Skip to main content
. 2022 Jun 30;22(13):4960. doi: 10.3390/s22134960

Table 2.

Summary of average metrics scores for each aggregation method and classifier model, class size = 5.

Position Dictionary Model-Method ACC Precision Recall F1 BACC
1 Gabor-1000-20 LGBM-Mean 0.736 0.692 0.613 0.634 0.613
12 Gabor-125-20 XGBoost-Mean 0.729 0.676 0.613 0.632 0.613
39 KSVD-125-10 SVC-Mean 0.724 0.673 0.611 0.632 0.611
60 KSVD-250-5 LGBM-Max 0.72 0.668 0.624 0.641 0.624
93 KSVD-500-5 XGBoost-Max 0.715 0.664 0.614 0.633 0.614
115 KSVD-500-10 SVC-Max 0.709 0.667 0.573 0.593 0.573
150 Gabor-125-20 Random Forest-Mean 0.703 0.658 0.555 0.574 0.554
159 KSVD-250-20 MLP-Mean 0.703 0.635 0.613 0.622 0.613
187 Gabor-125-20 LGBM-Single 0.699 0.645 0.588 0.607 0.588
222 Gabor-125-20 XGBoost-Single 0.696 0.638 0.578 0.597 0.578
265 DL-1000-10 MLP-Max 0.691 0.616 0.563 0.578 0.563
373 KSVD-125-5 SVC-Single 0.681 0.631 0.551 0.573 0.551
393 Gabor-125-10 Random Forest-Single 0.678 0.636 0.539 0.562 0.539
459 KSVD-250-5 Random Forest-Max 0.671 0.651 0.522 0.549 0.522
564 KSVD-62-5 MLP-Single 0.656 0.566 0.556 0.560 0.556
696 Gabor-500-40 KNeighbors-Mean 0.632 0.597 0.468 0.482 0.468
698 DL-1000-20 GaussianNB-Mean 0.631 0.519 0.495 0.502 0.494
718 Gabor-125-5 AdaBoost-Mean 0.628 0.534 0.527 0.521 0.526
825 KSVD-250-5 Kneighbors-Max 0.61 0.629 0.43 0.440 0.430
865 DL-1000-10 GaussianNB-Max 0.603 0.498 0.465 0.473 0.465
943 Gabor-125-10 AdaBoost-Max 0.586 0.489 0.499 0.478 0.499
950 Gabor-125-10 AdaBoost-Single 0.585 0.485 0.486 0.472 0.486
971 Gabor-125-5 Decision Tree-Mean 0.582 0.474 0.476 0.474 0.476
977 Gabor-125-10 Kneighbors-Single 0.581 0.551 0.414 0.428 0.414
1086 Gabor-125-20 Decision Tree-Single 0.56 0.458 0.458 0.457 0.458
1150 DL-250-20 GaussianNB-Single 0.548 0.449 0.417 0.411 0.416
1176 KSVD-1000-5 Decision Tree-Max 0.543 0.447 0.44 0.443 0.439