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Abstract

Fox genes represent an evolutionary old class of transcription factor encoding genes that

evolved in the last common ancestor of fungi and animals. They represent key-components

of multiple gene regulatory networks (GRNs) that are essential for embryonic development.

Most of our knowledge about the function of Fox genes comes from vertebrate research,

and for arthropods the only comprehensive gene expression analysis is that of the fly Dro-

sophila melanogaster. For other arthropods, only selected Fox genes have been investi-

gated. In this study, we provide the first comprehensive gene expression analysis of

arthropod Fox genes including representative species of all main groups of arthropods, Pan-

crustacea, Myriapoda and Chelicerata. We also provide the first comprehensive analysis of

Fox gene expression in an onychophoran species. Our data show that many of the Fox

genes likely retained their function during panarthropod evolution highlighting their impor-

tance in development. Comparison with published data from other groups of animals shows

that this high degree of evolutionary conservation often dates back beyond the last common

ancestor of Panarthropoda.

Introduction

Fox gene transcription factors are characterized by the presence of an approximately 100

amino acid long DNA-binding motif, the so-called forkhead domain [1]. This domain forms

three α-helices, three β-sheets and two wing-shaped structures. Fox genes are involved in vari-

ous developmental processes and have been studied in a large number of animals including

vertebrates [2–4], cephalochordates [5, 6], hemichordates [7], echinoderms [8], annelids [9],

molluscs [9], cnidarians [10, 11] and even sponges [12, 13]. Among the Ecdysozoa, however,

comprehensive studies are restricted to the dipteran fly Drosophila melanogaster [14, 15] and

the nematode worm Caenorhabditis elegans [16] (and references therein) (see Table 1 for Dro-
sophila gene names). Data from other groups of ecdysozoans and other arthropods are rela-

tively sparse and often only address single Fox genes [e.g. 17–22].

The first unified nomenclature for Fox genes was established by [23], defining 15 classes of

Fox genes. In the following years, additional classes have been identified and four classes, FoxJ,
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FoxL, FoxN, and FoxQ each were subdivided into two (e.g. FoxJ into FoxJ1 and FoxJ2) [24].

Two of these, FoxR and FoxS are believed to represent vertebrate specific groups [25, 26].

Recently, yet another class of Fox genes, FoxT, has been identified that appears to be panar-

thropod specific [27, 28].

In this study, we analyzed the embryonic expression patterns of Fox genes in three arthro-

pod species, representing main branches of Arthropoda, the red flour beetle Tribolium casta-
neum, the pill millipede Glomeris marginata, the common house spider Parasteatoda
tepidariorum, and as a representative of Onychophora, the blue velvet worm Euperipatoides
kanangrensis. Together, these species cover most of Panarthropoda. Tribolium serves as a rep-

resentative of Hexapoda, that in contrast to Drosophila shows a more ancestral mode of devel-

opment (e.g. [29, 30]). Glomeris, as a representative of Myriapoda, represents the sister group

to hexapods + crustaceans (Pancrustacea) with which they form the Mandibulata (Myriapoda

+ Pancrustacea). Parasteatoda (as a representative of Chelicerata) represents the sister group

to Mandibulata, and Euperipatoides (as a representative of Onychophora) likely represents the

closest related outgroup to Arthropoda (e.g. [31, 32]).

We analyzed the embryonic expression patterns of all identified Fox genes in these species

(Fig 1). Whenever appropriate we also provide additional expression data on previously

investigated Fox gene expression patterns. Expression data that simply add to or verify com-

prehensive earlier studies are provided in the supplementary data. In cases where a given Fox

gene expression pattern has previously been investigated exhaustively, we refer to the pub-

lished literature. Additionally, we compare the currently available data on Fox gene expres-

sion and function and try to recapitulate their potential roles during panarthropod

evolution.

Methods

Animal husbandry and embryo preparation

Embryos were treated as described in [33] (Tribolium), [34] (Glomeris), [35] (Parasteatoda),

and [36] (Euperipatoides). Developmental stages are defined as per [37] (Tribolium), [34] (Glo-
meris), [38] (Parasteatoda), and [39] (Euperipatoides).

Table 1. Drosophila synonyms.

Commonly used Drosophila names Drosophila synonyms

FoxA forkhead (fkh) CG10002
FoxB fd96Ca / fd96Cb fd4 (CG11921) / fd5 (CG11922)
FoxC crocodile (croc) fd1 (CG5069)
FoxD fd59A fd3 (CG3668)
FoxF biniou (bin) CG18647
FoxG sloppy paired1 (slp1) / sloppy paired2 (slp2) / fd19B CG16738 / CG2939 / CG9571
FoxJ1 FoxJ1 CG32006
FoxK fd68A CG11799
FoxL1 fd64A fd2 (CG1132)
FoxN14 jumeau (jumu) CG4029
FoxN23 checkpoint suppressor homologue (ches-1-like) CG12690
FoxO foxo fd88A (CG3143)
FoxP fd85E CG16899
FoxQ2 fd102C CG11152
FoxT fd3F / Circadianly regulated gene 1 (Crg-1) CG12632 / CG32788

https://doi.org/10.1371/journal.pone.0270790.t001
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Sequence analysis

The phylogenetic relationship of all Fox genes identified in our research organisms has

recently been investigated in [28]. For an overview of the Fox gene complements of arthropods

and onychophorans, see Fig 1 (and S1 Fig).

Gene cloning

For all species, RNA isolation of a mix of embryos representing different developmental stages,

and subsequent cDNA synthesis were carried out as described in [34]. All gene fragments were

amplified using gene specific primers (S1 Table) based on published genomes and transcrip-

tomes, and Topo-TA cloned into the pCRII vector (Invitrogen, Carlsbad, CA, USA).

Sequences were checked on an ABI3730XL analyser using Big Dye dye-terminators by a com-

mercial sequencing service (Macrogen, Korea). Sequences identifiers of all investigated panar-

thropod Fox genes are listed in S2 Table.

Whole-mount in-situ hybridization and DNA staining

All whole-mount in-situ hybridizations were performed as described in [40]. Cell nuclei were

detected using 4-6-Diamidin-2-phenylindol (DAPI). Incubation in 2 μg/ml DAPI in phos-

phate buffered saline with 0.1% Tween-20 (PBST) for 30 minutes was followed by extensive

washes in PBST to remove excess DAPI.

Data documentation

Embryos were photographed using a Leica DC490 digital camera equipped with a UV light

source mounted onto a MZ-FLIII Leica dissection microscope. Brightness, contrast, and color

values were adjusted in all images using the image processing software Adobe Photoshop CC

2018 (for Apple Macintosh (Adobe Systems Inc. San Jose, CA, USA).

Fig 1. The complement of ecdysozoan Fox genes. Modified after [28] (their Fig 2). Green and light green boxes

indicate that the gene falls in a given class of Fox genes in all or two of three analyses conducted in [28], respectively.

Roman numbers in boxes indicate numbers of paralogs. A dash (-) indicates a predicted loss of a given lineage-specific

Fox class gene. Solid vertical grey bars suggest losses of a class of Fox genes. Data on Apis mellifera stem partially from

[198]. Note that the lack of FoxJ23 in holometabolous insects in this overview does not represent a general loss in this

group of animals (as it is present and some species), and that a possible FoxQ1 gene was identified in a scorpion, albeit

with weaker support [28]. A recent report by [62] listed 21 Tribolium Fox genes, but note that this is because three and

two identical sequences of FoxO and FoxP respectively were incorporated in their list [62] (their Fig 2). The same

analysis lists two Drosophila FoxP genes which appears to be a typo in their figure.

https://doi.org/10.1371/journal.pone.0270790.g001
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Results

Gene expression patterns

FoxA. Tribolium FoxA is first expressed in the yolk (not shown), and at later stages in the

primordia of the stomodaeum and the proctodaeum (S2A Fig). Additional expression appears

along the ventral midline in segmental clusters (S2A–S2C Fig, slim arrow) and laterally in the

head lobes (S2A–S2C Fig, short arrow). At later developmental stages, after germ band retrac-

tion, it is expressed in the brain and in the hindgut, including the Malpighian tubules (S2 Fig).

Some aspects of FoxA expression in Tribolium have been reported previously by [41].

Glomeris FoxA is first expressed in the primordia of the hindgut and the foregut. When the

proctodaeum and the stomodaeum form, FoxA expressing cells sink in and form the through

gut (S3A–S3D Fig). At late developmental stages, additional expression appears in the ventral

nervous system (VNS) (S3D Fig, arrow). For further descriptions of Glomeris FoxA expression,

see also [42].

First expression of Parasteatoda FoxA-1 (described as FoxA in [43]) appears at stage 3 in

the center of the germ disc, and at stage 4 at its rim (S4A and S4B Fig). At stage 5, single cells

spread from the center of the disc and scatter over the disc and the dorsal field (S4C–S4E Fig).

These cells are likely endodermal and may contribute to the developing gut as they are expressed

in very similar patterns as the endodermal marker genes serpent and hepatocyte nuclear factor 4
[44], (see also [42]). Later, FoxA-1 is expressed in broad segmental patches along the ventral mid-

line, that in subsequent stages form a continues domain along the midline (S4F and S5 Figs). At

stage 10 and subsequent stages, most of the expression of FoxA-1 disappears and transcripts only

remain in the head and in the most posterior segments (S5G–S5I Fig).

Parasteatoda FoxA-2 is expressed later and first transcripts are detectable at around stage 8

in the stomodaeum and in segmental patches along the midline in anterior segments (Fig 2A–

2C). At stage 9, all segments express FoxA-2 in the midline (Fig 2D–2F). In contrast to FoxA-1,

expression of FoxA-2 does not disappear from central segments, but instead persists through-

out the investigated developmental stages (Fig 2G–2I). Unlike Fox-A1, Fox-A2 is not expressed

in the dorsal field (S4 Fig cf. panels F and G). S6 Fig shows DAPI staining of the embryos

shown in Fig 2.

Euperipatoides FoxA is first expressed in the mouth-anus (m-a) furrow and ventral tissue

between the developing germ bands (S7A Fig). After closure of the m-a furrow, FoxA remains

expressed in the mouth and the anus, as well as in tissue lining the ventral margins of the germ

band proper. This expression persists throughout further development (S7B and S7C Fig). For

further expression details, see also [18, 42].

FoxB. Expression of FoxB genes in the here investigated arthropods and the onychopho-

ran have recently been described in detail in [20, 45]. In all species, FoxB genes are expressed

in the ventral sector of all appendages, except for the labrum of arthropods where expression is

dorsal, and the onychophoran frontal appendages that do not express FoxB (S8 Fig). Addition-

ally, FoxB is expressed in the ventral nervous system in all species (S8B, S8C, S8E, S8F, S8J,

S8L, S8N and S8P Fig slim arrows). Early during development, in Tribolium both FoxB para-

logs are expressed ubiquitously (S8A and S8D Fig). In Glomeris, first expression appears in the

anlagen of the anal valves (S8G and S8H Fig). In the spider, FoxB is also expressed around the

mouth/stomodaeum (S8K Fig).

FoxC. Tribolium FoxC is first expressed in an anterior cap, which refines to expression in

the mouth primordium (S9A and S9B Fig). When the germ band begins to elongate, FoxC is

expressed ventrally in the head around the mouth (S9C Fig). This expression in principle

remains throughout further development (S9D and S9F Fig). Additional expression appears in

the proctodaeum, in the brain and in the VNS (the latter is marked by arrows in S9C–S9F Fig).
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After germ band retraction, FoxC is also expressed in the developing heart (cf. expression of

FoxF, below) (S9F Fig, short arrow). Expression of FoxC in the head has also been reported

previously by [46] Economou and Telford (2009).

Fig 2. Expression of Parasteatoda FoxA-2 (A-I) and FoxC (J-O). In all panels, anterior is to the left, ventral view.

Panels A, D, G, K, and M view of anterior with head. Panels B, E, H, L, and N view of middle part with walking limbs.

Panels C, F, I, O view of opisthosoma. Arrows in panels K and M point to lateral expression in the head. The

arrowheads in panels M and N point to faint expression at the ventral rim of the split germ band. Asterisks in panels K

and L mark expression in the VNS. Filled circles in panels M-O mark expression at the base of the walking limbs.

Abbreviations in Table 2. DAPI staining of the embryos shown in this figure are presented in S6 Fig.

https://doi.org/10.1371/journal.pone.0270790.g002
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At the blastoderm stage (stage 0), Glomeris FoxC expression is in the form of an anterior

cap, very similar to the expression of other head-patterning genes in Glomeris [47] (S3E Fig).

This domain transforms into expression surrounding the mouth and in the anterior head skel-

eton [cf. 48, 49] (S3F–S3H Fig). For the head patterning role of Glomeris FoxC, see also [47].

In Parasteatoda stage 7 embryos, expression of FoxC is in the anterior margin of the

embryo (Fig 2J). Later, this domain refines into domains along either side of the mouth pri-

mordium, the pharynx and a pair of small dots (Fig 2K and 2M, arrow) in the pre-cheliceral

region (Fig 2K and 2L). Segmental patches of expression are in the VNS (Fig 2K and 2L, aster-

isks), and at the base of the walking limbs (Fig 2M–2O, filled circles). Faint expression is at the

ventral rim of the split germ band (Fig 2M and 2N, arrowheads). Some aspects of FoxC expres-

sion have also been described by [50]. S6 Fig shows DAPI staining of the embryos shown in

Fig 2.

At stage 8, expression of Euperipatoides FoxC appears in the posterior of the head lobes and

the anterior of the jaw-bearing segment (Fig 3A–3F, arrow and arrowhead respectively). This

remains the only expression until stage 21 when mesodermal segmental patches appear along

the anterior-posterior axis of the embryo (Fig 3G and 3H).

FoxD. Tribolium FoxD appears in the form of two dots in the head lobes when germ band

elongation has almost completed (Fig 4A). Later, segmental dots appear in an anterior to pos-

terior progression in the VNS (arrows), and in the proctodaeum (Fig 4B and 4C).

At stage 0, Glomeris FoxD is expressed in the form of an anterior cap (Fig 5A). Within this

cap, a single stripe of enhanced expression appears; this stripe most probably represents

expression in the primordium of the mandibular segment (Fig 5A, arrow). This assumption is

based on the position of the stripe, the fact that we can follow the fate of the stripe over time,

and the fact that the mandibular segment is often patterned first [51] (Fig 5B–5E). Shortly after

formation of the first stripe, a second stripe appears at the posterior edge of the cap (Fig 5C).

Fig 3. Expression of Euperipatoides FoxC. In all panels, anterior is to the left, ventral views, except panel D, lateral

view, dorsal up. A´ and B´ represent DAPI staining of the embryos shown in A and B. In all panels, arrows point to

expression at the posterior margin of the head lobes, and arrowheads indicate expression in the anterior of the jaw-

bearing segment. Abbreviations in Table 2.

https://doi.org/10.1371/journal.pone.0270790.g003
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Then a third stripe appears that represents the ocular region (Fig 5D). At the same time,

expression disappears from tissue between the ocular region and the mandibular stripe, and

expression in the primordium of the proctodaeum appears (Fig 5D). Expression in the man-

dibular domain refines into a narrow but strong stripe (Fig 5E and 5F, asterisk in panel E). At

stage 1.2, expression is still in the mandibular and the maxillary segment (Fig 5G and 5H).

Fig 4. Expression of Tribolium FoxD (A-C), FoxF (D-F) and FoxJ1 (G-I). In all panels, anterior is to the left, ventral

view. Embryos are flat-mounted. Arrows in panels B and C mark expression in the VNS. Arrows in panels D and E

point to the proctodaeum. Arrows in panels G and H mark dorsal expression. Arrowheads in panels D-F mark

expression in the heart (dorsal tube). Asterisks in panel I mark dots of expression in dorsal tissue. Abbreviations in

Table 2.

https://doi.org/10.1371/journal.pone.0270790.g004

Fig 5. Expression of Glomeris FoxD. In all panels, anterior is to the left, ventral views. The arrow in panel B marks an

appearing stripe of expression in the (likely) mandibular segment primordium. The asterisk in panel E marks the

mandibular segment. Arrows in panels J and K mark expression in the VNS. Abbreviations in Table 2.

https://doi.org/10.1371/journal.pone.0270790.g005
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After this expression has disappeared, strong de novo expression appears in the VNS (Fig 5I–

5K, arrows). At late developmental stages, FoxD is strongly expressed in the brain (Fig 5L).

From stage 3 onwards, all tissue expresses FoxD weakly (Fig 5I–5L).

Parasteatoda FoxD is first expressed at sage 8.2 as a transverse stripe in the pre-cheliceral

region (Fig 6A). Later, this domain splits into two domains in the developing brain (Fig 6B,

6D, 6G and 6H). At the same time, segmental patches of expression appear in the VNS of all

segments except for the cheliceral segment (Fig 6B, 6C, 6E, 6F and 6I, arrows), and at the base

of the walking limbs and pedipalps (Fig 6E and 6H, arrowheads). S10 Fig shows DAPI staining

of the embryos shown in Fig 6.

Euperipatoides FoxD is first expressed in the posterior of the head lobes, but in a region

slightly more anterior than that of FoxC (Fig 7A–7G). At stage 11, additional expression

appears in the tips of the frontal appendages (Fig 7C–7G). At stage 16, weak mesodermal

expression appears inside the jaws and the slime papillae (Fig 7E and 7F). At later stages, this

expression is also present in the legs (Fig 7G and 7H).

FoxF. Tribolium FoxF is first expressed exclusively in the stomodaeum and the procto-

daeum, although the most posterior tip of the embryo remains free from expression

Fig 6. Expression of Parasteatoda FoxD. In all panels, anterior is to the left, ventral views, except panels G, dorsal

view and A, H, lateral view. Each row represents the same embryo, except for first row. Arrows point to expression in

the VNS. Arrowheads point to expression at the base of the limbs. Abbreviations in Table 2. DAPI staining of the

embryos shown in this figure are presented in S10 Fig.

https://doi.org/10.1371/journal.pone.0270790.g006

PLOS ONE Panarthropod Fox gene expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0270790 July 8, 2022 8 / 42

https://doi.org/10.1371/journal.pone.0270790.g006
https://doi.org/10.1371/journal.pone.0270790


throughout development (not shown). Later, additional expression appears in the heart (Fig

4D–4F, arrowheads) (cf. expression of heart-patterning genes in [52]). Note the unspecific

staining of the pleuropodia (pl) in panel F.

At stage 0.5, expression of Glomeris FoxF appears in a diffuse pattern in the trunk segments;

the head remains free from expression (Fig 8A). At later developmental stages, this expression

refines into segmental stripes that cover the middle of the ventral and dorsal segmental units

of the trunk (Fig 8B–8D and S11A Fig). In late stage 3 embryos, a dot of expression appears on

either side lateral to the mouth (Fig 5C and S11A Fig). Later, this tissue forms part of the fore-

gut. Enhanced expression is inside the anal valves from stage 3 onwards (Fig 8B–8D and S11A

and S11B Fig). At late developmental stages, FoxF is also expressed in the grooves between the

developing tergites (Fig 8D, asterisks) [cf. 34, 53].

Parasteatoda FoxF-1 is first expressed at stage 8.2 in the form of faint patches in the second

and third opisthosomal segments (Fig 9A–9C). Later, all opisthosomal segments express FoxF-
1, mostly in dorsal tissue (Fig 9D–9I, arrows). Additional expression appears in the form of a

faint stripe dorsal to the limbs of the prosoma and in the tail (Fig 9G and 9H). At late stages,

almost the complete opisthosoma expresses Fox-F1 (Fig 9I). FoxF-2 is expressed in a subset of

mesodermal cells in the pedipalps and the walking limbs in embryos of stage 10.2 (Fig 9J–9M,

arrows) and later (not shown). S12 Fig shows DAPI staining of the embryos shown in Fig 9.

Euperipatoides FoxF is first expressed anterior to the mouth, and in the form of a sharp

band demarcating the anterior edge of the jaw-bearing segment (Fig 10A). A salt-and-pepper

like expression is in the SAZ and newly formed segments (Fig 10A). At subsequent stages,

expression is restricted to the dorsal edge of all segments (Fig 10B and 10C, asterisks), and

Fig 7. Expression of Euperipatoides FoxD. In all panels, anterior is to the left. Panels A, B, and F, ventral view; panels

C, E and G, lateral view, panel D, view of the head. A´/B´ represent DAPI staining of the embryos shown in A/B.

Abbreviations in Table 2.

https://doi.org/10.1371/journal.pone.0270790.g007
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some cells in the so-called dorsal-extraembryonic tissue (Fig 10B and 10C, arrows). At later

stages this expression is not located at the dorsal edge of the embryo but in a position more

ventrally, just dorsal to the position of the outgrowing limbs (Fig 10D–10F, arrow in panel D).

From stage 20 onwards, additional expression appears in an anterior to posterior order along

the ventral edge of the germ band (Fig 10E, 10G, arrowheads).

FoxG. A detailed description of Tribolium FoxG-1 (slp) and FoxG-2 (slp2) has recently

been published in [54]. The expression and function of slp has also been studied by [55].

In Glomeris, the appearance of segmental stripes in the post-blastoderm stage embryo is

complex (S3I Fig). At later developmental stages, expression is in the brain (ocular region, oc),

along the ventral midline, the limbs, in lateral segmental patches (arrows in panels K and L)

and as transverse stripes in newly forming posterior segments (S3J–S3L Fig). The segmental

expression pattern of Glomeris FoxG has also been described previously by [56, 57].

Parasteatoda FoxG is first expressed in the pre-cheliceral region at stage 8.1 (Fig 11A), and

shortly later transverse stripes of expression appear in all segments (Fig 11B and 11C). This

segmental expression persists throughout development (Fig 11D–11I). Later, expression

appears in the labral region (Fig 11D) and in the developing heart (Fig 11G and 11H, arrows).

S13 Fig shows DAPI staining of the embryos shown in Fig 11.

Expression of Euperipatoides FoxG has been described by [39].

FoxH. Among the investigated species, FoxH is only present in Euperipatoides where it is

expressed inside the head lobes in early developmental stages (Fig 12).

FoxJ1. Expression of Tribolium FoxJ1 appears by the end of germ band elongation in the

form of two spots in the labrum, a diffuse pattern in the antennae and the walking limbs, a ter-

minal domain in the labium, two spots in the first abdominal segment, and as defined spots

Fig 8. Expression of Glomeris FoxF (A-D), FoxJ1 (E-H) and FoxJ2 (I-L). In all panels, anterior is to the left, ventral

views except panel D (lateral view, dorsal up). Asterisks in panel D mark expression in the tergite borders. Arrows in

panel H mark dot-like expression in the head. Asterisks in panels K and L mark an area that is free of expression lateral

in the head. Abbreviations in Table 2.

https://doi.org/10.1371/journal.pone.0270790.g008
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Fig 9. Expression of Parasteatoda FoxF-1 (A-I) and FoxF-2 (J-M). In all panels, anterior is to the left, ventral views,

except panels G and M, lateral views, and H, dorsal view. Each row represents the same embryo, if not of different

developmental stage. Arrows in panels D-H point to expression in the opisthosoma, and in panels J and K the legs.

Abbreviations in Table 2. DAPI staining of the embryos shown in this figure are presented in S12 Fig.

https://doi.org/10.1371/journal.pone.0270790.g009
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dorsal in the second and third thoracic segment (arrows) (Fig 4G). Shortly after, additional

dorsal expression appears in all abdominal segments (Fig 4H, arrow), the expression in the

antennae becomes stronger, expression appears in the maxillae, and a spot of expression

appears in the tip of the legs (Fig 4H). By the end of germ band retraction, the overall pattern

is the same as described, with the exceptions that now several dorsal segmental spots are pres-

ent (Fig 4I, asterisks), and that additional spots of expression appeared in the legs (Fig 4I).

Glomeris FoxJ1 is expressed ubiquitously at all stages, but there is enhanced dot-like expres-

sion in the ocular region at late developmental stages (Fig 8E–8H and S14B Fig).

From stage 10.2 onwards, Parasteatoda FoxJ1 is expressed in a number of single cells or

clusters of cells in all limbs, including the labrum, spinnerets and book lungs (Fig 13A–13G).

See figure legend for further information. S15 Fig shows DAPI staining of the embryos shown

in Fig 13.

We did not detect expression of Euperipatoides FoxJ1.

Fig 10. Expression of Euperipatoides FoxF. In all panels, anterior is to the left. Panels A and G, ventral view; panels B,

D and E, lateral view; panels C and F, dorsal view. A´-D´ and G´ represent DAPI staining of the embryos shown in

A-D and G. Arrow in panel D points to expression dorsally abutting the limb buds. Dashed line in panel D indicates

dorsal margin of the germ band. Asterisks in panels B and C mark expression at the dorsal rim of the embryo; arrows

in B and D point to expression in the dorsal extraembryonic tissue. Arrowheads in panels E and G mark expression in

the ventral nervous system. Abbreviations in Table 2.

https://doi.org/10.1371/journal.pone.0270790.g010
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FoxJ2. Fox J2 is missing in Tribolium. Glomeris FoxJ2 is expressed ubiquitously at all

investigated developmental stages (Fig 8I–8L), except for late stages when transcripts are not

seen in the lateral head region (Fig 8K and 8L, asterisks). Parasteatoda FoxJ2 is either not

expressed in the investigated developmental stages, or is expressed ubiquitously at a very low

level (data not shown). Euperipatoides FoxJ2 is first expressed in the frontal appendages (Fig

14A and 14B). Later, expression appears within the other appendages, in tissue dorsal to the

limb buds, the anus (Fig 14C and 14D), and in a spot-like domain ventrally in the base of the

limbs (Fig 14D, arrow).

FoxK. FoxK in Tribolium, Glomeris, Euperipatoides, and FoxK-1 in Parasteatoda are

expressed ubiquitously at all investigated developmental stages (data not shown). Parasteatoda
FoxK-2 either is not expressed in the investigated developmental stages, or is expressed ubiqui-

tously at a very low level (data not shown).

FoxL1. Tribolium FoxL1 is first expressed ubiquitously (Fig 15A), but by the end of germ

band elongation, expression appears in the proctodaeum and in the form of weak spots in the

VNS of the thorax and the abdomen, but not the head (Fig 15B–15E, arrows). By the end of

germ band retraction, the proctodeal domain has split into one in the anus and one encircling

Fig 11. Expression of Parasteatoda FoxG. In all panels, anterior is to the left, ventral views, except panels G, lateral

view and H, dorsal view. Each row (except first row, A-C) represents the same embryo. Arrow in panel B marks weak

expression in the chelicerae segment. Arrows in panels G and H point to the heart. Abbreviations in Table 2. DAPI

staining of the embryos shown in this figure are presented in S13 Fig.

https://doi.org/10.1371/journal.pone.0270790.g011
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the end of the hindgut. By this stage, expression is also in the Malpighian tubules (Fig 15D

and 15E).

Glomeris FoxL1 is first expressed in a crescent-moon shaped domain anterior to the mouth

primordium, and in the forming hindgut (Fig 16A). The anterior cells that express FoxL1 then

sink in and form part of the stomodaeum; de novo expression appears in the brain (Fig 16B)

and persists throughout further development (Fig 16C). At stage 3, diffuse expression in the

posterior half of the embryo appears that is likely associated with endodermal tissue of the

developing gut (Fig 16B and 16C, arrows)

Parasteatoda FoxL1 is expressed in the stomodaeum (Fig 13H, 13J and 13K), in tissue ven-

tral to the opisthosomal limb buds (Fig 13H and 13I, arrows) and the tail region (Fig 13I and

13L, arrowheads). S15 Fig shows DAPI staining of the embryos shown in Fig 13.

Euperipatoides FoxL1 is expressed in a small domain anterior to the mouth, the tissue poste-

rior to the posterior edge of the head lobes (Fig 14E–14G, arrows), and in a horseshoe-like pat-

tern in the posterior pit (the latter transforms into a simpler expression profile later during

development) (Fig 14E–14G, arrowheads).

FoxL2

At early developmental stages Tribolium FoxL2 is either not expressed, or is expressed weakly

and ubiquitously (Fig 15F). The first expression appears in the form of two transient segmental

domains, one in the third abdominal segment, and one in the fifth (Fig 15G). By the end of

germ band elongation, the abdominal expression domain in A3 has disappeared, and the one

in A5 is very weak (Fig 15H). Segmental dots appear dorsal to the base of the labium, and the

legs, and dorsally in the anterior abdominal segments (Fig 15H). Later, these dots are present

in all abdominal segments (Fig 15I). Expression in the labial segment disappears at later

Fig 12. Expression of Euperipatoides FoxH. In all panels, anterior is to the left, ventral views. A´/B´ represent DAPI

staining of the embryos shown in A/B Abbreviations in Table 2.

https://doi.org/10.1371/journal.pone.0270790.g012
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developmental stages (Fig 15I and 15J). By the end of germ band retraction, weak expression

in the VNS appears (Fig 15J, arrow).

Glomeris FoxL2 is exclusively expressed in the mesoderm of the dorsal segmental units of

the trunk (Fig 16E–16H, indicated by Roman numerals). This expression is comparable with

that of the myogenic marker nautilus (nau), although nau is expressed earlier than FoxL2 [cf.

58].

Fig 13. Expression of Parasteatoda FoxJ1 (A-G) and FoxL1 (H-L). In all panels, anterior is to the left, ventral views,

except panels D, lateral view, F, dorsal view and G, lateral view. Arrow in panel A marks expression in the chelicera.

Arrows in panels E and F point to expression in the spinnerets on opisthosomal segment 5. Asterisks in panels F and G

mark a second dot of expression in O5. Arrows in panels H and I point to expression ventral to the base of the limbs.

Arrowheads in panels I and L point to expression in the tail region. Abbreviations in Table 2. DAPI staining of the

embryos shown in this figure are presented in S15 Fig.

https://doi.org/10.1371/journal.pone.0270790.g013
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We isolated Parasteatoda FoxL2 from maternal cDNA but we could not detect any expres-

sion during ontogenesis. We were unable to detect expression of Euperipatoides FoxL2.

FoxM, FoxN14 and FoxN23

Expression of FoxM, FoxN14 and FoxN23 genes in the here investigated species has recently

been described in [59].

FoxO

Tribolium FoxO is first expressed ubiquitously (Fig 17A and 17B), but when the germ band

forms, expression is restricted to the anterior of the embryo proper, and at lower level in the

anterior of the extraembryonic tissue. The expression in the embryo covers all anterior tissue

with a sharp posterior border between the mandibular and maxillary segment (Fig 17C–17F,

slim arrows). Later, this expression resolves into a complex pattern in the nervous system of

the head (Fig 17G), that at later stages is also present in the entire embryo (Fig 17H).

Glomeris FoxO is expressed ubiquitously (not shown). However, higher levels of expression

are detectable in the labrum, and in the brain (S14C Fig).

Fig 14. Expression of Euperipatoides FoxJ2 (A-D) and FoxL (E-G). In all panels, anterior is to the left. Panels A, C and

D lateral view. Panels B, and E-G ventral view. A´, D´ and E´-G´ represent DAPI staining of the embryos shown A, D

and E-G. Arrow in panel D marks expression ventral to the base of the walking legs. Arrows and arrowheads in panels

E-G point to expression at the posterior rim of the head lobes and the posterior pit respectively. Abbreviations in

Table 2.

https://doi.org/10.1371/journal.pone.0270790.g014
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Parasteatoda FoxO-1 is exclusively expressed in the dorsal field and the interface between

the embryo proper and the so-called extraembryonic tissue around the head (Fig 18A–18I,

arrows). Parasteatoda FoxO-2 is first expressed ubiquitously and in equal level in all tissue (not

shown). From stage 10.1 onwards, stronger expression is visible in ventral segmental patches

(Fig 18J–18L, arrows). In stage 10.2 embryos, ubiquitous expression disappears and strong

expression is now in the ventral tissue of newly formed posterior segments (Fig 18O, asterisk

and arrow), as well as in the mesoderm of walking limbs and pedipalps (Fig 18R), an ectoder-

mal patch of expression at the dorsal base of the appendages (Fig 18N, arrow), two patches of

expression in the brain (Fig 18M and 18P, arrowheads) and expression anterior to the mouth

(Fig 18M and 18P, filled circles). At stage 13.1, posterior expression is restricted to the procto-

daeal region (Fig 18Q). S16 Fig shows DAPI staining of the embryos shown in Fig 18.

Euperipatoides FoxO is first expressed ubiquitously, but stronger expression is in the poste-

rior pit and anterior in the head lobes (Fig 19A). Later, expression is in the anterior of the head

lobes (Fig 19B, arrow), in the posterior pit, the SAZ (where expression is in a strong transverse

stripe, reminiscent of the expression of segmentation genes) (Fig 19B, arrowhead), and in a

segmental pattern of weaker transverse stripes in the trunk segments (Fig 19C). In older (more

anterior trunk segments) the segmental stripe-pattern disappears and only a dorsal segmental

domain remains (Fig 19D and 19E). At stage 16, anterior trunk segments express FoxO ubiqui-

tously, while in more posterior segments, the previously described dorsal pattern is still pres-

ent; the posterior SAZ still expresses FoxO at a high level (Fig 19F).

FoxP

First, Tribolium FoxP is not expressed, or is expressed ubiquitously at a low level (Fig 17I).

With the beginning of germ band retraction, strong expression appears in the brain, the sto-

modaeum (including the labrum), the proctodaeum and weakly in the VNS (arrows) (Fig 17J).

Fig 15. Expression of Tribolium FoxL1 (A-E) and FoxL2 (F-J). In all panels, anterior is to the left, ventral view.

Embryos are flat-mounted, except embryos shown in panels A and F. Arrows in panels B, C, E and J point to

expression in the VNS. Short arrow in panel D marks a ring of expression at the base of the Malpighian tubules. Note

the unspecific staining of the pleuropodia in panels D, E, and J. Abbreviations in Table 2.

https://doi.org/10.1371/journal.pone.0270790.g015
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This pattern remains throughout further development, but expression in the VNS becomes

stronger (arrows), and expression in the developing Malpighian tubules appears (Fig 17K).

Glomeris FoxP is first expressed in the ocular region (Fig 16I–16L). Later it is also expressed

in the form of dots in the mandibles, the maxillae, the antennae (albeit weakly), and the VNS

(arrow in panel K) (Figs 16K and S14A Fig). After stage 6, the ventral tissue anterior to the

SAZ expresses FoxP (Fig 16L, arrow), and faint expression is inside the anal valves (Fig 16L).

Expression in the head appendages is restricted to mesodermal tissue; while most of the meso-

derm in the mandibles and the maxillae expresses FoxP, expression in the antennae, the

labrum and the walking limbs is restricted to a ventral and proximal portion of the mesoderm

(S14A Fig).

At stage 9.2, Parasteatoda FoxP-1 is expressed in the anterior of the dorsal field (Fig 20A).

In subsequent stages, this expression extends to the complete dorsal field (Fig 20B), and at

stage 13.1, after dorsal closure, expression is in the dorsal of the opisthosoma (Fig 20C).

Parasteatoda FoxP-2 is first expressed in the primordium of the mouth (Fig 20D and 20E).

In subsequent stages, it is expressed in a large number of cells (or cell clusters) in the brain

Fig 16. Expression of Glomeris FoxL1 (A-D), FoxL2 (E-H), and FoxP (I-L). In all panels, anterior is to the left, ventral views (except panel H, lateral view).

Arrows in panels B and C point to expression in the developing midgut. Arrowheads in panel G point to two domains of expression in a fusing dorsal

segmental unit. Roman numerals mark expression in the dorsal segmental units (cf. Janssen 2011). The arrow in panel K points to expression in the VNS. The

arrow in panel L points to expression in the last formed segment. Abbreviations in Table 2.

https://doi.org/10.1371/journal.pone.0270790.g016
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(Fig 20F), the VNS (Fig 20G and 20H, arrowheads) and segmental patches dorsal to the base of

the limbs (Fig 20G and 20H, arrows), and later, in most cells of the central nervous system (Fig

20I–20K), except for newly formed posterior segments that express FoxP-2 later during devel-

opment (Fig 20L). We did not detect any expression of FoxP-3. S17 Fig shows DAPI staining

of the embryos shown in Fig 20.

Euperipatoides FoxP is expressed ubiquitously but in the limb buds and in the head lobes

expression is stronger (Fig 19G). At stage 18, dots of expression appear in the walking limbs

and the slime papillae (Fig 19H).

FoxQ1

FoxQ1 is not present in the here investigated arthropods, and we were unable to detect expres-

sion of FoxQ1 in Euperipatoides.

FoxQ2

Tribolium FoxQ2 is exclusively expressed in the head. First, expression in the form of two ante-

rior domains is visible (S18A and S18B Fig). At the end of germ band elongation, these domains

resolve into a complex pattern around the stomodaeum (S18C Fig). Expression is now also in

the labral buds, the brain and around the mouth (S18C–S18E Fig). The expression and function

of Tribolium FoxQ2 in head and brain development has been reported previously by [60].

Glomeris FoxQ2 is exclusively expressed in the head where it forms a complex pattern ante-

rior and lateral to the mouth (S3M–S3P Fig). This expression corresponds to the tip of the

labrum, the pharynx and a stripe and dot on either side of the labrum. Several aspects of Glo-
meris FoxQ2 expression have been reported by [61].

At stages 6/7 to 8.1, Parasteatoda FoxQ2 is expressed at the anterior margin of the early

germ band (S19A and S19B Fig). Later, this domain refines into three patches of expression on

either side of the mouth primordium (S19C–S19F Fig, asterisk, open circle, and filled circle).

At stage 12, an additional pair of patches appears in the labrum (S19G and S19H Fig). The

expression and function in labrum and nervous development have been described previously

by [22].

Fig 17. Expression of Tribolium FoxO (A-H) and FoxP (I-K). In all panels, anterior is to the left, ventral view; except

panel F, lateral view. In panel G, anterior is up. Embryos in panels E, H, J and K are flat-mounted. Long arrows in

panels C and D mark the posterior border of strong expression in the head. Short arrows in panel C mark posterior

border of expression in the extraembryonic tissue. Asterisks in panel H mark expression in the lateral tissue of the

trunk segments. Filled circles in panel H mark dot-like expression in the VNS. Arrows in panels J and K point to

expression in the VNS. Note the unspecific staining of the pleuropodia in panels H and K. Abbreviations in Table 2.

https://doi.org/10.1371/journal.pone.0270790.g017
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Fig 18. Expression of Parasteatoda FoxO-1 (A-I) and FoxO-2 (J-R). In all panels, anterior is to the left, ventral views,

except panels D, F, G, I, and R (lateral views), and H (dorsal view). Each row represents the same embryo, except
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Euperipatoides FoxQ2 is first exclusively expressed ventrally in the head lobes, anterior to

the mouth (S20A and S20B Fig). At later developmental stages, faint expression appears in a

small domain ventral of the eyes (S20C and S20D Fig, asterisks) and between the base of the

jaws and the slime papillae (S20C and S20D Fig, arrowheads). [61] has also described several

aspects of the Euperipatoides FoxQ2 expression profile.

FoxT (syn. fd3F)

Tribolium FoxT is only expressed in late developmental stages (Fig 21). Dots of expression are

in the limbs, and in dorsal tissue along the body, similar as described for FoxJ1 and FoxL2.

We did not find this Fox gene in Glomeris and Parasteatoda, and we did not detect expres-

sion of FoxT in Euperipatoides.

Discussion

Panarthropod Fox genes

The phylogeny and gene content of panarthropod Fox genes have recently been discussed in

[28]. According to this analysis, two classes of Fox genes appear to have been lost in

panels G and H. Arrows in panels A, D, E and F point to expression in the interface between the embryo proper and

the dorsal field. Arrow in panel J points to dot-like expression in the brain. Arrows in panels K and L point to

expression in the VNS. Arrowheads in panels M and P point to lateral expression in the head lobes. Filled circles in

panels M and P mark expression anterior in to the mouth. The asterisk in panel O points to strong expression in the

VNS of nascent segments; the arrow in panel O points to weaker expression anterior to that. Arrowhead in N points to

dot-like expression dorsal to the base of the walking legs. Abbreviations in Table 2. DAPI staining of the embryos

shown in this figure are presented in S16 Fig.

https://doi.org/10.1371/journal.pone.0270790.g018

Fig 19. Expression of Euperipatoides FoxO (A-F) and FoxP (G, H). In all panels, anterior is to the left. Panels A, B, E

and H show ventral views; panels C, D, F, and G show lateral views. Arrow in panel B point to expression at the

anterior rim of the head lobe. Arrowhead in panel B point to a segmentation gene like ventral stripe of expression in

the last formed posterior segment. Abbreviations in Table 2.

https://doi.org/10.1371/journal.pone.0270790.g019
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Panarthropoda, FoxE and FoxM. Additionally, FoxH has been lost in Arthropoda. A recent

analysis, however, claims to have identified a FoxM gene in Drosophila (i.e. CG32006), a gene

that we and others believe is a FoxJ1 ortholog (cf. [62] with [27, 28]). Gene expression analysis

of CG32006/FoxJ1 genes supports this interpretation (discussed below). Another potential loss

in Arthropoda may concern FoxQ1, but [28] reported a potential FoxQ1 gene in a scorpion

(Fig 1). The onychophoran Euperipatoides possesses a large set of Fox genes with single

Fig 20. Expression of Parasteatoda FoxP-1 (A-C) and FoxP-2 (D-K). In all panels, anterior is to the left. Panels A and

B show lateral view; panel C and L show dorsal views. All other panels show ventral views. Dotted lines mark the area

of expression in the dorsal field. Arrowheads in panels G and H point to expression in the VNS. Arrows in panel J

point to dot-like expression at the dorsal edge of the embryo. Abbreviations in Table 2. DAPI staining of the embryos

shown in this figure are presented in S17 Fig.

https://doi.org/10.1371/journal.pone.0270790.g020
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members of all expected classes including FoxH. Additionally, Euperipatoides possesses an

orphan gene that recently has been described as a potential FoxM class gene [59]. In the analy-

ses performed by [28], this gene clustered with FoxM genes from other animals, albeit with

low support. The water bear Ramazzottius varieornatus, however, lacks the otherwise con-

served genes FoxD, FoxJ1, FoxJ2/3 and FoxN23, and also possess no FoxM and no FoxH
(unlike the onychophoran). Overall, the tardigrade thus appears to have retained a much less

well conserved set of Fox genes than the onychophoran.

For a pair of Drosophila Fox genes that were long considered orphans (fd3F and Crg-1), [14,

27, 28, 63] identified orthologs in most of the investigated insect species, the water flea Daph-
nia, a scorpion (albeit with weaker support), and the onychophoran Euperipatoides (Fig 1).

These genes are considered to form a separate group of Fox genes named FoxT [27, 28]. The

unique expression of FoxT (fd3F and Crg-1) genes support the hypothesis that they form a sep-

arate group of Fox genes.

On the function of Fox genes in animals

FoxA–A conserved factor of metazoan gut development. The FoxA ortholog forkhead, the first-

identified and founding member of the Fox gene family, is an important player in the develop-

ment of the ectodermal foregut and hindgut, but also the endodermal posterior midgut and

the Malpighian tubules, in the fly Drosophila [64–66]. In other arthropods like for example the

beetle Tribolium [41], the millipede Glomeris [42], the spider Parasteatoda [43], and the ony-

chophoran Euperipatoides [42], fkh is also likely involved in gut development (ectodermal

fore- and hindgut and endodermal midgut). Expression and thus implied function of fkh in

the Malpighian tubules appears to be restricted to insects (or possibly Pancrustacea) because in

the millipede Glomeris, fkh is not expressed in the Malpighian tubules [42]. In other ecdysozo-

ans such as the nematode worm Caenorhabditis and the priapulid worm Priapulus, the func-

tion in gut development appears to be conserved as well [67–69]. Outside Protostomia, a

general function of FoxA in gut development appears to be conserved in lophotrochozoans [7,

10, 70–77].

FoxB–A factor of dorsal-ventral body and appendage patterning. In Drosophila, FoxB ortho-

logs are expressed in the fully extended germ band stage embryo, in neuroblasts and sensory

neurons [15]. A recent study showed that FoxB is expressed in conserved patterns in arthro-

pods including Drosophila and an onychophoran [20]. FoxB is expressed in the ventral sector

of the limbs in all panarthropod species, where it is likely involved in dorsal-ventral limb pat-

terning, as functional data from the spider Parasteatoda suggest [20]. In addition, FoxB is also

involved in the transformation of the early germ disc into the bilateral germ band, and thus in

dorsal-ventral body patterning [45]. Expression data on FoxB in other ecdysozoans is restricted

to Caenorhabditis (syn. lin-31) where it is inter alia involved in vulva-development. Interest-

ingly, during this process lin-31 expression is restricted to a subset of ventral cells, and without

Fig 21. Expression of Tribolium fd3F. Panel A ventral view, panel B lateral view and panel C close-up on head, dorsal

view. Note the unspecific staining in the pleuropodia in panels A and B. Abbreviations in Table 2.

https://doi.org/10.1371/journal.pone.0270790.g021
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the input of lin-31, these cells randomly either contribute to the vulva or not, indicating that

lin-31 acts as a binary genetic switch [78, 79]. FoxB/lin-31 therefore likely acts as a ventral fac-

tor. In echinoderms, FoxB (syn. fkh1) is expressed in the mesenchyme and is involved in gut

development. Strongest expression is at the oral (ventral) side of the developing embryo [80–

Table 2. Abbreviations.

(av) anlage of the anal valves

(P) anlage of the proctodaeum

(S) anlage of the stomodaeum

(T1/pmx) anlage of the first trunk segment and the postmaxillary segment

a anus

A abdominal segment

an antenna (-bearing segment)

av anal valves

br Brain

ch chelicera (-bearing segment)

dee dorsal extraembryonic ectoderm

df dorsal field

e eye

ect ectoderm

fap frontal appendage (the onychophoran antenna)

h heart

hl head lobe

j jaw

L leg (-bearing segment)

lb labium (-bearing segment)

ic intercalary segment

lr labrum

m mouth

m-a mouth-anus furrow

mes mesoderm

mp Malpighian tubules

mx maxilla (-bearing segment)

md mandible (-bearing segment)

O opisthosomal segment

oc ocular region

P proctodaeum

ped pedipalp (-bearing segment)

pl pleuropodia

pp posterior pit (blastoporal region)

pc pre-cheliceral region

vns ventral nervous system

S stomodaeum

saz segment addition zone

sp slime papilla (-bearing segment)

st developmental stage

t tail

T trunk segment

vs ventral sulcus

https://doi.org/10.1371/journal.pone.0270790.t002
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82]. In the hemichordate Saccoglossus, FoxB is expressed in a complex pattern, but it is striking

that FoxB is asymmetrically expressed on one side of the blastopore [7]. In vertebrates, FoxB
(syn. fkh5) is expressed in the dorsal ectoderm of the organizer [83, 84]. Given that the dorsal-

ventral axis is reversed in chordates vs protostomes (reviewed in [85]), this means that also

here FoxB is a marker of (ancestrally) “ventral” tissue. These patterns are comparable to the

expression along the ventral ectoderm in panarthropod limbs and the ventral cells in Caenor-
habditis, and therefore, it is possible that FoxB is a general discriminator of dorsal versus ven-

tral tissue. If so, this function dates back to the last common ancestor of panarthropods and

chordates, the urbilaterian.

FoxC–A conserved factor of anterior gut and mouth development. In Drosophila, FoxC (syn.

crocodile/croc) is involved in the development of head structures such as the inner head skele-

ton [86], and this function appears to be conserved in panarthropods, including the species

investigated in this study (see also [17, 46, 47, 50, 87]. In the annelid Capitella, FoxC is also

dominantly expressed in mesodermal structures in the head and around the foregut [9]. Simi-

larly, in the leech Helobdella austinensis, FoxC is expressed in the musculature associated with

the developing proboscis [73]. In a brachiopod larva, FoxC is expressed in the anterior of the

archenteron and associated structures [88]. In the hemichordate, FoxC is involved in the

development of anterior structures such as the proboscis and the anterior mesoderm [7]. In

vertebrates, FoxC genes are expressed in the mesoderm and are involved in head development

as well, including the development of pharyngeal structures [89] (and references therein). In

the cnidarian Nematostella that like all cnidarians lacks mesoderm, FoxC is expressed in the

pharyngeal endoderm and the first-developed mesenteries, but not the body endoderm or the

other mesenteries [90]. Given that the mesoderm may have evolved from the endoderm in the

diploblast ancestor [91], this expression may be homologous to that of anterior mesodermal

structures in bilaterian animals.

Altogether, these expression patterns imply a specific function of FoxC genes in head meso-

derm development that likely dates back to the last common ancestor of all eumetazoan

animals.

FoxD–A conserved factor of ecdysozoan nervous system patterning. Drosophila FoxD is

expressed in a subset of procephalic neuroblasts, some neuroblasts in the VNS, and sensory

organs in the trunk and in the brain [15, 92]. This pattern is conserved in Tribolium, Glomeris,
and Parasteatoda, where FoxD is strongly expressed in the brain and the VNS. In the ony-

chophoran, however, there is only expression in the brain, but not along the VNS, suggesting

that this latter aspect of FoxD is restricted to Arthropoda.

In Caenorhabditis, FoxD (syn. unc-130) [16] is involved in axon guidance and the specifica-

tion of neuronal tissues [93, 94], as well as in dorsal-ventral patterning of the postembryonic

mesoderm [95, 96]. In other protostomians such as brachiopods and annelids, FoxD is

expressed in both mesodermal and ectodermal derivatives [88, 97]. In deuterostomes like echi-

noderms, FoxD appears to be predominantly expressed in ectodermal tissue [8, 98]. In ascidi-

ans, FoxD is involved in the patterning of mesodermal and endodermal tissue, in notochord

induction, and in the patterning of the animal-vegetal body axis [99–101]. In the hemichordate

Saccoglossus, and the cephalochordate Branchiostoma, FoxD is expressed in mesodermal tis-

sues [7, 102]. In Nematostella, FoxD is first expressed at the aboral pole suggesting a role in pat-

terning the oral-aboral axis. Later it is expressed at the base of the tentacles [90].

In summary, this suggest that FoxD played a role in both ectoderm and mesoderm pattern-

ing in the last common ancestor of at least Bilateria, and that lineage-specific losses of meso-

dermal or ectodermal expression/function happened frequently in different evolutionary

lineages (see also [88]). In panarthropods, and possibly in ecdysozoans as a whole, FoxD
appears to be involved in the development of the nervous system.
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FoxF–A conserved factor of visceral mesoderm development. In Drosophila, FoxF is involved

in the formation of the visceral mesoderm and the midgut [103–106]. Expression in Tribolium,

Glomeris, Parasteatoda, and Euperipatoides appears to be mainly in mesodermal tissue of the

trunk suggesting that the function of FoxF in the patterning of the visceral mesoderm, or at

least part of it, is conserved in Panarthropoda. Data from other ecdysozoans are restricted to

Caenorhabditis. Here, the single FoxC/FoxF gene (syn. Let-381) is involved in the development

of non-muscle mesodermal tissue [107, 108]. In other protostomes like brachiopods, planari-

ans and molluscs the function in visceral muscle development appears to be conserved [9, 88,

109], and so is this function in deuterostomes such as echinoderms, ascidians, hemichordates

and vertebrates (e.g. [7, 110–112]).

Summarized, our current knowledge on FoxF genes strongly suggests a conserved function

in visceral mesoderm development in bilaterian animals. Interestingly, there is no clear ortho-

log of FoxF in cnidarians which could be correlated to the lack of clear-cut mesoderm in these

animals (e.g. [113, 114]).

FoxG–A conserved factor in arthropod segmentation, and bilaterian brain and ciliary nervous
system development. The Drosophila FoxG orthologs sloppy-paired 1 (slp1) and sloppy-paired 2
(slp2) play redundant but essential functions in the segmentation gene cascade where they act

as segment-polarity and pair-rule genes [115–117]. The segmentation gene function of FoxG
has been investigated in various other arthropods and an onychophoran, suggesting that it is

conserved in arthropods but not onychophorans (e.g. [55, 39, 55, 118–120]). In Drosophila,

slp1, but not slp2, also acts as an important factor of early head development [121]. Interest-

ingly, our recent phylogenetic analysis revealed that the previously identified fd19B gene [14]

represents a third FoxG-class gene in Drosophila [28, 62] (Fig 1 and S1 Fig). Its expression pat-

tern suggests that it may contribute to the function of slp1 in head development.

In Caenorhabditis, FoxG (syn. fkh-2), is involved in the development of a subset of ciliary

neurons [122]. In annelid larvae, FoxG is expressed in the brain and a subset of cells of the cili-

ated bands that are in close proximity to the locomotory cilia [123, 124]. In a planarian, it is

expressed in the brain [125]. In echinoderms, FoxG is expressed in the ciliary bands where it is

likely involved in patterning the underlying nervous system [8, 126]. In hemichordates, FoxG
is expressed in the anterior of the developing embryo that harbors the brain and, at earlier

developmental stages, it is expressed in close proximity to the ciliated band [7]. In cephalo-

chordates, FoxG is involved in brain development including the development of nerves that

are associated with ciliated sensory receptors [127]. In vertebrates, FoxG is involved in the

development of the telencephalon (e.g. [128]).

The available data suggest that the role of FoxG genes in segmentation and head develop-

ment is restricted to arthropods, and that the ancestral function of FoxG was likely in brain

development including the development of the nervous system associated with ciliary cells.

FoxH. In the onychophoran, FoxH is expressed transiently in the head lobes where the

brain will form. Data on FoxH from other animals is extremely scarce. In chordates, it appears

to be involved in the development of left-right asymmetries of the main body axis [129].

FoxJ1 –A conserved factor of motile cilia development. Primary cilia (i.e non-motile cilia)

and motile cilia are known from a wide range of animals. In ecdysozoans, however, only the

sperm and the chordotonal organs (bipolar neurons) possess motile cilia (e.g. [130]). FoxJ1
appears to be a master gene of motile cilia development as it is not only needed but also suffi-

cient to induce motile cilia development [131, 132]. Both primary cilia and motile cilia are

under control of another transcription factor, the Regulatory factor X (Rfx) (e.g. [133]). In Dro-
sophila and other ecdysozoans, the function of Rfx in primary cilia development appears to be

conserved (e.g. [134, 135]). The suggested loss of FoxJ1 in ecdysozoans as a regulator of motile

cilia was therefore not very surprising [24].
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Recent studies, however, showed that the previously uncharacterized Drosophila forkhead-

box gene CG32006 likely represents a FoxJ1-class gene, and that FoxJ1 genes are present in at

least most of Panarthropoda [27, 28]. We found gene expression data of CG32006/FoxJ1 in the

Berkeley Gene Expression Patterns database (BDGP, [136, 137]). Drosophila FoxJ1 is expressed

in the form of two distinct domains in the anterior head and numerous small dots of expres-

sion along the body, a pattern that could correlate with the development of bipolar neurons. In

this context, it is interesting to note that Rfx-dependent genes that are supposed to be

expressed in all ciliated cells (e.g. CG31036 [134]) are indeed expressed in a larger number of

cells (or cell clusters) than FoxJ1 (CG32006) (see BDGP), which would be in line with a poten-

tially exclusive function of FxoJ1 in the development of motile cilia.

The here reported expression profiles of FoxJ1 in Tribolium and Parasteatoda are compara-

ble with those of Drosophila FoxJ1. Detection of FoxJ1 transcripts in the “embryonic” tran-

scriptome of Euperipatoides suggests late expression in developmental stages that have been

included in mRNA extraction for transcriptome sequencing, but that are too late in develop-

ment to work in whole mount in-situ hybridization experiments. Note in this context that

expression of another potentially conserved motile cilia-specific Fox gene, FoxT, was not

detected in the investigated embryonic stages of the onychophoran either (discussed below).

Data on FoxJ expression outside Ecdysozoa support the idea that FoxJ1 is a conserved factor

of motile cilia development: In annelids, FoxJ1 is expressed in association with ciliary and sen-

sory cells [138], and in a sea urchin, it is expressed in the area of the apical plate and the ciliated

bands [8]. In hemichordates, FoxJ1 is also involved in the development of the ciliated band

and the apical organ [7]. In vertebrates, FoxJ1 is associated with the development of ciliated

cells (e.g. [131, 139, 140]). In cnidarians such as Nematostella, FoxJ1 is expressed in the ciliated

apical organ [141], and it has been shown that FoxJ1 is also present in the earliest animals,

sponges and choanoflagellates [142, 143].

In summary, as previously suggested by [132], FoxJ1 appears to be a conserved regulator of

motile cilia cell development, and as we show here, this may even be the case in arthropods.

FoxJ2 (syn. FoxJ2/3). The expression patterns of Euperipatoides, Glomeris, and Parasteatoda
are diverse and thus do not allow speculation on conserved functions. In the latter two species,

FoxJ2 is expressed ubiquitously, and thus not very informative. Other data on FoxJ2 expression

are scarce. In Saccoglossus expression of FoxJ2 could not be detected [7]. In the frog Xenopus,
FoxJ2 is first expressed ubiquitously, but at later developmental stages it is expressed in the

notochord and the ventral region of the neural tube [144]. In mouse, FoxJ2 regulates meiosis

in spermatogenesis [145]. FoxJ2 is also involved in some forms of cancer (e.g. [146]). In verte-

brates, FoxJ3 appears to be a neurogenic factor [147], and this is also the case in the cnidarian

Hydra, where FoxJ3 appears to be involved in neurogenesis [148].

FoxK–A potentially conserved factor of cell cycle control. FoxK is present and expressed ubiq-

uitously in all investigated panarthropod species, including Drosophila [136, 137]. Functional

studies have shown that at later developmental stages, FoxK is involved in the formation of the

midgut in Drosophila [149]. In Saccoglossus, expression of FoxK is ubiquitous in the ectoderm,

although expression is weaker in the ciliary band [7]. It has recently become clear that FoxK

class genes are involved in cell cycle control and cancer (reviewed in [150]). Although informa-

tion on FoxK expression and function is scarce, it appears likely that it is involved in cell

metabolism and/or cell cycle control (cf. ubiquitous expression of FoxN class genes and their

function in cell cycle control).

FoxL1 –A potentially conserved factor of gut (and associated structures) development. Dro-
sophila FoxL1 is expressed in a posterior and ventral region of the blastoderm that then invagi-

nates to form part of the posterior mesoderm. Later, pairs of segmental clusters of FoxL1-

expressing cells appear in the trunk [15, 151]. It has been shown that FoxL1 plays a role in
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organ placement, and that in knock-out fly embryos, various organs like the germ cells and the

Malpighian tubules fail to position correctly [151]. In Tribolium, the expression of FoxL1 is

conserved in the developing hind and midgut and in segmental dots in the trunk. In Glomeris,
Parasteatoda and Euperipatoides, we find a comparable early posterior domain of expression

that demarcates the hindgut. The segmental expression, however, is not present in Glomeris,
and the anterior expression in the brain and the mouth/pharynx seen in these species is not

present in Drosophila and Tribolium. In Saccoglossus and the shark Scyliorhinus, FoxL1 is

expressed in the developing gill slits [7, 89]. In vertebrates, FoxL1 is an important component

of gut development [152, 153].

It appears that FoxL1 is a conserved factor in gut development, including the development

of associated structures such as the pharynx, Malpighian tubules, and gill slits.

FoxL2

FoxL2 is absent in Drosophila but is present in most other panarthropods (Fig 1). However, in

the spider and the onychophoran, we could not detect expression. In Tribolium and Glomeris,
FoxL2 is expressed late during development and is mainly restricted to dorsal segmental tissue

of the trunk segments. In the planthopper Nilaparvata, expression of FoxL2 is female-specific

and has a function in chorion development [27, 154]. Besides the potentially conserved func-

tion of FoxL2 in egg-development, we assume that there is a conserved function of this gene in

patterning dorsal tissue (possibly muscles) in at least mandibulate arthropods.

In the leech Helobdella, FoxL2 is expressed in developing muscle tissue as well [73]. In the

echinoderm Strongylocentrotus, FoxL2 is not detectable or is expressed ubiquitously at low lev-

els early during embryogenesis [8] (their Supporting information). In Saccoglossus, FoxL2 is

present, but transcripts could not be detected [7]. In vertebrates, FoxL2 is a known factor of

female gonadogenesis (reviewed in [155]), a function that could be conserved in the oyster

Crassostrea [156]. Interestingly, in both groups of animals there is an anti-sense transcript of

FoxL2 that is likely involved in the regulation of FoxL2 sense transcripts [157, 158]. However,

we did not detect expression using sense-probes neither for Glomeris nor for Tribolium FoxL2
(data not shown). In the sponge Suberites expression is ubiquitous [13].

FoxM, FoxN14, and FoxN23 –A trio of cell cycle controlling genes. FoxM appears to be lost in

arthropods (Fig 1). In the onychophoran, FoxM, FoxN14 and FoxN23 all are expressed in a

complex dynamic pattern, suggesting a function in cell cycle control [59]. In other arthropods,

expression of FoxN genes is ubiquitous [59], a pattern that is in line with a function in mitotic

cells and thus cell cycle control. However, the available panarthropod data suggest that the sit-

uation in Drosophila, where FoxN genes are differentially expressed in various tissues, is

derived [159–162].

The role of FoxM, and FoxN genes in cell cycle control is also conserved in vertebrates

(reviewed in [163, 164]) [165–167], suggesting that a function of these genes in controlling the

cell cycle is conserved among at least Bilateria.

FoxO. Expression profiles of panarthropod FoxO orthologs are diverse. In Drosophila, FoxO
is expressed maternally, but soon after fertilization, transcripts disappear until at stage 11

when de novo expression appears in ectodermal and endodermal tissue. Expression levels in

ventral tissue of the trunk and the head are low except for the labrum that strongly expresses

FoxO [14]. In Tribolium, zygotic expression is mainly restricted to the head region and later in

the developing brain and nervous tissue in the head. In Glomeris, expression is ubiquitous. Of

the two Parasteatoda FoxO orthologs, FoxO1 is expressed in the dorsal field, and FoxO2 is

expressed in complex patterns during development. Finally, onychophoran FoxO is expressed
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in a complex pattern as well; some aspects of its expression may be conserved between the spi-

der and the velvet worm.

In Caenorhabditis, FoxO (syn. daf16) is a mediator of dauer formation (halting develop-

ment) and aging [168, 169], mediates insulin-like metabolic signaling and stress resistance,

and is involved in learning, memory, and regeneration [170], many of the functions that are

conserved in Drosophila, other insects such as the silkworm Bombyx [171–173] and mouse

(reviewed in e.g. [174]). In Saccoglossus, FoxO was not detectable in early development [7]. In

Hydra, FoxO is involved in the regulation of stem cell proliferation and antimicrobial peptides

that are components of the immune system and the microbiome [175, 176]. The only expres-

sion data from lophotrochozoan species come from the leech Helobdella austinensis where its

two FoxO genes both are expressed in complex patterns [73], and the planarian Schmidtea
mediterranea where the gene appears to be expressed ubiquitously [62].

Altogether, FoxO genes appear to represent important and conserved factors in regulating

animal metabolism. This is in line with the often-ubiquitous patterns of FoxO during

development.

FoxP—A conserved factor of bilaterian nervous system development. In Drosophila, FoxP is

expressed in the yolk cytoplasm as well as in the central nervous system where it starts with the

occurrence of segmental groups of FoxP-expressing cells along the ventral midline. Later, the

complete central nervous system expresses FoxP [14]. Functional studies have shown that

FoxP indeed is needed for developmental processes in the nervous system (e.g. [177–179]). In

the honey bee Apis mellifera, and other bees, FoxP is also expressed in the brain [180, 181].

This pattern is conserved in the here investigated arthropods and in the onychophoran. In all

species, at least one paralog is expressed in the brain and the VNS. In the spider, one of the two

paralogs, FoxP1 is expressed in the dorsal field. Most probably this pattern represents a neo-

functionalization after the duplication, whereas the second paralog, FoxP2 fulfils the ancestral

function in nervous system patterning. Although the pattern is less clear in the onychophoran,

FoxP is strongly expressed in the brain and in the region of the VNS. The function of FoxP in

nervous system patterning is thus likely conserved in Panarthropoda.

In Saccoglossus, FoxP is predominantly expressed in ectodermal tissue, suggesting that also

here, FoxP may be involved in nervous system patterning [7], and in vertebrates, FoxP is

known to be a key player of nervous system development (e.g. [182–184]), suggesting that

FoxP is a universal factor of bilaterian nervous system development. FoxP genes have been

identified in cnidarians and even sponges [142, 185], but expression or functional data are not

available leaving the question open of whether the suggested function of FoxP as a neuronal

gene may date back even beyond Bilateria.

FoxQ1 –A conserved factor of pharynx development. Although we identified a FoxQ1 gene in

the onychophoran Euperipatoides (Fig 1) [28], we could not detect expression in the develop-

mental stages that we investigated. In urochordates, hemichordates, cephalochordates, and

vertebrates, FoxQ1 is specifically expressed and functions in the development of pharyngeal

structures (e.g. [7, 24, 144, 186]). Interestingly, in an annelid, FoxQ1 is expressed in the phar-

ynx as well [9], suggesting that the ancestral function of FoxQ1 in development is restricted to

the development of the pharynx.

FoxQ2 –A highly conserved factor of anterior development. FoxQ2 is a factor of the so called

anterior gene regulatory network (aGRN) that appears to be highly-conserved in all Bilateria,

and even diploblasts (e.g. [123, 138, 141, 187]). Consequently, in all hitherto investigated

arthropods, FoxQ2 is expressed in the anterior of the developing embryo including the anlagen

of the pharynx and the anterior procephalic neuroectoderm [14, 22, 60, 61, 188, 189]. Given

the conserved expression patterns of other anterior patterning genes such as six3 and ortho-
denticle (otd) the anterior patterning GRN as a whole, or at least key-components of it, appear
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to be conserved in panarthropods (e.g. [47, 61, 188, 190–192]), and indeed all groups of ani-

mals (e.g. [190, 193–195]), although, surprisingly, FoxQ2 has been lost in placental mammals

(e.g. [5, 24]).

FoxT–A potentially conserved factor of hexapod chordotonal sensory cell development. A new

class of Fox genes, FoxT, was recently identified [27, 28]. In Drosophila, two genes belong to

this class, fd3F and Crg-1 (Fig 1 and S1 Fig). fd3F is first expressed ubiquitously, but from stage

12 onwards expression is exclusively in cell clusters along the ventral and lateral side of the

embryo [14, 63, 196]. These cell clusters correspond to chordotonal (Ch) sensory organs and

their precursors, and it has been shown that fd3F regulates specification of this group of cili-

ated neurons, while the other group of ciliated neurons, the external sensory (ES) neurons, do

not express fd3F [63, 196]. The function of fd3F is thus similar to that of another Fox gene,

FoxJ, and it has been suggested that fd3F may represent a highly-derived FoxJ-class gene [63];

recent phylogenetic analyses, however, do not support this idea (discussed above) [27, 28].

Our data suggest that the function of fd3F is conserved in at least insects, because the

expression pattern of Tribolium FoxT/fd3F are very similar to that in Drosophila. We could not

detect specific expression of Euperipatoides FoxT/fd3F, which could be explained by the rela-

tively late development of Ch neurons (cf. expression in insects), and gene expression studies

in late stages of onychophorans are problematic.

Drosophila Crg-1 is expressed in the adult head, and is involved in steering the circadian

rhythm of the fly [197]. [28] suggested that fd3F and Crg-1 are the result of a duplication event

of FoxT in Drosophila.

The single FoxT-type gene of the planthopper Nilaparvata appears to be exclusively

expressed in the testis of late male nymphs and adult males [27]. This finding could explain

why we were not able to detect expression of FoxT in embryos of the onychophoran Euperipa-
toides. The lack of FoxT earlier in the development of Nilaparvata, however, suggests that the

pattern (and thus function) of FoxT reported in Drosophila and Tribolium may be restricted to

holometabolous insects.

Supporting information

S1 Table. Primer sequences.

(XLSX)

S2 Table. Accession numbers.

(XLSX)

S1 Fig. The complement of panarthropod Fox genes investigated in this paper and of the

model arthropod Drosophila melanogaster. Each box indicates one paralog of a given Fox-

class gene. Horizontal black bars indicate gene loss.

(TIF)

S2 Fig. Expression of Tribolium FoxA. In all panels, anterior is to the left. A Ventral view. B

Lateral view. C Dorsal view. D Dorsal view of posterior end of embryo. The short arrows in

A-C indicate expression laterally in the head lobes. The long arrow in A marks expression

along the ventral midline. Asterisks mark unspecific staining of the pleuropodia. Abbreviations

in Table 2.

(TIF)

S3 Fig. Expression of FoxA (A-D), FoxC (E-H), FoxG (I-L), and FoxQ2 (M-P). In all panels,

anterior is to the left, ventral views (except panels D and L, ventral lateral). The arrow in panel

D point to expression in the VNS. The asterisk in panel I marks the mandibular segment.
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Arrows in panels K and L mark lateral dots of expression. Abbreviations in Table 2.

(TIF)

S4 Fig. Early expression of FoxA-1 (A-F) and comparison of expression of FoxA-1 (F) and

FoxA-2 (G) in the dorsal field. Note that FoxA-1, but not FoxA-2 is expressed in the dorsal

field. The x in panel A marks the center of the germ disc that expresses FoxA1. Abbreviations

in Table 2.

(TIF)

S5 Fig. Expression of Parasteatoda FoxA-1. In all panels, anterior is to the left, ventral view.

Panels A, D and G, view of anterior with head. Panels B, E and H view of middle part with

walking limbs. Panels C, F, and I view of opisthosoma. Asterisks in panel G mark expression

in the chelicerae. A´-I´ represent DAPI staining of the embryos shown in A-I. Each row (e.g.

A-C) represents the same embryo. Abbreviations in Table 2.

(TIF)

S6 Fig. DAPI staining of the embryos shown in Fig 2. Abbreviations in Table 2.

(TIF)

S7 Fig. Expression of Euperipatoides FoxA. In all panels, anterior is to the left, ventral views,

except panel B, lateral view, dorsal up. A´-C´ represent DAPI staining of the embryos shown

in A-C. Arrows in panels B and C mark expression along the ventral margin of the embryo

proper. Abbreviations in Table 2.

(TIF)

S8 Fig. Expression of FoxB. Expression of Tribolium FoxB1 and FoxB2 (A-F), Glomeris FoxB
(G-J), Parasteatoda FoxB (K-M), and Euperipatoides FoxB (N-P). In all panels, anterior is to

the left (except panel M, ventral to the left). All panels represent ventral views (except panels

M, N and P, lateral views). Narrow arrows in panels C, E, F, L, N and P point to the ventral

nervous system. The asterisks in panels C and F mark unspecific signal in the pleuropodia.

The arrow in panel J points to the midline. The arrow in panel K points to expression around

the mouth (stomodaeum). The asterisk in panel K marks expression in the posterior end of the

embryo. The arrow in panel O points to expression in the ventral tissue of the appendage.

Abbreviations in Table 2.

(TIF)

S9 Fig. Expression of Tribolium FoxC. In all panels, anterior is to the left, ventral view.

Embryos in D-F are flat-mounted. Long arrows in panels C-F mark expression in the VNS.

Short arrow in F points to expression in dorsal tissue that could contribute to the heart. Aster-

isks in F mark unspecific staining in the pleuropodia. Abbreviations in Table 2.

(TIF)

S10 Fig. DAPI staining of the embryos shown in Fig 6. Abbreviations in Table 2.

(TIF)

S11 Fig. Additional aspects of Glomeris FoxF expression. Anterior is to the left, ventral

views. Abbreviations in Table 2.

(TIF)

S12 Fig. DAPI staining of the embryos shown in Fig 8.

(TIF)

S13 Fig. DAPI staining of the embryos shown in Fig 9. Abbreviations in Table 2.

(TIF)
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S14 Fig. Expression of Glomeris FoxP (A), FoxJ1 (B) and FoxO (C), additional aspects. Ante-

rior views. Arrowhead in panel B points to dot of expression in the lateral head. Arrowhead in

panel C points to expression in the labrum. Abbreviations in Table 2.

(TIF)

S15 Fig. DAPI staining of the embryos shown in Fig 13. Abbreviations in Table 2.

(TIF)

S16 Fig. DAPI staining of the embryos shown in Fig 18. Abbreviations in Table 2.

(TIF)

S17 Fig. DAPI staining of the embryos shown in Fig 20. Abbreviations in Table 2.

(TIF)

S18 Fig. Expression of Tribolium FoxQ2. In all panels, anterior is to the left, ventral view.

Embryos are flat-mounted, except embryo shown in panel A and E. The out-of-focus signal in

the center of the embryo shown in panel E is in the pleuropodia that stain unspecific. Abbrevi-

ations in Table 2.

(TIF)

S19 Fig. Expression of Parasteatoda FoxQ2. In all panels, anterior is to the left, anterior view,

except panels B, lateral view. A´-H´ represent DAPI staining of the embryos shown in A-H. In

all panels, asterisks, filled circles and open circles mark corresponding domains of expression

during development. Abbreviations in Table 2.

(TIF)

S20 Fig. Expression of Euperipatoides FoxQ2. In all panels, anterior is to the left. Panels A

and B, ventral view; panel C, lateral view, dorsal up; panel D, dorsal view. A´-D´ represent

DAPI staining of the embryos shown in A-D. Asterisks in panels C and D mark faint expres-

sion ventral to the eyes. Arrowheads in panels C and D point to expression in the interface

between jaws and slime papillae. Abbreviations in Table 2.

(TIF)
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86. Häcker U, Kaufmann E, Hartmann C, Jürgens G, Knöchel W, Jäckle H. The Drosophila fork head
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