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Abstract

Purpose: Persistent sustained attention deficit (SAD) after continuous positive airway pressure 

(CPAP) treatment is a source of quality of life and occupational impairment in obstructive sleep 

apnea (OSA). However, persistent SAD is difficult to predict in patients initiated on CPAP 

treatment. We performed secondary analyses of brain magnetic resonance (MR) images in treated 

OSA participants, using deep learning, to predict SAD.

Methods: 26 middle-aged men with CPAP use of more than 6 hours daily and MR imaging were 

included. SAD was defined by psychomotor vigilance task lapses of more than 2. 17 participants 

had SAD and 9 were without SAD. A Convolutional Neural Network (CNN) model was used for 

classifying the MR images into +SAD and −SAD categories.

Results: The CNN model achieved an accuracy of 97.02±0.80% in classifying MR images into 

+SAD and −SAD categories. Assuming a threshold of 90% probability for the MR image being 
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correctly classified, the model provided a participant-level accuracy of 99.11±0.55% and a stable 

image level accuracy of 97.45±0.63%.

Conclusion: Deep learning methods, such as the proposed CNN model, can accurately predict 

persistent SAD based on MR images. Further replication of these findings will allow early 

initiation of adjunctive pharmacologic treatment in high-risk patients, along with CPAP, to 

improve quality of life and occupational fitness. Future augmentation of this approach with 

explainable artificial intelligence methods may elucidate the neuroanatomical areas underlying 

persistent SAD to provide mechanistic insights and novel therapeutic targets.

Introduction

Daytime sleepiness is a disabling neurocognitive consequence of obstructive sleep apnea 

(OSA). Despite continuous positive airway pressure (CPAP) treatment adherence of more 

than 4 hours daily, 12–65% of patients with treated OSA experience persistent sleepiness1, 

which adversely affects the quality of life and occupational fitness. Self-reported sleepiness 

is limited in occupational evaluation. It does not correlate well with objective measurements 

of sleepiness2 that are either time-intensive such as the multiple sleep latency test (MSLT), 

or lack large-scale normative data, for e.g., the Psychomotor Vigilance Task (PVT), 

which measures sustained attention deficit (SAD)3. Importantly, the objective measures 

of sleepiness fail to elucidate the neurological basis of neurocognitive dysfunction. Brain 

magnetic resonance imaging (MRI) provides anatomical details of grey and white matter and 

has been used to identify differences in brain structures between CPAP-treated OSA patients 

with and without sleepiness4. Our group has previously4,10 examined the differences in 

whole brain Diffusion-Weighted Imaging (DWI) between the groups. In an earlier study10, 

fractional anisotropy, mean diffusivity, axial diffusivity and radial diffusivity were used 

to reveal the differences in white matter fiber tracts between the sleepy and non-sleepy 

groups following CPAP-treatment. In a more recent study4, common white matter fiber 

tracts were determined by tract-based spatial statistics (TBSS)5, followed by assessment of 

whole brain and regional white matter differences between groups using a continuous-time 

random-walk (CTRW) diffusion model6. The sleepy group showed significantly higher 

temporal diffusion heterogeneity (α) and anomalous diffusion coefficient (Dm) globally, and 

regional differences in α and spatial diffusion heterogeneity (β) within twelve fiber tracts 

compared to the non-sleepy group. The parameters, α and Dm, in the right superior corona 

radiata were positively correlated, and β was negatively correlated with SAD (defined 

by PVT-lapses). Another study reported reversible white matter changes associated with 

improvements in memory, attention, and executive-function after CPAP treatment7. While 

these studies provide potential mechanistic insights into OSA associated SAD, the standard 

biostatistical approaches have limited power to predict SAD.

Deep learning, a subtopic of the field of machine learning, has been applied to brain MRI 

analysis for improving the classification of neurocognitive outcomes in various neurological 

and psychiatric disorders8,9. Based on our previous publications4,10, we hypothesized that 

machine learning, a powerful model-free computational approach increasingly used in 

biomedical research, will accurately predict SAD based on brain MRI in treated OSA 
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patients. Further, we explored if explainable artificial intelligence techniques could highlight 

the neuroanatomical structures that drive this classification power.

Materials and Methods

We performed secondary analyses of a previously reported study of 26 middle-aged men 

with severe OSA treated with CPAP; use ≥6 hours daily4. Similar to our previous work, the 

presence of SAD was defined by PVT lapses ≥2 (17 participants with SAD) and PVT lapses 

<2 was used to identify the absence of SAD (9 without SAD)2. The baseline characteristics 

of the two groups are listed in Table 1. Regarding comorbidities, none of the participants had 

chronic obstructive lung disease, 6 participants had asthma (3 in each group), 1 participant 

had history of myocardial infarction, 2 participants had heart failure (1 in each group), none 

had stroke or seizures. The more common comorbidities are listed in Table 1, where no 

significant differences were noted between the groups. There was no relationship between 

hours of CPAP use per day and the number of PVT lapses (Pearson’s correlation, r = −0.03, 

p=0.83), probably due to the overall high CPAP adherence given the inclusion criteria of 

CPAP use ≥6 hours daily.

Dataset generation for signal processing

The MRI data consisted of 13025 diffusion tensor images (DTI) covering the entire brain 

with 27 diffusion directions and a b-value of 1000 s/mm2. To remove the skull from the 

images, we assumed a bimodal histogram of the pixels in the Magnetic Resonance (MR) 

images, generated a binary mask using Otsu’s method11, and overlaid the binary mask on 

the original image (see examples in Figure 1). To optimize model training with a small 

sample size, we used an 80–20 DTI data split (80% training, 10% validation, and 10% 

testing) and evaluated the model performance using a 5-fold cross-validation technique.

Proposed model

Convolutional Neural Network (CNN, a class of deep neural networks) is a widely used 

architecture for imaging-based classification tasks due to its high performance8,12. Thus we 

used a CNN model for classifying the MR images into +SAD and −SAD. The model had 

three key components: (1) four convolutional blocks, (2) two fully-connected layers with 

ReLU activations, and (3) an output layer with two categorical nodes. Table 2 outlines the 

number of channels and neurons per layer in the CNN framework.

Training and Inference

An iteration is defined as a single pass of the entire dataset, both forward and backward 

through the CNN. The proposed model was trained using Adam optimizer for 10 iterations13 

and a binary cross-entropy loss.

Results

We addressed the following three questions regarding the clinical relevance of the proposed 

CNN model: (1) Is the model accurate in classifying participants with SAD? (2) Does 

the model learn MR image features unique to each category (+SAD and −SAD)? and (3) 

Agarwal et al. Page 3

Sleep Vigil. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Can we identify the MR image features underlying the classification decision made by the 

model?

Performance:

The CNN model achieved an accuracy of 97.02±0.80% in classifying MR images into 

+SAD and −SAD categories. We extended the image-level analysis by employing a voting 

technique to obtain participant-level accuracy. For each participant, we considered the CNN 

model’s classification of the MR images as correct only if the prediction probability was 

higher than 0.9. The majority class predicted across all MR images from a participant was 

then calculated. Following this technique, the CNN model correctly classified participants 

into +SAD and −SAD categories with an accuracy of 99.11±0.55% and a stable image level 

accuracy of 97.45±0.63%.

Feature representation:

Our goal was to project the high-dimension MR image features learned by the CNN 

to a lower-dimensional space. Given the high-classification accuracy, we hypothesized 

that majority of the MR images belonging to either +SAD or −SAD categories would 

be correctly placed in a two-dimensional feature space. We used t-SNE dimensionality 

reduction14 to visualize the features in a two-dimensional feature space. As shown in Figure 

2, the (+SAD and −SAD categories were clearly distinguished, thus validating the potential 

predictive performance of the model at the participant level.

Model explanation:

We used perturbation attribution methods to generate heatmaps that highlighted the 

MR image regions providing evidence for or against the CNN’s classification decision. 

Following Fong et al., we learned the smallest “mask” (by blurring an input image), which 

caused a significant decrease in the probability of correct classification15. The heatmaps of 

two participants with highest and lowest number of PVT lapses (84.5 in +SAD and 0 in 

−SAD categories) are shown in Figure 3, highlighting the brain regions which the model 

considered salient for accurate prediction (yellow represents salient regions).

Discussion

This pilot study demonstrates that deep learning methods can be used to analyze brain 

MRI for accurate classification of OSA phenotypes based on persistent SAD after CPAP 

treatment with good adherence. In this study, we employed DTI as an example to 

demonstrate the efficiency of our CNN model. DTI is sensitive to diffusion anisotropy 

in brain tissues, and particularly useful for probing white-matter structural integrity10. 

Recent studies show that differences in white-matter fiber tracts may explain persistent 

sleepiness after CPAP treatment in OSA4,10. Previous studies have examined white and grey 

matter differences in brain MRI between OSA patients and controls, as well as changes 

in neuronal structures after CPAP treatment of OSA7,16. Some reports include specific 

regional differences that correlate with neurocognitive function, mood, and sleepiness17. 

These studies support ischemia-reperfusion neuronal and glial injury as a mechanism 

of neurocognitive dysfunction in OSA, and provide insight into regional reversibility of 
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such injury after CPAP treatment. However, the insights gained from DTI depend on the 

analytical model. Because no existing analytical model can fully describe the underlying 

brain microstructures, any selected model is limited with respect to neuroanatomical details. 

Another limitation is that DTI typically focuses on white-matter characterization, although 

voxel-based morphometry can partially overcome this limitation16.

Deep learning is a sub-field of machine learning that allows computer-aided quantitative 

analysis of large MR image datasets, overcoming issues of model-dependency, inter-rater 

reliability, and efficiency. In this pilot study, the CNN model was trained in a supervised 

manner to generate empirical evidence. Our results highlight deep learning algorithm’s 

benefits over classical statistical methods by demonstrating an accurate classification of 

persistent SAD, an important source of morbidity in OSA. This benefit may be attributed to 

classical statistical algorithms’ limited generalizability due to variations in image acquisition 

and quality, and inter-individual variations in normal and pathologic brain structures. In 

future work, deep learning algorithms should be utilized with multiple layers of neural 

networks that can “self-learn” by training on larger datasets and offer the potential for 

discovery of novel findings from quantitative analysis of brain MR images in OSA. As noted 

in our previous publications, the persistence of sleepiness and neurocognitive dysfunction 

in some patients is not explained by OSA severity, CPAP adherence, sleep duration (by 

actigraphy), comorbidity, or use of sedating medications, and only partially explained by 

age4,10. Explainable artificial intelligence techniques can advance analytical results from 

black-box deep learning algorithms to interpretable segmentation of brain regions that 

provides critical input for the deep learning algorithm performance18. Due to the small 

sample size and lack of manual segmentation of the MR images in this pilot study, 

determination of neuroanatomical areas that were most helpful in predicting persistent 

sleepiness after OSA treatment was limited. However, visualization of the heatmaps in 

Figure 3 suggests that the right temporal area contributed significantly to the machine 

learning model performance. Previous research has shown that the right hippocampus, 

in the region deemed salient by the model, is vulnerable to hypoxic injury and reduced 

functional connectivity in patients with moderate to severe OSA, which may explain our 

findings19. Our previous study on white matters also suggested alterations of selected 

non-Gaussian diffusion parameters in the posterior limb of right internal capsule, right 

anterior corona radiata, and right superior longitudinal fasciculus4. However, changes in 

other diffusion parameters have also been reported in several white matter fiber tracts on 

the left hemisphere16. Overall, studies on brain anatomy associated with OSA are limited 

and inconclusive, particularly those concerning laterality. Further studies are needed to 

replicate and extend these preliminary findings to elucidate the neuroanatomical substrates 

of neurocognitive dysfunction in OSA.

Despite the promising results of this pilot study, the design and methodological limitations 

underscore the need to replicate the results with larger datasets. The classification 

accuracy of our current CNN model may reduce in larger datasets with greater participant 

heterogeneity, and will require improved methods. Additional steps for future studies 

with improved methods should include standardized imaging protocols, comprehensive 

preprocessing steps beyond skull stripping, atlas-based automated brain segmentation or 

combining manual segmentation of images by multiple experts using methods such as 
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label fusion algorithms, and increasing the size of training datasets by applying random 

transformations (data augmentation that prevents overfitting). Finally, a generalizable deep 

learning algorithm requires advanced methods like transfer learning18, where the initial 

network is trained on a large dataset (population), then modified to work on similar, smaller 

datasets (subpopulations). For example, a network trained on larger datasets of treated 

OSA patients with residual SAD could be used for transfer learning applications to predict 
persistent SAD or sleepiness despite effective CPAP treatment. Persistent SAD or sleepiness 

is seen in more than a third of OSA patients and modifiable by pharmacologic therapy.
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Figure 1: 
Three examples of segmented brain images from the original MR images.
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Figure 2: 
Visualization of the features learned by the CNN model showing two distinct clusters for the 

+SAD and −SAD categories. *SAD= sustained attention deficit.
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Figure 3: 
Attribution maps for MRI. The top panel depicts MRI from a +SAD participant (number of 

PVT lapses = 84.5). The bottom panel depicts MRI from a −SAD participant (number of 

PVT lapse = 0). Yellow represents more salient and purple represents less salient regions. 

*SAD= sustained attention deficit.
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Table 1.
Baseline Characteristics

Baseline characteristics of the groups with and without Sustained Attention Deficit. The study sample 

inclusion criteria were men with AHI ≥30/hour and CPAP use ≥ 6 hours per day.

Parameters +SAD (N=17) −SAD (N=9) *p-value

Age 45.73±8.29 43.23±8.49 0.41

Body Mass Index (Kg/m 2 )_ 34.4±4.7 32.9±5.6 0.47

AHI per hour 45.9±28.8 40.1±23.6 0.60

CPAP nightly use (Hours) 7.01±1.02 6.64±0.65 0.25

Smoking (%) 6 (36) 3 (33) 0.84

Diabetes 6 (36) 4 (44) 0.89

Hypertension 10 (58) 6 (66) 0.83

Depression 7 (42) 3 (33) 0.62

Sustained Attention Deficit = SAD, Apnea Hypopnea Index = AHI, Continuous Positive Airway Pressure = CPAP.

*
The groups were compared using t-tests or two sample Z test of proportions, using STATA v15.
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Table 2.

The convolutional neural network architectures for the Brain Magnetic Resonance Image classification 

task. There were 12 channels in each convolutional layer. Note that each “conv” layer shown in the table 

corresponds to the sequence Conv-BN-ReLU.

Input Layer Configuration Output size

Convolutional Block (1) [3×3 conv] × 12
2×2 max pool

12 × 112 × 112

Convolutional Block (2) [3×3 conv] × 12
2×2 max pool

12 × 56 × 56

Convolutional Block (3) [3×3 conv] × 12
2 × 2 max pool

12 × 28 × 28

Convolutional Block (4) [3×3 conv] × 12
2 × 2 max pool

12 × 14 × 14

Flatten Layer [1×2352] 1 × 2352

Fully Connected Layer (1) 120-unit fully connected layer ReLU 1 × 120

Fully Connected Layer (2) 64-unit fully connected layer ReLU 1 × 64

Classification Layer [1×2] softmax 1 × 2
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