
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an example orbit from the GPM radar with all three rain types present. We regridded the 

DPR orbital rain observations, which are made at a 5-km footprint scale over a 245-km 

swath, to 0.5° horizontal resolution and 3-hourly temporal resolution. Note that the 3-hourly 

rain rate represents an instantaneous value and not a 3-hour average. The predictors for 

the study were temperature and humidity fields at 40 pressure levels from the MERRA-2 

reanalysis (Rienecker et al., 2011) for 2017 and 2018. The MERRA-2 data was regridded to 

a similar horizontal and temporal resolution as the DPR data and points were only analyzed 

if a DPR orbit occurred in a grid during the 3-hour period. We limited our domain to the 

tropical West Pacific (130°E −180°E, 20°S −20°N; Figure 1a), but found similar results in 

the tropical East Pacific (not shown). Overall, we had 569,596 training samples and 572,968 

test samples.

The training and test data are generally similar to the observational data sets used in 

Yang et al. (2019). However, we used rain observations from the GPM DPR instead of 

the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) because of 

the DPR’s higher sensitivity to weaker rain rates and thus better shallow convective rain 

retrievals (Hamada and Takayabu, 2016). We also used a slightly higher time resolution (3 

hours vs 6 hours) to better isolate environment-rain relationships and we used all times of 

day instead of just 0–6 UTC to capture the full range of diurnal conditions (e.g., Hirose 

et al., 2008). We chose a warm ocean region with only small land amounts (i.e., New 

Guinea and the northwest coast of Australia) as a baseline test for our techniques, but a 

natural follow-on study would be over a tropical land region such as the Amazon or Congo. 

Finally, we only used temperature and humidity as predictors because they accounted for 

the majority of the predictive performance by the GLM in Yang et al. (2019), who also 

tested other environmental variables such as horizontal wind profiles and surface fluxes. 

We further utilized the full temperature and humidity profiles rather than just the first three 

empirical orthogonal functions so that the machine learning techniques had more flexibility 

in determining the vertical relationship of the predictors to the surface rain rate.

4 Prediction Results

4.1 Rain occurrence

When solving for occurrence, we treat grids with extremely small rain amounts as no-rain 

cases to avoid retrievals from the radar likely associated with clutter or noise. For each 

rain type, we selected a rain rate cutoff that accounts for less than 1% of the total rain 

amount in the training data. The cutoff values are 0.056, 0.0395, and 0.0087 mm/hr for deep 

convective, stratiform, and shallow convective rain, respectively. As will be illustrated in the 

next section, the three rain types produce different ranges of rain rate intensity, which is why 

separate cutoff values are needed for each rain type.

Rain does not very occur often at the time and space scales being considered in this study 

(i.e., 3 hourly and 0.5°), so there are significantly more no-rain cases than rain cases. To deal 

with this imbalanced classification problem, we created a “balanced” training data set by 

using a random under-sampling procedure. That is, we randomly sample the no-rain cases 

until we have the same number of no-rain and rain samples in our training data set. Note that 

we classify rain/no-rain cases for each rain type separately.
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The top four rows of Table 1 show how well the three statistical and machine learning 

methods described in Section 2 predict no-rain and rain cases for each rain type. The 

actual time the GPM radar observed each rain type over the West Pacific is indicated by 

adding the false negative and true positive values (i.e., about 16%, 24%, and 35% for deep 

convective, stratiform, and shallow convective rain, respectively). All three methods do a 

reasonable job at distinguishing truly raining cases, with GLM slightly outperforming the 

other two methods. However, all methods suffer from a relatively high false positive rate 

(i.e., predicting rain too often), which is a persistent problem in most climate models as 

well (Fiedler et al., 2020). While GLM had the best true positive predictions, it had the 

worst true negative predictions (i.e., predicting no rain when no rain is observed). RF had 

the best true negative prediction and NN fell between the two other techniques. The results 

discussed above are obtained by taking the cutoff probability as 0.5 for the three methods. 

More specifically, when the predicted probability for a test case is larger or equal to 0.5, we 

treat it as “rain”; otherwise, it is considered as “not rain”. One may also choose different 

cutoffs. We provide the receiver operating characteristic (ROC) curves in Figure 4 in the 

Appendix, which illustrates the performance of the three methods with respect to different 

cutoffs.

4.2 Rain rate distributions

We next apply the statistical and machine learning methods to predict the rain rate 

distribution of the three rain types. Figure 3 compares the prediction of each method to the 

“True” distribution observed by the GPM DPR. Note that the GPM-observed 99.9% rain rate 

varies by rain type with values of 14, 10, and 1.1 mm/hr for deep convective, stratiform and 

shallow convective rain, respectively. Even though shallow convective rain has the highest 

occurrence, it has much smaller rain amounts over a 0.5° grid because shallow convection 

doesn’t cover much of a grid and is composed of more lightly raining cells. Stratiform rain is 

also normally less intense than deep convective rain on a pixel-by-pixel basis but because it 

tends to cover more area than deep convective cells, stratiform rain amounts approach deep 

convective values at 0.5° resolution.

Figures 3a and b show that all three methods (indicated by different green lines) tend to 

underestimate weaker rainrates (i.e., around the 50% quantile or first tick mark) in the 

deep convective and stratiform distributions, shifting to overestimations around the 90% 

quantile (or second tick mark). Between the 90 and 99% quantiles, there is a rapid drop 

off in prediction counts compared to the true distribution with NN and GLM showing the 

most rapid decrease. RF is the only technique to produce predictions past the 99% quantile 

for deep convective rain, the category associated with the most extreme rain amounts. All 

methods do better predicting the shallow convective rain rate distribution (Figure 3c) with 

the drop-off in counts not occurring until after the 99% quantile.

To provide context on how the observed and predicted rain rate distributions in Figure 3 

compare to standard GCM output, we obtained a year of data from the NCAR Community 

Atmospheric Model, version 5 (CAM5; Neale et al., 2013). We use model output for 2003 

instead of 2018 because it was readily available. While there may be small year-to-year 

variations in the rain rate distributions over the West Pacific, we do not expect them to be 
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large, especially since neither 2003 or 2018 experienced strong El Niño or La Niña events. 

The original rain rate data had a 25 × 25km resolution so we aggregated rain rates to 0.5° 

grids to match our analysis. Hourly total precipitation (PRECT) and convective (PRECC) 

precipitation rates were also aggregated into 3-hourly rain rates. We use PRECC to represent 

deep convective rain and the difference between PRECT and PRECC (PRECT-PRECC) to 

represent the large-scale rain (i.e., rain that is produced from the grid-scale microphysics 

parameterization rather than via the subgrid-scale convective parameterization). GCMs 

do not typically calculate a separate shallow convective rain rate, but there are only 

small differences between the GPM convective deep rain rate distribution compared to 

when we combine the observed deep and shallow convective rain rate distributions (i.e., 

deep convective rain dominates the convective rain rate distribution in the tropical West 

Pacific). In addition, we included the MERRA-2 convective and large-scale + anvil rain 

rate distributions in Figure 3. Like CAM5, MERRA-2 does not provide a separate shallow 

convective rain rate.

As seen in Figure 3a, MERRA2 and CAM5 perform similarly and do not provide a good 

density estimation for deep convective rain (and are, in fact, close to the GLM and NN 

distributions). Recent work has shown that a stochastic version of the Zhang-McFarlane 

convective parameterization used in CAM5 can improve the deep convective rain rate 

distribution (Wang et al., 2021), but stochastic techniques are still not regularly implemented 

in standard GCM runs. CAM5 and MERRA2 large-scale rain appears to better characterize 

the GPM stratiform rain distribution (Figure 3b), although as discussed in the introduction, 

large-scale rain from GCMs and stratiform rain from radar are not considered to be be 

produced the same way in the tropics so caution must be taken in this comparison. Our 

CAM5 results are consistent with Kyselỳ et al. (2016) who showed that a suite of regional 

climate models highly underestimated extreme convective rain rates over central Europe, 

with a much better representation of extreme rain in the large-scale rain field.

To further assess predicted rain amounts using GLM, RF, and NN, we calculated the 

following metrics to measure the performance of the techniques:

1. Root mean squared error (RMSE) = ∑i = 1
N yi − yi

2/N and

2. Mean absolute error (MAE) = ∑i = 1
N yi − yi /N,

where yi is the observed rain amount for the i-th sample, and ŷi is the predicted rain amount 

for the i-th sample, for i = 1, …, N. Here samples are aggregated over space and time, and 

thus there are a total of N samples for each rain type. Note that MAE is in general less 

sensitive to large values compared to RMSE. Table 1 shows that RF has the highest (and 

thus worst) RMSE and MAE among the three techniques for each rain type. NN usually 

provides the smallest errors among the three methods, and GLM usually performs only 

slightly worse than NN.

5 Conclusions

Because of persistent GCM biases in rain occurrence and intensity, there is strong 

motivation to use empirical data to help understand and fix these biases. While training 
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and testing data can come from higher resolution models, we chose to use a multi-year 

data set of rain observations from satellite radar along with temperature and humidity 

fields derived from a model constrained by observations (i.e., reanalysis). There are also 

a number of advanced statistical and machine learning techniques with which to analyze 

the available data. We chose a representative set that ranged in ease of implementation and 

interpretability: a generalized linear model, random forest, and deep feedforward neural 

network.

All three methods performed reasonably well in predicting the occurrence of each of the 

three tropical building block rain types: deep convective, stratiform, and shallow convective. 

Each method still predicted rain too often, although at moderate to strong rain rates instead 

of at the lightest rain rates more typically overpredicted by GCMs. Due to the high 

complexity of the model structure, regularization is usually needed for NN. With the dropout 

regularization, NN performed similarly to GLM in predicting the rain rate distributions 

of each rain type, while RF was somewhat more flexible in modeling the true response. 

However, RF produced the largest root mean square and mean absolute errors and the very 

highest rain rates were still underpredicted by all methods.

Our original goal was to determine the best overall method in order to implement it in a 

GCM to improve the representation of the full spectrum of tropical rain types. However, 

the results of each method were mixed and would require some sort of trade-off in more 

accurately characterizing the occurrence and intensity of each rain type. While there are 

other statistical and machine learning methods that could still be tested, we feel that this 

study highlights innate limitations in trying to deterministically predict rainfall probability 

distributions from standard grid-scale variables. That is, convection and its organization is 

simply not as parameterizable as we would like it to be, especially when attempting to 

predict extreme events. It has been argued that higher resolution climate models (on the 

order of a few km) may be necessary to solve this problem by voiding the need for the 

convective parameterization (e.g., Fiedler et al., 2020), but this path is computing intensive 

and doesn’t guarantee better solutions because of the remaining uncertainties in unresolved 

microphysics and turbulence. Thus, we advocate the continued exploration of creative, less 

resource-intensive solutions that include stochastic elements and unified schemes that don’t 

isolate rain types from one another (e.g., Cardoso-Bihlo et al., 2019; Hagos et al., 2020)
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APPENDIX

A ROC curves

Figure 4 presents the ROC curves of the three methods for different rain types. ROC curves 

are created by plotting the true positive rate (TPR) against the false posifive rate (FPR) at 

various cutoff probabilities. The performance of the three methods are similar. GLM and RF 

have slightly larger TPRs than NN given the same FPRs.

Figure 4: 
Receiver operating characteristic (ROC) curves obtained by GLM, RF and NN for a) deep 

convective, b) stratiform, and c) shallow convective rain.
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Figure 1: 
GPM radar reflectivity observations at 01 UTC on 4 February 2017. a) Black lines represent 

the GPM radar swath, red box is the bounds of the study area over the West Pacific. b) 

Horizontal cross section of reflectivity at 2 km AMSL near the red line in a). c) Vertical 

cross section of reflectivity taken along the black line in b). Stratiform profiles are labeled 

as 1, convective profiles are labeled as 2. The far right cell in the vertical cross section is 

considered shallow convection because its top is below the 0° C level (typically about 5 km 

in the tropics).
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Figure 2: 
Illustrations for descision tree (left) and deep feedforward neural network (right).
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Figure 3: 
GPM-observed and model-predicted 3-hourly, 0.5° rain rate distributions over the tropical 

West Pacific for a) deep convective, b) stratiform, and c) shallow convective rain. Values in 

parentheses are the total cases in the testing data that rain. Values on the x-axis for the three 

plots are the 50, 90, 99, and 99.9% quantiles of the rain rate distribution, respectively.
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Table 1:

The top four rows describe the performance of the occurrence predictions for each rain type by each method. 

The values in each column are the fraction of the total cases that fall into each prediction category and sum to 

one, while bold values are the highest correct predictions. The bottom two rows quanitify the accuracy of the 

the rain rate (mm/hr) prediction in terms of root mean square error (RMSE) and mean absolute error (MAE), 

with bold values representing the smallest errors among the three methods.

Deep convective Stratiform Shallow convective

GLM RF NN GLM RF NN GLM RF NN

True Negative 0.485 0.568 0.536 0.474 0.529 0.502 0.325 0.415 0.323

False Negative 0.036 0.054 0.054 0.052 0.069 0.076 0.084 0.137 0.106

True Positive 0.122 0.103 0.103 0.188 0.171 0.164 0.267 0.214 0.245

False Positive 0.357 0.275 0.387 0.286 0.231 0.306 0.324 0.234 0.325

RMSE 0.758 0.975 0.749 0.624 0.730 0.619 0.095 0.105 0.094

MAE 0.405 0.504 0.385 0.295 0.367 0.275 0.058 0.062 0.059
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