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Abstract

Modern statistical analyses often involve testing large numbers of hypotheses. In many situations, 

these hypotheses may have an underlying tree structure that both helps determine the order that 

tests should be conducted but also imposes a dependency between tests that must be accounted 

for. Our motivating example comes from testing the association between a trait of interest and 

groups of microbes that have been organized into operational taxonomic units (OTUs) or amplicon 

sequence variants (ASVs). Given p-values from association tests for each individual OTU or ASV, 

we would like to know if we can declare a certain species, genus, or higher taxonomic group to be 

associated with the trait. For this problem, a bottom-up testing algorithm that starts at the lowest 

level of the tree (OTUs or ASVs) and proceeds upward through successively higher taxonomic 

groupings (species, genus, family etc.) is required. We develop such a bottom-up testing algorithm 

that controls a novel error rate that we call the false selection rate. By simulation, we also show 

that our approach is better at finding driver taxa, the highest level taxa below which there are dense 

association signals. We illustrate our approach using data from a study of the microbiome among 

patients with ulcerative colitis and healthy controls.
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1 Introduction

Many large-scale hypothesis testing problems in biology have a branching tree structure. 

For example, Yekutieli (2008) considered tests of genetic linkage in which a genome-wide 

test was first applied; if this test was significant, tests for linkage on each chromosome 

were considered. If any chromosome showed evidence of linkage, the p and q arms were 

tested, and so on. In this example, the genome-wide test is at the “top” of a tree with a 

branching structure. The next level is comprised of chromosome-level tests, and moving 

down the tree corresponds to increasing localization of the linkage signal. For this example, 

the “top-down” strategy that Yekutieli (2008) used is a natural choice. The null hypothesis 
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being tested at each node in the tree is the “global” null hypothesis that none of the tests 

below this node are significant.

Some problems are not well suited to the top-down approach. Our motivating example 

is the 16S rRNA microbiome study, where bacterial sequences are typically grouped into 

operational taxonomic units (OTUs) or assigned to amplicon sequence variants (ASVs). 

Then, the association between each OTU or ASV and a trait of interest is calculated (for 

simplicity, we use the term OTU to refer generically to either ASVs, OTUs, or any other 

bacterial feature that is used to classify bacteria hierarchically). Typically, many OTUs will 

belong to the same species. After testing association between each OTU and a trait, we 

may wish to determine if any species of microbes are associated with the trait; this is a 

reasonable strategy as bacteria in the same species typically have similar properties (i.e., 

thrive in the same environment or produce similar lipids). Depending on our findings, we 

may then wish to test larger groups corresponding to successively higher taxonomic ranks 

(i.e., genus, family, order, class, phylum, and kingdom). The natural ordering of hypotheses 

in this example starts at the bottom of the tree and proceeds upward. Further, it may be 

desirable to continue to test hypotheses at higher levels of the tree even if no findings have 

been made at a lower level, since an accumulation of weak signals from lower levels may 

coalesce into a detectable signal at a higher level. The scientific questions of interest thus 

motivate development of a bottom-up approach to testing tree-structured hypotheses.

A second example of a situation where bottom-up testing may be appropriate arises in 

studies of the association between genes and a trait or disease outcome. We may be 

interested in testing whether groupings of genes that are mapped to gene ontology (GO) 

terms in a common pathway are significantly associated with the trait or disease outcome 

under study. In particular, we may use data from the GO project to construct a tree of 

ontology terms, in which each node comprises a list of genes and the child nodes of a parent 

node are a mutually-exclusive partition of the genes in the parent node. The root node of 

such a tree might be a single GO term such as “immune response”. Using the p-values 

from tests of association between the trait of interest and the genes included in this tree, 

we can first test for significant association at the gene level, then move up through the tree 

testing whether gene groupings dictated by the GO hierarchy show evidence of association, 

while controlling a single error rate. This approach is particularly attractive for secondary 

analyses of publicly-available data, as we may only have available p-values at a set of SNPs 

or polymorphic loci. We note this application is distinct from the usual enrichment test for 

GO terms.

The false discovery rate (FDR) has largely replaced the family-wise error rate to control 

the error made when testing many hypotheses. Benjamini and Hochberg (1995) proposed 

a simple way to to control the FDR when testing independent hypotheses, which extends 

easily to hypotheses having positive regression dependence (Benjamini and Yekutieli, 2001). 

However, an adjustment to the Benjamini and Hochberg procedure to allow arbitrary 

dependence between tests (Benjamini and Yekutieli, 2001) is very conservative in most 

settings. For this reason, testing procedures that control FDR for specific patterns of 

dependence have been investigated (Storey et al., 2004; Qiu et al., 2005; Efron, 2007; Sun 

and Cai, 2009; Fan et al., 2012).
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A number of testing procedures have been proposed for tree-structured hypotheses. In 

addition to the top-down approach of Yekutieli (2008), Meinshausen (2008) and Rosenbaum 

(2008) developed a similar top-down approach but aimed at controlling the family-wise 

error rate. Benjamini and Heller (2007),Heller et al. (2018), and Benjamini and Bogomolov 

(2014) also developed top-down approaches but limited to two-level tree structures. 

Motivated by the microbiome example, our goal is to develop a procedure for testing 

tree-structured hypotheses that controls an appropriate error rate like the FDR, but that 

proceeds in a bottom-up fashion.

For a bottom-up testing strategy, the “global” null hypothesis may not be appropriate. We 

return to the microbiome example. When considering if we should declare a certain node 

(say, a genus) to be associated with the trait we are studying, we adopt the following 

approach: if a large proportion of species from that genus influence the trait, we should 

conclude the genus influences the trait. Conversely if only a few of the species from a 

genus are non-null, then a better description of the microbes that influence occurrence of 

the trait is a list of associated species. Finding taxa that can be said to influence a trait in 

this sense is the first goal of our approach. The second goal is to locate the highest taxa in 

the tree for which we can conclude many taxa below, but not any ancestors above, influence 

risk; we refer to such taxa as driver taxa. In the genetic association example, a driver node 

would correspond to the set of genes in the highest-level GO term that shows evidence of 

association. Note that these goals are incommensurate with the “global” null hypothesis, 

which stipulate that a node is associated if any node below it is associated.

The rest of this paper is organized as follows. In Section 2, we propose a modified null 

hypothesis for bottom-up testing that adjusts for selection decisions at lower levels of tree. 

We further develop an error criterion we call the false selection rate (FSR) that corresponds 

to this modified null hypothesis, and propose an algorithm for assessing the significance of 

association between taxonomic units (or, more generally, nodes in the tree) and a trait under 

study that controls the FSR. In Section 3, we compare our proposed methods with existing 

methods using simulated data. In Section 4, we apply our new methods to data on the human 

gut microbiome from a study of inflammatory bowel disease (IBD), and detect driver taxa 

that are associated with ulcerative colitis (UC). Section 5 contains a discussion of our results 

and some possible future directions implied by our work.

2 Methods

2.1. Preliminaries

The hypotheses we test form the nodes of a branching tree; here, we review the terminology 

we use. The root node is the “top” of the tree; while we focus on trees with one root node, 

our method can be readily extended to handle trees with multiple root nodes as discussed 

in the Discussion section. For any two nodes that are directly connected, the node closest 

to (furthest from) the root is the parent (child ) node. The set of child nodes of a parent are 

its offspring. A node is an inner node if it has at least one child node; otherwise it is a leaf 
node. The ancestors of a node are all the nodes traversed in a path from that node to the root. 

The descendants of a node are all nodes having that node as an ancestor. A subtree is a tree 

rooted at an inner node of the full tree, comprised of the subtree root and all its descendants. 
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For example, in Figure 1(a), the tree rooted at N3,1 that includes inner nodes N3,1, N2,1, 

N2,2, and leaf nodes N1,1, N1,2, N1,3, N1,4 is a subtree of the full tree. Because each node 

corresponds to a hypothesis, we will sometimes refer to testing a node as shorthand for 

testing the hypothesis at that node. We will refer to a node at which we have rejected the null 

hypothesis as a detected node, and a detected node is a driver node if none of its ancestors 

are detected.

The depth of a node is the number of edges between that node and the root node. We use 

the term level to describe sets of nodes that will be tested together. In the simplest case 

such as in Figure 1 (a), nodes that have the same depth are assigned to the same level; we 

call such a tree complete. For incomplete trees such as that shown in Figure 1 (b), level is 

assigned by the investigator and does not necessarily correspond to depth. For example, in 

a phylogenetic (taxonomic) tree, level typically corresponds to the taxonomic rank (species, 

genus, etc.); a phylogenetic tree is then incomplete when the leaf nodes (OTUs) have 

missing taxonomic assignment below a certain level.

2.2 A Bottom-Up Procedure for Complete Trees

Our first inferential goal is to detect all nodes in the tree (e.g., taxa for the microbiome 

example) that are associated with a trait of interest. Our second goal is to locate any driver 

nodes. We assume that p-values for the association tests at all leaf nodes are available, 

and propose a method to calculate p-values for inner nodes in Section 2.2.5. We wish to 

avoid declaring a node to be associated solely because a few offspring nodes are strongly 

associated; thus we restrict claims of association to nodes in which most offspring are 

associated. For this goal, the global null hypothesis, which specifies a node is associated if 

even one offspring node is associated, is not appropriate. The conjunction null hypothesis 

(Price and Friston, 1997) that a node is only associated if all offspring nodes are associated 

is worth considering; however, tests of the conjunction null hypothesis are known to be 

conservative in many situations, as the p-value is determined by selecting the largest p-value 

from the p-values at each offspring, and then comparing the selected p-value to the uniform 

distribution on [0, 1] (Friston et al., 2005). However, it does easily lead to a bottom-up 

procedure; after propagating the largest p-value from offspring nodes to their parent nodes, 

nodes are then detected using the standard BH (Benjamini and Hochberg, 1995) procedure. 

We report results from this procedure even though we do not recommend it, due to its low 

power.

2.1.1. Modified null hypothesis—We aim to develop a bottom-up procedure that 

avoids the low power of testing the conjunction null hypothesis, but still finds taxa for which 

most offspring are associated. We notice that a parent node may be detected as significantly 

associated using an omnibus test of offspring association if even a single offspring has 

a strong-enough association. To avoid such cases, we propose to test a modified null 

hypothesis that among the offspring that have not been previously detected at a lower level, 
none are associated, against the alternative that some previously-undetected offspring are 

associated. The modified null hypothesis is intermediate between the global and conjunction 

null hypotheses: a node will only be found to be associated if the association signal from 

many offspring together imply association for the parent (like the conjunction null) but the 
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way the association signal from previously-undetected nodes is combined is like a test of the 

global null hypothesis.

To illustrate the modified null, consider the hypothetical example in Figure 1 (a). Nodes 

highlighted with blue circles are truly associated; N2,1 and N3,3 are driver taxa. Although 

N3,1 is associated under the global null hypothesis because N1,1 and N1,2 are its descendants, 

we would prefer to conclude that N2,1 rather than N3,1 explains the association signal among 

the descendants of N3,1 because half of the descendants of N3,1 are not truly associated. This 

is achieved by using the modified null hypothesis; N3,1 is not associated under the modified 

null hypothesis, because N2,1 has been detected and N2,2 is not associated.

2.2.2 Weights to account for multiplicity—The modified null hypothesis has another 

important implication: the testing at one level may decide hypotheses at one or more higher 

levels. This occurs when all offspring of a parent node are detected, in which case the parent 

node is not tested but automatically detected. For example, since both offspring of N2,6 in 

Figure 1(a) are detected, we should immediately conclude that N2,6 is associated. Similarly, 

having already detected N2,6, if we determine that N2,5 is associated, then N3,3 would have 

no undetected offspring and should be determined to be associated as well.

The difficulty with including both such offspring and their parent in the detection list is that 

an incorrect decision on a single node can result in multiple false decisions. To resolve this, 

we introduce weights ωl,j that count the number of detections that could arise when testing 

node Nl,j. Consider the example shown in Figure 1 (a). Assume at level 1, nodes N1,11 and 

N1,12 have been detected. Then, at level 2, the remaining nodes to be tested are N2,1–N2,5 

(inside the black box). Suppose p-values for these nodes are calculated as described in 

Section 2.2.5. We consider testing nodes at each level in ascending order of p-values and for 

now assume p2,1 < p2,2 < p2,3 < p2,4 < p2,5. Rejecting the modified null hypothesis at N2,1 

only detects N2,1; rejecting the null at N2,2 will detect N2,2 and N3,1 (2 nodes); rejecting the 

null at N2,3 will detect N2,3; rejecting the null at N2,4 will detect N2,4 and N3,2 (2 nodes); 

rejecting the null at N2,5 will detect N2,5, N3,3, and N4,1 (3 nodes). Thus, for this ordering, 

we define the weights (ω2,1, ω2,2, ω2,3, ω2,4, ω2,5) = (1, 2, 1, 2, 3). Now, suppose instead 

that the p-values were ordered as p2,5 < p2,1 < p2,2 < p2,3 < p2,4; then the weights would 

be (ω2,5, ω2,1, ω2,2, ω2,3, ω2,4) = (2, 1, 2, 1, 3). Although these weights are different, the 

sorted weights (ω2,(1), ω2,(2), ω2,(3), ω2,(4), ω2,(5)) = (1, 1, 2, 2, 3) are the same. Thus, the 

(unsorted) weights (ωl,1, ωl,2,..., ωl, nl*) depend on the p-values at level l and are thus random 

(even conditional on the detection events below level l). However, we show in Appendix A.1 

that, for complete trees, the sorted weights ωl,(1) ≤ ωl,(2) ≤ ... ≤ ωl, (nl*) are unique regardless 

of the ordering of p-values.

2.2.3 FSR—When we use the modified null to determine the true association status, we 

must introduce a novel error rate, which we call the false selection rate (FSR). We use the 

term FSR rather than modified FDR because the “selection” of nodes as being associated or 

not is influenced by decisions made at lower levels, so that our procedure has the same spirit 

as “forward selection” in the field of variable selection. We reserve the term “discovery” as 

in the FDR for situations where decisions are based on a test statistic that is calculated for 
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each node without regard to decisions at other nodes. In fact, the term FSR has been used by 

Wu et al. (2007) in variable selection to describe the proportion of uninformative variables 

included in a selected model. Wu et al. (2007) tune the selection procedure to control the 

FSR, although the problems they consider do not have a tree structure and they require the 

introduction of pseudovariables to achieve FSR control. To formally define the FSR, let Rl,j 

indicate the jth node at level l (i.e., node Nl,j) is detected, i.e.

Rl, j = I node Nl, j is detected ,

where I(.) is the indicator function. Let Ul, j denote the set of undetected offspring of the 

jth node on level l = 2,..., L; note that at the bottom level U1, j = ∅. For those nodes where 

Ul, j ≠ ∅ (for which we actually conduct a test of the modified null hypothesis), we define 

V l, j
m  to indicate a false selection:

V l, j
m = I Rl, j = 1 but the modified null hypothesis at node Nl, j is true given Ul, j .

Assuming a tree with L levels that has nl (l = 1, 2,...,L) nodes at level l, among which we 

order the nodes such that the first nl* nodes have undetected offspring, the FSR under the 

modified null hypothesis is given by

FSR = E
∑l = 1

L ∑j = 1
nl* ωl, jV l, j

m

∑l = 1
L ∑j = 1

nl* ωl, jRl, j ∨ 1
, (1)

where the weights ωl,j are as defined in section 2.2.2. Note that in (1) the value of V l, j
m

is only required at nodes that are actually tested Ul, j ≠ ∅ , not nodes that are detected 

because all their offspring are detected Ul, j = ∅ . For the latter nodes, if we let V l, j
m  be 

equal to the value of V l*, j*
m  where (l*, j*) is the node whose detection resulted in detection of 

node (l, j), then we can rewrite the FSR in (1) as

FSR = E
∑l = 1

L ∑j = 1
nl V l, j

m

∑l = 1
L ∑j = 1

nl Rl, j ∨ 1
. (2)

We distinguish the FSR from the FDR, for which we use the global null hypothesis to 

determine true association status, and the FDRc, for which we use the conjunction null. 

We define V l, j
g and V l, j

c  to indicate a false discovery was made under the global null and 

conjunction null, respectively so that V l, j
g = I Rl, j = 1 but the global null hypothesis at node 

Nl,j is true). and V l, j
c = I Rl, j = 1 but the conjunction null hypothesis at node Nl,j is true). The 

FDR and FDRc each take the form of (2) but with V l, j
m  replaced by V l, j

g  or V l, j
c , respectively. 
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Note that if the global null hypothesis at Nl,j is true, then the modified null hypothesis 

at Nl,j is true, which in turn implies the conjunction null hypothesis at Nl,j is true. Thus, 

V l, j
g ≤ V l, j

m ≤ V l, j
c  holds at every node, which in turn implies that the three error rates FSR, 

FDR and FDRc are related by

FDR ≤ FSR ≤ FDRc .

This implies that controlling FSR is a more stringent criterion than controlling FDR, and 

so a testing procedure that controls the FSR will automatically control the FDR. However, 

controlling FSR does not guarantee control of FDRc. We return to this issue in section 2.2.5 

when we select a test statistic to test the modified null hypothesis so as to make the FSR 

similar to the FDRc.

2.2.4. Testing procedure—We now construct a testing procedure that tests the nodes in 

the tree level by level, starting at level l = 1. For each level l = 1,...,L, our testing procedures 

consist of two elements: a set of thresholds to determine which nodes are detected at level 

l, and a way of aggregating the p-values from the undetected nodes at level l to give 

p-values for nodes that have undetected offspring; discussion of the actual statistic used for 

aggregating the p-values is deferred to Section 2.2.5. Our goal is to control the error rate so 

that the FSR ≤ q. In analogy with the concept of alpha spending in interim analysis (Demets 

and Lan, 1994), we allocate to each level l a target level ql (l = 1, 2,..., L) chosen so that 

∑l = 1
L ql = q. We note here that we do not guarantee the FSR at each level is controlled 

at level ql, just that the overall FSR is controlled at level q. Without prior knowledge on 

which level the driver nodes might be located, we recommend ql = qnl/n, which assumes 

that all nodes in the tree have equal importance. We show later that this partitioning scheme 

achieved the most robust performance in detecting driver nodes via a sensitivity analysis 

over simulated data.

We now describe how to assign p-value thresholds to control FSR. Without loss 

of generality, assume the p-values for nodes that have undetected offspring at 

level l, pl,1, pl,2,..., pl, nl*, have been sorted in ascending order, and let the sorted 

values be denoted by pl, (1) ≤ pl, (2) ≤ ⋯ ≤ pl, nl* . Let dl* denote the (as yet unknown) 

number of nodes detected at level l. We seek a set of ascending thresholds 

αl, 1 ≤ αl, 2 ≤ ⋯ ≤ αl, nl* by which we reject the modified null hypothesis at dl* > 0 nodes 

(corresponding to pl, (1) ≤ αl, 1, pl, (2) ≤ αl, 2, …, pl, dl* ≤ αl, dl* but pl, dl* + 1 > αl, dl* + 1; we 

accept the modified null hypothesis at all nodes in level l if pl, (1) > αl, 1 in which 

case we take dl* = 0, or reject the modified null hypotheses at all nodes in level l if 

pl, (1) ≤ αl, 1, pl, (2) ≤ αl, 2, …, pl, nl* ≤ αl, nl* in which case we take dl* = nl*. We adopt the 

thresholds {αl,j} given by
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αl, j
1 − αl, j

=
Dl − 1 + ∑k = 1

j ωl, (k)

∑k = j
nl* ωl, (k)

× ql Λ τ0
1 − τ0

. (3)

where Dl − 1 = ∑l′ = 1
l − 1 ∑j = 1

nl′* ωl′, jRl′, j for l ≥ 2 is the cumulative number of detections made 

up to and including the (l − 1)th level as well as their ancestors that are automatically 

detected, D0 = 0, and τ0 is a pre-specified constant to prevent nodes with large p-values from 

being detected (if a large number, say m, of null hypotheses can be easily rejected because 

of very low p-values, then q × m nodes with large p-values can be said to be detected, while 

still controlling the overall error rate at level q); we set τ0 = 0.5, so we do not detect nodes 

with p-values ≥ 0.5, which are treated as null hypotheses as in Storey (2002). At each level, 

the thresholds (3) are a variant of the thresholds in the step-down test proposed by Gavrilov 

et al. (2009), which have been used to control FDR in some applications as they have been 

shown to be more powerful than the standard BH procedure. Theorem 1 asserts that our 

bottom-up procedure with thresholds (3) control the FSR at q.

Theorem 1.: Assume the three conditions hold: (C1) nodes on the same level have the same 

depth; (C2) p-values for null nodes follow the uniform distribution U[0, 1]; (C3) at each 

level, the p-value for a null node is independent of the p-values at all other nodes. Then the 

bottom-up procedure with thresholds (3) ensures that the FSR ≤ q.

The proof of this theorem is provided in Appendix A.2. Condition (C1) assumes a complete 

tree, and will be relaxed in Section 2.3. Conditions (C2) and (C3) at inner (parent) nodes can 

be satisfied by our proposal below for obtaining p-values for inner nodes, which is based on 

Conditions (C2) and (C3) at leaf nodes.

2.2.5 Calculating p-values for inner nodes—There are two ways to imagine 

calculating p-values for inner nodes in a bottom-up testing algorithm for tree-structured 

hypotheses. In the first approach, p-values for inner nodes are determined entirely from the 

p-values of their offspring (and hence, are determined by the p-values at leaf nodes). In 

the second approach, p-values for inner nodes are calculated by applying a test statistic to 

pooled data (e.g., aggregating read count data from OTUs to higher-level taxa as in Tang 

et al. (2016)). The second approach may lose statistical power as pooling data may result 

in effects being cancelled out if some offspring nodes are protective while others increase 

risk. More importantly, it is hard to know how to condition the distribution of a test statistic 

of a parent node that uses pooled data from offspring nodes on the results of tests of data 

from the constituent offspring nodes. For these reasons, we seek an algorithm that operates 

entirely on the p-values of the leaf nodes.

We consider how to aggregate the p-values from level l that correspond to the undetected 

offspring of a parent node at level l + 1. Recall that Ul + 1, j denotes the set of 

undetected offspring nodes for the parent node Nl+1,j and Ul + 1, j ≠ ∅ for j = 1, …, nl + 1* . 

Note that the p-values of the undetected nodes at level l necessarily exceed the threshold 

αl, dl* + 1, and are hence not uniformly distributed on the interval [0, 1]. However, since 
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this is the only restriction on these p-values, it follows that, under either the global 

or modified null hypothesis, the p-values for nodes that were not detected at level 

l are uniformly distributed on the interval αl, dl* + 1, 1 ; equivalently, adjusted p-values 

pl, k′ = pl, k − αl, dl* + 1 / 1 − αl, dl* + 1  are uniformly distributed on the interval [0, 1]. To 

combine the adjusted p-values, we use Stouffer’s Z score:

Zl + 1, j = 1
Ul + 1, j

∑
k ∈ Ul + 1, j

Φ−1 1 − pl, k′ , (4)

where Φ is the standard normal cumulative distribution function and Ul + 1, j  represents 

the cardinality of Ul + 1, j. The Zl + 1, j calculated using the undetected null nodes in 

Ul + 1, j follows a standard normal distribution N (0, 1) under the modified null hypothesis 

conditional on the pattern of detection at level l and Conditions (C2) and (C3) at level l. 
Thus, pl + 1, j = 1 − Φ Zl + 1, j ; in addition, pl+1,j and pl+1,j′ are independent since, on any 

tree, Ul + 1, j ∩ Ul + 1, j′ = ∅ as each undetected node at level l is a member of exactly one 

of the sets Ul + 1, j. We use Stouffer’s Z-score as it is known to be powerful when small or 

moderate non-null effects appear in the majority of individual tests as opposed to Fisher’s 

method, which is powerful when only a few large non-null effects are present (Loughin, 

2004). Our simulation also indicated that using Stouffer’s Z-score gives a better control of 

FDRc than using Fisher’s method (the results based on Fisher’s method not shown).

2.2.6 The algorithm—We summarize the proposed procedure in the following 

algorithm.

• (Input) p-values at the leaf nodes (level l = 1)

• (Step 1) At level l, determine which nodes are detected using thresholds αl,j (3).

• (Step 2) At level l + 1, for nodes that have undetected offspring, aggregate these 

offspring p-values into a Z score using (4) and convert it into a p-value

• (Ascend) Iterate between steps 1 and 2 until we reach the root node of the tree

• (Output) A list of detected nodes and a list of driver nodes

2.3 Incomplete Trees

In Section 2.2, we only considered complete trees where nodes on the same level all have 

the same depth. Here we consider more general trees where depth and level do not coincide. 

For example, in the tree from Figure 1 (b), nodes N1,3 and N1,4 have different depth from 

the other leaf nodes, although they are all on the same level. In the microbiome example, 

this would occur whenever some of the lower taxonomic ranks (e.g., species and genus) of 

an OTU are not known. We describe here how our approach can be extended to incomplete 

trees.

For an incomplete tree, the sorted weights (ωl,(1), ωl,(2),..., ωl, nl* ) depend on the ordering 

of p-values. In Figure 1 (b), when N1,6 has the largest p-value among all leaf nodes, for 
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example, p1,1 < p1,2 < p1,3 < p1,4 < p1,5 < p1,6, the weights are (ω1,1, ω1,2, ω1,3, ω1,4, ω1,5, 

ω1,6) = (1, 2, 1, 1, 1, 3) and the sorted weights are (1, 1, 1, 1, 2, 3); if N1,4 has the largest 

p-value, for example, p1,1 < p1,2 < p1,5 < p1,6 < p1,3 < p1,4, the weights are (ω1,1, ω1,2, ω1,5, 

ω1,6, ω1,3, ω1,4) = (1, 2, 1, 2, 1, 2) and the sorted weights are (1, 1, 1, 2, 2, 2). To account for 

this ambiguity, we seek a single set of sorted weights that will control FSR for any possible 

ordering of p-values.

For the two sets of weights just considered, note that the cumulative sums of sorted weights 

∑k = 1
j ωl, (k) for the first set, given by (1, 2, 3, 4, 6, 9) are element-wise less than or equal 

to the cumulative sums of the sorted weights of the second set, given by (1, 2, 3, 5, 7, 9). 

Thus, if we were to use the first set of ordered weights in (4), the thresholds αl,j would be 

smaller (i.e., more stringent) than the thresholds calculated using the second set of sorted 

weights. As a result, using the first set of ordered weights would allow us to control the 

FSR for either of the two orderings of p-values. Using the recursive algorithm we describe in 

Appendix A.3, we can show that the first set of weights in this example do in fact guarantee 

FSR control for any ordering of p-values. In general, this algorithm finds the set of sorted 

weights ωl, (1) ≤ ⋯ ≤ ωl, nl*  for level l that correspond to weights obtained by some “least 

favorable” ordering of p-values and satisfy the inequalities

∑
k = 1

j
ωl, (k) ≤ ∑

k = 1

j
ωl, (k), j = 1, …, nl*,

for all possible sets of sorted weights ωl, (1), …, ωl, nl*  induced by different orderings of 

p-values. Because the weights corresponding to the “least favorable” ordering of p-values 

result in the most stringent thresholds among all possible weights {ωl,(k)}, we call them 

the “least favorable weights”. Note that these weights are needed to ensure the control of 

FSR for any ordering of p-values and no other weights can provide such a guarantee, as 

we can never completely rule out that the “least favorable” ordering corresponds to the true 

ordering. We then adopt thresholds calculated using ωl, (k) , given by

αl, j
1 − αl, j

=
Dl − 1 + ∑k = 1

j ωl, (k)

∑k = j
nl* ωl, (k)

× ql Λ τ0
1 − τ0

. (5)

Theorem 2 ensures control of the FSR using the least favorable weights.

Theorem 2.—Under Conditions (C2) and (C3) in Theorem 1, the bottom-up procedure 

with thresholds (5) ensures the FSR defined in (1) is ≤ q.

The proof of Theorem 2 can be found in Appendix A.4. When a tree is complete, the least 

favorable weights reduce to the unique sorted weights regardless of the ordering of p-values. 

Thus the testing procedure presented here encompasses the one presented in Section 2.2 as a 
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special case. To implement this procedure, we simply modify the algorithm in Section 2.2.6 

by replacing the thresholds given in (3) by the thresholds given in (5).

Finally, we dismiss two alternative approaches for handling incomplete trees. One approach 

would be to fill in the missing levels with unique ancestors for each node. For example, 

each OTU having class as the lowest known taxonomic classification would be assigned its 

own (unknown) species and (unknown) genus. This is unsatisfactory both scientifically, as 

we then assert that the “correct” species and genus for this OTU is different from any other 

OTU, and statistically, as the p-value for the species and genus level tests are necessarily 

identical to the p-value for the OTU. Another possible solution is to place each leaf node at 

the level just below the nearest inner nodes. However, this strategy can still be unsatisfactory 

for applications such as the microbiome, as it is scientifically questionable to treat some 

OTUs at the same level as higher taxa such as families.

2.4 Separate FSR Control

The testing procedures we have described so far assume that we wish to detect nodes at 

all levels of the tree while controlling the overall FSR at some rate q. In some situations 

we may want to have separate FSR control at lower-level nodes and higher-level nodes. For 

example, we may wish to first determine which OTUs are detected while controlling FSR 

at some rate q1; then we may wish to conduct a second, separate analysis of taxa starting at 

the species level and continuing up the phylogenetic tree, while controlling the FSR of the 

second analysis at some rate q−1.

The procedures presented in Sections 2.2 and 2.3 do not guarantee that the FSR at each level 

l is controlled at ql (except for level 1 which always has FSR controlled at q1) because of 

the cumulative effect of Dl−1 in (3) and (5), which creates a dependence between the nodes 

detected at each level. If we break this dependence by re-starting the counter Dl−1 at some 

level, it is then possible to separately control FSR below and above the level. We describe 

such an algorithm in Appendix A.5 and illustrate its use in Section 4 where we show an 

analysis that controls both FSR at the OTU level and FSR among taxonomic groups from 

species to phylum. In principle, the approach could be used to divide the nodes into more 

than two groups, simply by re-zeroing the counter in Dl−1 at the appropriate levels.

3 Simulation Studies

We conducted simulation studies to assess the performance of our bottom-up tests, and to 

compare with three competing approaches: (1) the naïve approach that calculates the p-value 

for an inner node by using Stouffer’s Z-score to aggregate the p-values from all leaf nodes 

that are its descendants, then applies the BH procedure on the collection of p-values from 

all nodes; (2) the top-down approach of Yekutieli (2008) as implemented in the R package 

structSSI (Sankaran and Holmes, 2014), with p-values for inner nodes calculated in the same 

way as in the naïve approach; and (3) the conjunction-null test that assigns a p-value to an 

inner node by the largest p-value from all offspring nodes (equivalently, the largest p-value 

from all corresponding leaf nodes) and applies the BH procedure as in the naïve approach. 

All methods take p-values at leaf nodes as input. The nominal level for all error rates was set 

to 10%.
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To simulate p-values at leaf nodes, we first selected a number of inner or leaf nodes to be 

driver nodes and assumed that all offspring of driver nodes (including all its leaf nodes) were 

associated with the trait of interest. We independently sampled p-values for associated leaf 

nodes from distributions that have enriched probability at values close to zero. We used the 

Beta distribution Beta(1/β, 1) where β > 1, which has a relatively heavy right tail (Figure 

S1) and mimics the empirical distributions of p-values observed in the IBD data (Figure 

S2). To assess the robustness of our results, we also considered sampling p-values from 

a Gaussian-tailed model (i.e., first drawing a value X ∼ N (β, 1) and then obtaining the 

p-value p = 1 − Φ(X), where Φ is the standard normal cumulative distribution function), 

which has frequently been used to study the performance of FDR procedures (Storey, 2002; 

Barber and Ramdas, 2017; Javanmard et al., 2018) and which has a smaller right tail (Figure 

S1). In both models, β characterizes the overall association strength (e.g., effect size of the 

trait on the microbiome). For all simulations we assumed that all leaf nodes that were not 

descendants of driver nodes were null with p-values sampled independently from the U[0, 1] 

distribution.

We considered three tree structures, shown in Figure 2. The first is a complete binary tree 

with 2 children for each inner node and 10 levels, which has 1023 nodes of which 512 are 

leaves. The second is a complete “bushy” tree with 10 children for each inner node and 4 

levels, which has 1111 nodes of which 1000 are leaves. The third is a real phylogenetic 

tree for the inflammatory bowel syndrome data (Halfvarson et al., 2017) that we analyze in 

Section 4. This tree has 8 levels, 249 inner nodes, and 2360 leaf nodes, with large variation 

in the number of child nodes at different inner nodes. It is incomplete, having extensive (> 

50%) missing assignments at the genus and species levels, and a few at the family level.

For each tree structure, we then considered three causal patterns, differentiated by the level 

of the selected driver nodes (Figure 2). The first pattern (C1) is characterized by sparse 

driver nodes located at the leaf nodes; the second (C2) by several driver nodes located at an 

intermediate level, chosen so that ∼10% of leaf nodes were associated; and the third (C3) by 

a single driver node at a higher level, inducing association with a large subtree. In particular, 

for C1 we randomly selected 10/20/36 leaf nodes for the binary/bushy/real trees. For C2, we 

randomly chosen 10 out of 64 nodes at level 4 for the binary tree, 10 out of 100 nodes at 

level 2 for the bushy tree, and 5 out of 48 nodes at the family level (level 4) for the real tree. 

For C3, we randomly picked one node at level 7 for the binary tree, one node at level 3 for 

the bushy tree and, for the real tree, the class Clostridia from level 6 (covering ∼80% of all 

leaf nodes). Each of the 3 × 3 = 9 scenarios was replicated 1000 times.

3.1 Error Rates

Direct comparison of the methods we consider is complicated by the fact that each method 

was designed to control a different error rate. In particular, the bottom-up test was designed 

to control FSR (under the modified null), the naive and top-down approaches control FDR 

(under the global null), and the conjunction-null test control FDRc (under the conjunction 

null). For this reason, we evaluated each approach by the error rate they were designed to 

control, but also examined their performance in controlling other types of error rates. The 

FSR of the top-down and naïve approaches were calculated by using the list of detected 
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nodes (as determined by Benjamini and Hochberg (1995) for the naïve method and Yekutieli 

(2008) for the top-down method), then proceeding level by level as if these detections were 

the result of tests of the modified null hypothesis. The FSR was then calculated using the 

definition (1).

Figure 3 displays these results for the nine (= 3 × 3) scenarios we considered, for the 

simulations that used the Beta distribution for non-null leaves. In all 9 scenarios our bottom-

up method always controlled FSR. In contrast, the naïve and top-down methods typically 

had inflated FSR, with the most severe inflation occurring in C1, where the driver nodes 

were simulated exclusively at leaf nodes, causing many higher-level nodes to be falsely 

detected by these methods. As expected, our method also controlled FDR; in fact, the FDR 

is only less than the FSR for at most 5% across all simulation scenarios, indicating that our 

control of the FSR is not very conservative compared to the FDR control. The top-down 

method, although designed to control FDR, still yielded slightly inflated FDR occasionally; 

this is likely due to violation of the independence assumption between the p-value at a node 

and the p-values of all its ancestors, which is required by the top-down method (Yekutieli, 

2008). The naïve method always controlled FDR because the BH procedure is known to 

be robust to such positive correlations. Despite a lack of theoretical results, we found that 

our bottom-up method controlled FDRc well in all scenarios we considered. The naïve and 

top-down methods typically had inflated FDRc, and FDRc for these methods resembled 

their FSR, consistent with the notion that FSR approximates FDRc. The conjunction-null 

test controlled all error rates, as expected. Figure S3 shows the same patterns of FSR, FDR, 

and FDRc for simulations based on the Gaussian-tailed model.

3.2 Accuracy and Pinpointing Driver Nodes

As our simulations were conducted under the conjunction null hypothesis, the driver nodes 

and all of its descendants are the truly associated nodes. We measured the accuracy of 

detected nodes against truly associated nodes by calculating a Jaccard similarity between the 

two sets. We used a weighted Jaccard similarity to account for the branching-tree topology 

of the hypotheses we test, because detecting a node with offspring implies the offspring are 

detected in some sense, even if they were not individually detected. For example, identifying 

a genus as being associated with the trait of interest implies the species and OTUs that 

belong to this genus are associated, even if we did not detect them (and hence are not 

included in the list of detected nodes). For this reason, we calculated the Jaccard similarity 

by weighting each node by the number of leaf nodes that are its descendants. The weighted 

Jaccard similarity is then the sum of the weights of correctly-detected nodes, divided by the 

total weight assigned to either detected or truly associated nodes.

Examining Figure 4 we see that the bottom-up approach has the best or second-best 

accuracy in all cases we examined, making it the best overall choice. The test of the 

conjunction hypothesis slightly outperforms our bottom-up test when only leaf nodes are 

truly associated (causal pattern C1). As soon as inner nodes are truly associated, as in 

C2 and C3, the conjunction-null test becomes very conservative. The bottom-up approach 

performed best for C2 and C3 except for the binary tree in C3, where the naïve and 

top-down approaches performed better at low parameter values. When considering these 
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results, it should also be noted the naïve method (but not the top-down method) had elevated 

FSR and FDRc for this simulation.

Our method is most different from existing methods in their ability to pinpoint driver nodes. 

We say a driver node is “pinpointed” if it is detected to be associated and none of its 

ancestors are detected. We evaluated the percentage of driver nodes that were pinpointed and 

showed the results in Figures 5 and S5. Our bottom-up method detected many more driver 

nodes than the naïve, top-down, and conjunction-null methods. The naïve method pinpointed 

some driver nodes when the association signals were weak, but inevitably detected their 

ancestors as the signals became stronger. By design, the top-down method always fails to 

pinpoint any driver nodes since it only tests nodes below the root node if the root node 

is detected. Note that the percentage of driver nodes pinpointed by our method sometimes 

decreased as the effect size increased, because more (but not all) descendants were detected 

and removed from the statistic for the driver nodes, which thus aggregated less information. 

For the Beta-based simulations, undetected driver nodes remained a possibility regardless 

of the effect size, as the Beta distribution always generates a non-negligible portion of 

p-values that were close to one even when the effect size was extremely large. For the 

Gaussian-tailed simulation, all driver nodes were eventually detected, as large p-values 

became more infrequent as the effect size increased. We note that the conjunction-null test 

can easily fail to detect higher-level nodes (including driver nodes) when some offspring of 

these nodes have large p-values, as in our Beta-based simulations.

We partitioned the total error rate q into q1,..., qL in proportion to the number of nodes 

at each level. Because this choice is somewhat arbitrary, we have also done a sensitivity 

analysis comparing the ability to pinpoint driver nodes (Figure S6) of the “default” option 

just described with a number of alternatives. In the limited simulations we performed, 

we found that the optimal partition was likely determined by the true causal pattern. In 

particular, increasing ql at the bottom level would identify more driver nodes in C1; and 

increasing ql at high levels would identify more driver nodes in C2. However, in C3 using 

either the bushy tree or the real tree, our default option outperformed the alternatives that 

assign more weight at high levels. Overall, our default partition achieved the most robust 

performance in detecting driver nodes over all scenarios that we have considered here.

4 Inflammatory Bowel Disease (IBD) Data

IBD is a chronic disease accompanied by inflammation in the human gut. The two most 

common subtypes are ulcerative colitis (UC) and Crohn’s disease. Halfvarson et al. (2017) 

investigated the longitudinal dynamics of the microbial community in an IBD cohort of 

60 subjects with UC and 9 healthy controls. The microbial community was profiled by 

sequencing the V4 region of the 16S rRNA gene. Sequence data were processed into an 

OTU table through the QIIME pipeline. Our goal was to identify taxa that have differential 

abundance between the UC and control groups at baseline.

We removed OTUs that were present in fewer than 10 samples and dropped 4 OTUs that 

failed to be assigned any taxonomy. The assigned taxonomy grouped the 2360 OTUs into 

249 taxonomic categories (i.e., inner nodes) corresponding to kingdom, phylum, class, order, 
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family, genus, and species levels. Note that 15.2%, 56.9%, and 91.3% OTUs have missing 

assignment at the family, genus, and species level, respectively. As there were no obvious 

confounders provided with these data, we used the Wilcoxon rank-sum test to compare the 

OTU relative abundances between case and control groups to obtain p-values for each OTU.

We applied the (one-stage) bottom-up test with nominal FSR of 10% as well as the 

naïve and top-down methods with nominal FDR of 10%. The detected taxa can be 

visualized in Figure 6. The bottom-up test identified 127 OTUs, 6 species, 9 genera, 7 

families, 5 orders, 6 classes, and 1 phylum. We inferred that the driver taxa were: phylum 

Verrucomicrobia; classes Chloroplast, Clostridia, Coriobacteriia, Erysipelotrichi and RF3; 

families Prevotellaceae and S24–7; genera Morganella and [Prevotella]; and species ovatus 
and radicincitans; see Table S1 for more details. In contrast, both the naïve and top-down 

methods identified the root node and many taxa at high levels, suggesting their inability 

to pinpoint the real driver taxa. In addition, the top-down method did not detect some 

lower-level taxa in phylum Proteobacteria that were detected by all other methods. The 

conjunction-null test detected 142 OTUs but only 5 taxa, each of which contained a single 

OTU. All these results are consistent with the findings of our simulation studies.

The bottom-up results in the previous paragraph controls the FSR of all discoveries at 10%, 

as well as the FSR of the discoveries made at the lowest (OTU) level, which is always 

controlled at level q1 in our approach. For the IBD data, our default choice for q1 is 10% × 

(2360/2609) = 9.046% for the discoveries at the OTU level, which also include 1 species, 2 

genera, 1 order, and 1 class, each of which has a single descendent OTU that was detected. 

Since the one-stage procedure was used, we cannot conclude that the remaining taxon 

discoveries are controlled with FSR of 10% − 9.046% = 0.954%. However, if we apply the 

two-stage approach we can separately control these FSRs at 9.046% and 0.954%; the results 

at the OTU level are unchanged, but at stage 2 we now detect 1 species, 1 genus, 3 families, 

4 orders, 3 classes and 2 phyla; note the cost of separate control of the stage-2 FSR resulted 

in detection of 15 fewer taxa. Nevertheless, the detected driver taxa (phyla Bacteroidetes and 

Verrucomicrobia, classes Chloroplast, Coriobacteriia and Erysipelotrichi, order Clostridiales, 

genus Morganella, and species radicincitans) largely overlapped with those by the one-stage 

procedure.

The assignment of over 90% of FSR to the OTU level may be questionable if we want to 

use the two-stage approach to control FSR for OTUs and higher taxa. Thus, we also applied 

the two-stage bottom-up test that splits the overall FSR 10% into 5% and 5% for OTU and 

taxon analyses. At stage 1, we detected 79 OTUs, as well as 1 species, 1 genus, 1 order, 

and 1 class because they each have only one OTU which was detected; among these OTUs 

and taxa we can declare we control FSR at 5%. At stage 2, we detected 4 species, 4 genera, 

5 families, 4 orders, 3 classes, and 2 phyla, among which we can declare we control FSR 

at 5%. Interestingly, the list of driver taxa was identical to that obtained by the previous 

two-stage approach except for the absence of genus Morganella.
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5 Discussion

In this work, we presented a bottom-up approach to testing hypotheses that have a branching 

tree dependence structure. Our procedure tests hypotheses in a tree level by level, starting 

from the bottom and moving up, rather than starting from the top and moving down. Our 

analysis is novel in several respects. First, we developed a novel modified null hypothesis, 

which is more suitable for our goal of detecting nodes in which a dense set of child 

nodes are associated with the trait of interest, and have developed a stepwise procedure 

that ensures rigorous control of an error rate for all hypotheses that are tested. Second, 

we have recognized that the bottom-up testing approach for tree-structured hypotheses is 

intrinsically more like a model selection problem than a simultaneous testing problem; 

this has motivated us to propose control of the FSR rather than the more standard FDR. 

It is interesting to see that techniques like FSR control, developed for model selection, 

are required for a problem that involves only structured hypothesis testing. Our simulation 

studies confirmed the control of FSR and demonstrated good performance of our method 

compared to existing methods using a measure of accuracy based on a weighted Jaccard 

similarity. Further, our bottom-up method is more successful at pinpointing driver nodes, 

offering highly interpretable results, while the existing methods frequently fail at this task. 

Finally, although our method was not designed to control FDRc, our simulations showed 

that use of Stouffer’s Z score to combine information leads to approximate control of FDRc 

as well.

Our method can easily be extended to very general tree structures. We can easily handle 

trees in which the leaf nodes are not all at level 1. With some modifications, our method 

can also be applied to trees with multiple (correlated) root nodes such as trees generated 

by pathways, by using our bottom-up testing procedure up to the level right below the 

root level and applying to the root level the standard BH procedure, which is robust to 

positive correlations. We expect this modified procedure to control FSR (and hence FDR 

and, approximately, FDRc).

Although our approach is very general, it does have some limitations that could benefit 

from further development. First, we treated p-values at leaf nodes with equal weight. In 

some applications, different leaf nodes may have varying importance and may be weighted 

differently. Second, it may be of interest to consider alternative partitioning of the total 

FSR that can improve performance at pre-specified levels of particular importance if, for 

example, finding genera that were associated with a trait was of particular interest. Further, 

we assumed independence between null leaf nodes because it is required by both Stouffer’s 

method for combining p-values and the step-down procedure for controlling the error rate 

of decisions. To ensure this condition, pruning can be used to restrict analysis to a subset 

of leaf nodes that are nearly independent. We have also explored through simulation studies 

that our method may still control FSR when there are weak dependencies among null leaf 

nodes (Figure S7). However, we found that strong dependencies tend to lead to inflated FSR. 

In such cases, it is possible to extend our method to account for arbitrary dependencies using 

the Cauchy combination test for combining p-values (Liu and Xie, 2019; Liu et al., 2019).
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Our methods have been implemented in the R package. Our program is extremely 

computationally efficient. For example, for the one-stage bottom-up procedure on the IBD 

data, it took 1.3 seconds on a laptop with a 2.5 GHz Intel Core i7 processor and 8 GB RAM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
(a) A hypothetical example of a set of hypotheses having a dependence structure 

corresponding to a complete tree. Nodes are labeled by level (first subscript) and then 

numbered within level (second subscript). Nodes highlighted with blue circles are truly 

associated. A node colored red indicates it is detected (declared to be associated with the 

trait of interest by a testing method). With the bottom-up methods, all nodes at the bottom 

level are tested at level 1, nodes inside the black box are tested at level 2, and nodes inside 

the red box are tested at level 3. (b) A hypothetical example illustrating an incomplete tree. 

In this example, it makes scientific sense to assign nodes N1,3 and N1,4 to level 1 even 

though they have a different depth than the other leaf nodes. For example, these two nodes 

could correspond to OTUs that are missing a species assignment but share a genus with the 

other leaf nodes.
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Figure 2: 
The three tree structures (binary, bushy, and real) and three causal patterns (C1, C2, and C3) 

for simulation studies. The real phylogenetic tree structure was obtained from the IBD data 

and, for simplicity of exposition, skipped the genus and species levels which have extensive 

missing assignments. The root node is always located at the center of each tree and the leaf 

nodes are represented by the outermost ring. The top of each blue subtree is a designated 

driver node, which can be an inner or leaf node.
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Figure 3: 
Error rates for testing all nodes in the tree. The non-null p-values at leaf nodes were 

simulated from a Beta(1/β, 1) distribution.
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Figure 4: 
Accuracy (weighted Jaccard similarity) of detected nodes against truly associated nodes 

(including the driver nodes and all of their descendants at all levels). The non-null p-values 

at leaf nodes were simulated from a Beta(1/β, 1) distribution.
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Figure 5: 
Percentage of driver nodes that were pinpointed. The non-null p-values at leaf nodes were 

simulated from a Beta(1/β, 1) distribution.
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Figure 6: 
Taxa (marked in red) detected to be differentially abundant between the UC and control 

groups in the IBD data by (1) the one-stage bottom-up test, (2) the naive method, (3) 

the top-down method, (4) the conjunction-null test, (5) the two-stage bottom-up test with 

nominal FSRs 9.046% and 0.954% for OTUs and taxa, and (6) the two-stage bottom-up test 

with nominal FSRs 5% and 5% for OTUs and taxa. The levels from the center outward are 

kingdom, phylum, class, order, family, genus and species. The OTU level is supposed to be 
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located at the outermost layer and has been omitted to simplify the figure. The plots were 

generated using GraPhlAn (http://huttenhower.sph.harvard.edu/graphlan).
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