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Abstract

In long-term follow-up studies, data are often collected on repeated measures of multivariate 

response variables as well as on time to the occurrence of a certain event. To jointly analyze 

such longitudinal data and survival time, we propose a general class of semiparametric latent-class 

models that accommodates a heterogeneous study population with flexible dependence structures 

between the longitudinal and survival outcomes. We combine nonparametric maximum likelihood 

estimation with sieve estimation and devise an efficient EM algorithm to implement the proposed 

approach. We establish the asymptotic properties of the proposed estimators through novel use of 

modern empirical process theory, sieve estimation theory, and semiparametric efficiency theory. 

Finally, we demonstrate the advantages of the proposed methods through extensive simulation 

studies and provide an application to the Atherosclerosis Risk in Communities study.
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1. Introduction.

Many clinical and epidemiological studies generate data on repeated measures of response 

variables at multiple time points as well as on time to the occurrence of a clinical 

event. In cardiovascular cohort studies, for example, data are often recorded for both 

repeated measures of risk factors (e.g., blood pressures, cholesterol levels) and time to a 

cardiovascular event (e.g., stroke, heart attack) or death [5]. Shared random-effect models 

and joint latent-class models have been proposed to investigate the dynamic relationships 

among such longitudinal and survival data.
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In shared random-effect models, a linear mixed model with a set of unobserved random 

effects is assumed for the longitudinal outcomes, and a proportional hazards model or 

transformation model with the same random effects as covariates is assumed for the survival 

time [4, 23, 18, 24, 8]. The shared random effects account for the dependence between the 

longitudinal and survival outcomes. These models typically assume that, conditional on the 

random effects, the distribution of the survival time and the effects of covariates on the 

longitudinal and survival outcomes are the same across subjects.

Joint latent-class models assume that the population consists of subgroups and within each 

subgroup, subjects have the same distributions of longitudinal and survival outcomes [14, 

7]. These models allow the baseline risk of event and the association pattern between 

the longitudinal and survival outcomes to vary flexibly across subgroups. However, the 

existing work is mostly confined to fully parametric models. Lin et al. [6] proposed a 

semiparametric latent-class model with a nonparametric baseline hazard function for the 

survival time in each latent class but did not investigate the theoretical properties of the 

proposed nonparametric maximum likelihood estimators (NPMLE). In fact, such NPMLEs 

are inconsistent [12, 20]; see Section S1 of the supplementary materials [21].

We propose a general model for the joint analysis of multivariate longitudinal data and 

survival time. We assume that the population consists of a mixture of latent subgroups such 

that within each subgroup, the joint distribution of the longitudinal and survival outcomes 

is described by a separate random-effect model, in which the survival time is characterized 

by a separate nonparametric baseline hazard function. This model naturally extends those of 

Henderson, Diggle and Dobson [4] and Tsiatis and Davidian [18] by allowing the existence 

of latent subgroups. The model can be used to address important scientific questions:

1. Identification of latent subgroups within a heterogeneous study population;

2. Estimation of the effects of baseline covariates, such as treatment, on 

longitudinal and survival outcomes within each subgroup;

3. Evaluation of the event risk given baseline covariates and trajectories of 

longitudinal outcomes; and

4. Estimation of the association between the trajectories of longitudinal outcomes 

and covariates with proper adjustment of informative dropout due to the 

occurrence of the event.

The proposed modeling framework also extends existing work by accommodating 

multivariate longitudinal outcomes measured at multiple time points. This framework 

is particularly useful in cardiovascular studies, where multiple risk factors, such as 

blood pressures and cholesterol levels, are repeatedly measured. Including multivariate 

longitudinal outcomes not only provides a comprehensive depiction of the dynamic 

relationships among the event of interest and relevant risk factors but also helps identify 

the latent subgroup structure.

Due to the presence of multiple nonparametric components in the model and the lack of a 

closed-form expression for the likelihood function, model estimation is highly challenging 

both theoretically and computationally. To overcome the non-identifiability of the fully 
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nonparametric likelihood approach, we propose to combine nonparametric likelihood 

estimation with sieve estimation, such that the cumulative hazard function of a reference 

latent class is estimated by a step function with jumps at the observed event times, and the 

ratios of the baseline hazard functions across latent classes are estimated by spline functions. 

We develop a stable and efficient (accelerated) EM algorithm [3] to compute the proposed 

estimators.

We prove that the proposed estimators are consistent and the parametric components of 

the estimators are asymptotically efficient. The derivations involve novel applications of 

empirical process theory, sieve estimation theory, and semiparametric efficiency theory. 

One major challenge in our theoretical development is to show that the proposed model is 

identifiable with an invertible information operator. Due to the presence of latent classes, 

techniques for establishing model identifiability or invertibility of the information operator 

for semiparametric shared random-effect models are not directly applicable to the current 

setting. In addition, existing methods for latent-class models are not readily applicable 

to semiparametric models. To establish model identifiability and the invertibility of the 

information operator, we note that the likelihood and the score function are the sums of the 

terms arising from the likelihood of semiparametric shared random-effect models and show 

that the terms in the summation can be separated by properly varying the observed data 

values.

The rest of this article is structured as follows. In Section 2, we formulate the model and 

describe the proposed estimation approach. In Section 3, we discuss the computation of the 

proposed estimators, and in Section 4, we present the theoretical results. In Section 5, we 

report the results from our simulation studies. In Section 6, we provide an application to 

the Atherosclerosis Risk in Communities (ARIC) study [5]. In Section 7, we make some 

concluding remarks. We relegate technical proofs to the Appendix.

2. Model, likelihood, and sieve estimation.

Suppose that there are G latent classes. Let C denote the latent class membership, with 

C = g if a subject belongs to the gth latent class (g = 1,…,G). We relate C to a set of time-

independent covariates W, which generally includes the constant 1, through a multinomial 

logistic regression model:

P C = g W = eαgTW

∑l = 1
G eαl

TW
, (1)

where αg is the vector of class-specific regression parameters. For model identifiability, we 

set αG = 0. Each latent class is characterized by class-specific trajectories of multivariate 

longitudinal outcomes and a class-specific risk of the event of interest. The longitudinal 

outcomes and the event time are assumed to be conditionally independent given the latent 

class membership and a multivariate random effect.

Suppose that there are J types of longitudinal outcomes and the jth type is measured at Nj 

time points. For j = 1,…,J and k = 1,…,Nj, let Yjk denote the kth measurement of the jth 

WONG et al. Page 3

Ann Stat. Author manuscript; available in PMC 2022 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



longitudinal outcome and Xjk and Xjk denote corresponding covariates, which include the 

constant 1. The covariates Xjk, Xjk and W may partially or completely overlap. We relate Yjk 

to Xjk and Xjk through the multivariate linear mixed model:

Y jk C = g = βg
TXjk + bTXjk + ϵjk (2)

for g = 1,…,G, where βg is a vector of class-specific regression parameters, b is a vector 

of random effects assumed to follow the multivariate normal distribution with mean 0 

and variance Σ ξg , ϵj1, …, ϵjNj  are independent zero-mean normal random variables with 

variance σgj2 , and Σ(ξg) is a covariance matrix indexed by a vector of class-specific variance 

parameters ξg.

Let T denote the event time of interest. We relate T to a set of potentially time-dependent 

covariates Z(·) through the proportional hazards model:

λ t Z, b, C = g = λg t eγgTZ t + ηgTb, (3)

where λg(·) is an arbitrary class-specific baseline hazard function, and γg and ηg 

are class-specific regression parameters. In the presence of censoring, we observe 

T = TΛU and ∆ = I(T ≤ U), where U is the censoring time, and I(·) is the indicator 

function. Let Y = (Y11,…,Y1N1,…,YJ1,…,YJNJ)T, X = X11, …, X1N1, …, XJ1, …, XJNJ
T, 

and X = X11, …, X1N1, …, XJ1, …, XJNJ
T. The data consist of n independent observations 

Oi ≡ Ni1, …, NiJ, Y i, Xi, Xi, T i, Δi, W i, Zi t t ∈ 0, T i , for i = 1, …, n, where τ is the end of 

study time.

Let θ ≡ α1, …, αG − 1, β1, …, βG, σ11
2 , …, σ1J

2 , …, σGJ
2 , ξ1, …, ξG, γ1, …, γG, η1, …, ηG  denote the 

set of all Euclidean parameters and Λg t = ∫0
tλg u du for g = 1, …, G. Under the assumption 

of noninformative censoring and longitudinal measurement times, rigorously formulated 

in Section S2 of the supplementary materials [21], the likelihood function concerning 

(θ,Λ1,…,ΛG) is proportional to

∏
i = 1

n
∑
g = 1

G
eαgTW i

∑l = 1
G eαl

TW i
∫ ∏

j = 1

J
∏
k = 1

Nij
σgj−1e

− 1
2σgj2 Yijk − βgTXijk − bTXijk

2
λg T i eγgTZi Ti + ηgTb

Δi

× exp − ∫
0

Ti
eγgTZi t + ηgTbdΛg t Σ ξg

−1/2e− 1
2bTΣ ξg

−1bdb

.

(4)

We reparametrize the model by setting Λ = Λ1 and ψg = log(λg/λ1); we then estimate Λ 
nonparametrically and approximate ψg using a sieve of B-spline functions for g = 2,…, 
G. In particular, we treat Λ as a step function that jumps at the observed event times 

and replace λ1 T i  in the likelihood by Λ T i , where Λ{t} is the jump size of Λ at t. Let 

B1, …Bmn be B-spline functions on a grid over 0, τ , where the number of spline functions 
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mn increases with the sample size. For g = 2,…, G, we approximate ψg by ∑s = 1
mn agsBs, 

where a ≡ ags g = 2, …, G; s = 1, …, mn is a set of regression parameters. Ideally, NPMLE 

would be adopted for every nonparametric function because it does not require tuning and is 

more flexible than splines. However, because the NPMLE for (Λ1, …, ΛG) is inconsistent, 

we estimate the cumulative baseline hazard function of a reference group using NPMLE 

and estimate the remaining nonparametric functions using splines, so as to achieve as much 

model flexibility as possible while ensuring estimation consistency.

Let θn, Λn, an  be the maximizer of

∏
i = 1

n
∑

g = 1

G
eαgTW i

∑l = 1
G eαl

TW i
∫ ∏

j = 1

J
∏

k = 1

Nij
σgj−1e

− 1
2σgj2 Yijk − βgTXijk − bTXijk

2

× Λ Ti eγgTZi Ti + ∑s = 1
mn agsBs Ti + ηgTb

Δi
exp −∫0

Ti
eγgTZi t + ∑s = 1

mn agsBs t + ηgTbdΛ t

× Σ ξg
−1/2

e− 1
2bTΣ ξg

−1bdb,

and let ψng = ∑s = 1
mn angsBs, where angs is the corresponding element of an. Let 

B = ψ2, …, ψG . The sieve NPMLE of θ, Λ, B  is θn, Λn, ℬn , where ℬn = ψn2, …, ψnG .

3. Computation of the sieve NPMLE.

In this section, we use Z(·) to denote the combination of the original set of time-dependent 

covariates and the B-spline functions (B1, …, Bm), with γg being the corresponding vector 

of regression parameters for the gth latent class. We compute the sieve NPMLE using an 

accelerated version of the EM algorithm, with C and b treated as missing data. The proposed 

algorithm iteratively performs the EM steps. Unlike the standard EM algorithm, an E-step 

may not be performed under the current parameter estimates but under some function of the 

estimates at the previous steps.

We first introduce the standard EM algorithm. The complete-data log-likelihood function is

∑
i = 1

n
∑

g = 1

G
I Ci = g αgTW i − log ∑

l = 1

G
eαl

TW i − 1
2log Σ ξg − 1

2biTΣ ξg
−1bi

− ∑
j = 1

J
∑

k = 1

Nij
1
2logσgj2 +

Yijk − βgTXijk − biTXijk
2

2σgj2 + Δi γgTZi Ti + ηgTbi + logΛ Ti

− ∑
s ≤ Ti

Λ s eγgTZi s + ηgTbi .

In the E-step, we compute the expectation of functions of (b,C) involved in the M-step. The 

conditional density of bi given Ci = g and the observed data is proportional to
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fig bi ≡ ∏
j = 1

J
σgj

−Nij ∏
j = 1

J
∏

k = 1

Nij
exp −

Yijk − βgTXijk − biTXijk
2

2σgj2 Σ ξg

−1/2

× exp − 1
2biTΣ ξg

−1bi eΔi γgTZi Ti + ηgTbi exp −∫0

Ti
eγgTZi t + ηgTbidΛ t ,

and the conditional probability of Ci = g given the observed data is proportional to

qig ≡ eαgTW i∫ fig b db .

The conditional expectation of any function h of (bi,Ci) given the observed data is

E ℎ bi, Ci Oi = ∑
g = 1

G
pig

∫ ℎ b, g fig b db
∫ fig b db

,

where pig = qig/∑l = 1
G qil. The integrations in the above equation can be approximated with 

the adaptive Gauss–Hermite quadrature [9].

In the M-step, we update the parameters by maximizing the expected complete-data log-

likelihood function given the observed data. In particular, we update αg (g = 1,…,G − 1) by 

maximizing the weighted multinomial log-likelihood

∑
i = 1

n
∑

g = 1

G
pigαgTW i − log ∑

g = 1

G
eαgTW i

via the Newton-Raphson algorithm. Then, we update βg and σgj2 j = 1, …, J; g = 1, …, G  by 

maximizing

− 1
2 ∑

j = 1

J
∑

i = 1

n
pig Nijlogσgj2 + ∑

k = 1

Nij
1

σgj2 Eg Yijk − βgTXijk − biTXijk
2

and update ξg (g = 1,…,G) by maximizing

− 1
2 ∑

i = 1

n
pig log Σ ξg + Eg biTΣ ξg

−1bi ,

where Eg denotes the conditional expectation with respect to bi given Ci = g and the 

observed data. If closed-form solutions for the maximization problems are not available, 

then we employ the Newton-Raphson algorithm. In addition, we update (γg,ηg) (g = 1,…,G) 

by maximizing the (weighted) partial likelihood
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∑
i = 1

n
Δi ∑

g = 1

G
pig γgTZi Ti + ηgTEg bi − log ∑

g = 1

G
∑

j = 1

n
I T j ≥ Ti pjgeγgTZj Ti Eg eηgTbj

via the Newton-Raphson algorithm. Finally, we update the cumulative baseline hazard 

function Λ by

Λ Ti =
Δi

∑g = 1
G ∑j = 1

n I T j ≥ Ti pjgeγg
TZj Ti Eg eηg

Tbj

for i = 1,…,n, where (γg, ηg) are the current estimates of the parameters.

The standard EM algorithm, which iteratively performs the E-step and M-step until 

convergence, may be slow, especially when the number of parameters is large. To accelerate 

the convergence, we adopt a modification of the EM algorithm proposed by Varadhan and 

Roland [19]. Let ϑ denote the set of all parameters and s(ϑ) be the set of updated parameters 

after a single EM step if the initial parameter value is ϑ. With ϑ(k) being the set of current 

estimates, a step of the accelerated EM algorithm consists of

1. Calculate ϑ1 = s(ϑ(k)).

2. Calculate ϑ2 = s(ϑ1).

3. Calculate r = ϑ1 −ϑ(k), v = ϑ2 −ϑ1 −r, and a = −||r||2/||v||2.

4. Update the parameter estimates by ϑ(k+1) = s(ϑ(k) −2ar +a2v).

To improve stability, we update the parameters using the standard EM steps at early steps 

of the algorithm. Once the difference between consecutive parameter estimates becomes 

smaller than a certain threshold, we perform the accelerated EM steps until convergence. 

When the assumed number of latent classes is larger than the actual number, the model is 

nonidentifiable, and the parameter estimates may not converge; therefore, we terminate the 

algorithm when the difference between the log-likelihood values of consecutive iterations is 

smaller than a certain threshold.

The algorithm may converge to a local maximum of the log-likelihood. To improve the 

chance of obtaining the global maximum, we can run the algorithm with different initial 

values and set the estimates to the converged values that yield the largest log-likelihood. 

One strategy for setting the initial values is to classify subjects into G classes by some 

clustering method and set the parameter values for each class to be the estimates obtained 

from subjects assigned to the class.

Upon convergence, we use Louis’s formula [11] to compute the observed information 

matrix, essentially treating the model as parametric, with parameters θ, Λ T i i:Δi = 1 and 

ags g = 2, …, G; s = 1, …, mn. The submatrix of the inverse of the observed information matrix 

corresponding to θ can be used to estimate the standard errors of θn. This submatrix is 
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essentially an estimate of the inverse of the efficient information matrix I defined in the 

proof of Theorem 4.2, where the least-favorable directions are estimated by solving the 

empirical counterparts of the integral equations they satisfy. The consistency of this standard 

error estimator is established in Theorem 4.3.

We propose to use the Bayesian information criterion (BIC) [16] to select the number of 

latent classes G. Specifically, for each G, we estimate the model using the sieve NPMLE and 

compute

BIC = − 2logLn θn, Λn, ℬn + slogn,

where Ln is the likelihood function, and s is the number of free parameters in the model, 

including the regression parameters for the B-spline functions. We select the G that yields 

the smallest BIC value.

4. Asymptotic properties of the sieve NPMLE.

Assume that the degree of the B-spline functions is fixed at some p ≥ 1 and that the 

distance between adjacent knots is within K−1mn−1, Kmn−1  for some large constant K. Let 

d be the dimension of the Euclidean parameters and Θ be a known, compact parameter 

space of θ. Let θ0, Λ0, ℬ0  denote the true parameter values, where ℬ0 = ψ02, …, ψ0G . Let 

Λg t = ∫0
tλg u du and Λ0g be its true value (g = 1,…,G).

We impose the following conditions.

(C1) The parameter θ0 lies in the interior of Θ, and the function Λ0g is continuously 

differentiable up to the third order on 0, τ  for g = 1, …, G.

(C2) With probability one, P T = τ |W , X, X, Z ⋅ > δ0 for some fixed δ0 > 0.

(C3) With probability one, Z(·) has left-continuous sample paths on 0, τ  with right 

derivatives. In addition, there exists a large constant K such that

P max
j = 1, …, J

Nj + W 2 + X 2 + X 2 + sup
t ∈ 0, τ

Z t 2 + sup
t ∈ 0, τ

Z′ t 2 < K = 1,

where Z′ is the (componentwise) left derivative of Z.

(C4) The number of knots mn satisfies mn = O(nq) for some 1/12 < q < 1/8.

The next condition is more technical and ensures model identifiability and invertibility of 

the information operator. Essentially, it requires that the covariates take enough distinct 

values such that the class-specific distributions of the longitudinal outcomes can be 

distinguished and the effect of each covariate on each class-specific distribution can be 

identified. Let Σ0g = diag σ0g1
2 1N1, …, σ0gJ

2 1NJ , Γ0g = Ψ0g I + Ψ0g
T XΣ0g

−1XTΨ0g
−1

Ψ0g
T , and 
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Σ0Y g = XΨ0gΨ0g
T XT + Σ0 g, where 1k is a k-vector of ones, Ψ0g is an orthogonal matrix such 

that Σ ξ0g = Ψ0gΨ0g
T , and σ0gj

2  and ξ0g are the true values of the corresponding parameters. 

Note that Σ0Y g is the covariance matrix of Y given C = g and (N1,…,NJ).

(C5) There exist some positive integers (n1,…,nJ) such that P(N1 = n1; …; NJ = nJ) > 0 and 

that the following holds. Let X be the set of possible values of X, X  given (N1 = n1,…,NJ = 

nJ) such that XTX is invertible and

XΣ ξ0g XT + Σ0g ≠ XΣ ξ0l XT + Σ0l

or X β0g ≠ X β0l and Σ0Y g
−1 X β0g + Σ0 g

−1XΓ0g
T η0g ≠ Σ0Y l

−1 X β0l + Σ0 l
−1XΓ0l

T η0l

whenever g ≠ l. For k= 1, …, nj and j = 1, …, J, if W ThW = 0, Xjk
T hX jk = 0, Xjk

T hX jk = 0
and Z(t)ThZ = 0 almost surely for all X, X ∈ χ and t ∈ 0, τ , then hW = 0, hXjk = 0, 

hX jk = 0, hX jk = 0, and hZ = 0, where hW, hX jk, hX jk, and hZ are fixed vectors of 

appropriate dimensions.

The final condition ensures that the least-favorable direction for the Euclidean parameters is 

sufficiently smooth.

(C6) The conditional density of the censoring variable U given the observed covariates is 

continuously differentiable on the support of U with respect to some dominating measure up 

to the third order.

REMARK 1. Conditions (C1)–(C3) are common assumptions in the analysis of right-censored 

data under semiparametric survival models. Condition (C4) pertains to the rate at which 

the number of B-spline functions increases to infinity. Condition (C5) pertains to the 

class-specific distributions of the longitudinal outcomes and event time. Instead of 

directly assuming the identifiability and invertibility of the information operator of the 

proposed model, we derive these properties under assumptions on individual class-specific 

distributions. Condition (C5) requires that after removing specific covariate values that yield 

equality of certain quantities of the class-specific distributions of the observed variables, 

the set of possible covariate values are linearly independent. For latent-class models in 

general, linear independence of the covariates and distinctness of parameter values across 

latent classes are not sufficient for the invertibility of the information operator. To see this, 

consider a simple model with two latent classes, a known mixture probability of 0.5 for 

each class, a single binary covariate X, and a single outcome variable Y with Y | (X,C 
= g) ∼ N(αg + βgX,1) for g = 1,2, where C denotes the latent class membership. The 

score statistic along the direction α1 = α01 + ϵ, α2 = α02 ‒ ϵ, β1 = β01 ‒ ϵ, and β2 = 

β02 + ϵ, and is zero when α01 = α02, even if β01 ≠ β02, where (α01,α02,β01,β02) are the 

true parameter values. This model does not satisfy (a simplified version of) condition (C5) 

because the two latent classes are different only at X ≠ 0, but given X ≠ 0, (1,X) is no longer 
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linearly independent. A simple sufficient condition for condition (C5) is that all covariates 

are linearly independent and the class-specific variances of Y are distinct almost surely.

Let || · ||∞ be the supremum norm over 0, τ . We have the following results.

THEOREM 4.1. Under conditions (C1)–(C5), there exists a local maximum of the 

nonparametric likelihood in the sieve space, denoted by θn, Λn, ℬn , such that

θn − θ0 2
2 + Λn − Λ0 ∞

2 + ∑
g = 2

G ∫0

τ
ψng t − ψ0g t 2dt = op n1/2 .

This theorem provides a preliminary, combined rate of convergence for the estimators of 

the Euclidean and infinite-dimensional parameters. Based on this convergence rate, the 

following theorem establishes that the Euclidean parameter estimators converge at the 

optimal n1/2 rate and attain the semiparametric efficiency bound [1].

THEOREM 4.2. Under conditions (C1)–(C6), n1/2 θn − θ0  converges weakly to the normal 

distribution with zero mean, and its asymptotic variance attains the semiparametric 

efficiency bound.

Let In be the negative Hessian matrix of the log-likelihood evaluated at the estimated 

parameters, with the jump sizes of Λn and the coefficients of the spline functions in 

ψn2, …, ψnG treated as Euclidean parameters. Let V n be the submatrix of (n−1In)−1 that 

corresponds to θ.

THEOREM 4.3. Under conditions (C1)–(C6), V n − I−1
2 = op 1 , where I is the efficient 

information matrix of θ defined in the proof of Theorem 4.2.

The proofs of Theorems 4.1 and 4.2 are given in Appendix A, whereas the proof of Theorem 

4.3 is given in Section S3 of the supplementary materials [21].

5. Simulation studies.

We considered a longitudinal study where data were collected on repeated measures of 

longitudinal outcomes as well as on the time to the occurrence of an event of interest. Each 

subject was examined periodically until the event of interest occurred or the subject was lost 

to follow-up. At the initial examination, a set of baseline covariates, which may represent 

sex, age, and other information, were measured, and at each examination, two types of 

longitudinal outcomes were measured. The latent class for each subject was generated from 

model (1) with G = 3 and W = (1,X1,X2)T, where X1 and X2 are independent Bernoulli(0,5) 

and N(0,1), respectively. We set the examination times at sk = 0,15(k−1) for k = 1,…,10. For 

j = 1,2 and k = 1,…,10, we generated

Y jk C = g = βgj
T Xk + bj + b3 + ϵjk, (5)
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where ϵjk | C = g N 0, σgj2 , Xk = (1,sk,X1,X2)T, bj | C = g N 0, ξgj
2 , and (b1,b2,b3) are 

independent of each other and of (X1,X2). Note that the random effects b1 and b2 account 

for the dependence among repeated measures of a single type of longitudinal outcome, 

whereas b3 accounts for the dependence between the two types of longitudinal outcomes. 

The event time T was generated from model (3) with a single random effect term b3 and Z(t) 
= (X1,X2)T for all t, and the censoring variable U was generated from Uniform 0, τ  with 

τ = 5. Note that the number of longitudinal outcome measurements is max{k : k ≤ 10,sk ≤ T 
∧U}.

The true values of the Euclidean parameters are given in Table S1 of the supplementary 

materials [21]. The class-specific baseline hazard functions are λ1(t) = 0,5, λ2(t) = 

exp(0,25t), and λ3(t) = 1. The proportions of subjects belonging to latent classes 1, 2, and 

3 are approximately 35%, 35%, and 30%, respectively. The average number of longitudinal 

outcome measurements per subject is about 5.4. The censoring proportion is about 25%.

We set the degree of the B-spline functions to be 1 and the number of interior knots to 

be 2; in our experience, the results are largely insensitive to the choice of the number of 

knots. The locations of the knots were set data-adaptively to be the 33% and 66% empirical 

quantiles of the observed event times. We considered G = 2, 3, and 4 latent classes and 

used BIC to select G. To set the initial values, we use k-mean clustering based on the event 

(or censoring) time, the censoring indicator, and the baseline longitudinal outcome values 

to classify subjects into subgroups with k = G. Then, we fit the generalized linear models 

and survival models (without random effects) on each subgroup and set the initial parameter 

values to be the corresponding estimated values. The initial values for the coefficients of 

the B-splines and the regression parameters of the random effects are set to 0, the initial 

values of Var(bj)+Var(ϵjk) are set to be the estimated variances in the corresponding fitted 

linear models with Var(bj) = Var(ϵjk) (j = 1,2; k = 1; …, 10), and the variance of b3 is set 

to be 0.1. The initial cumulative baseline hazard function is set to be the Breslow estimator. 

We constrained all Euclidean parameter estimates (including the regression parameters for 

the B-spline functions and the logarithm of the variance parameters) to be smaller than or 

equal to 10 in absolute value. This constraint is imposed because in the early iterations of the 

EM algorithm, the unconstrained estimates may sometimes become too extreme and cause 

numerical problems. We set the sample size to be n = 1000 or 2000 and considered 1000 

simulation replicates for each setting.

Under G = 3, in no replicates do any parameter estimates (in absolute value) equal the 

boundary value of 10. Some parameter estimates are equal to the boundary value in about 

60% of the replicates for G = 4 and in less than 5% of the replicates for G = 2. The 

convergence to the boundary under G = 4 is expected, because the model is nonidentifiable. 

In all but ten replicates under n = 1000, BIC selected the correct number of latent classes, 

and thus we only present the estimation results under G = 3. Because the labels of the 

latent classes are arbitrary, after convergence of the EM algorithm, we redefined the latent 

classes such that the orders of the estimated values of certain parameters across latent classes 

match the orders of the corresponding true parameter values. The estimation results for n 
= 1000 and n = 2000 are summarized in Tables S1 and S2 in the supplementary materials 
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[21], respectively. The estimators of all parameters, including the class-specific cumulative 

baseline hazard functions at particular time points, are virtually unbiased. The standard 

errors are estimated accurately, and the coverage probabilities of the confidence intervals are 

close to the nominal level, especially for n = 2000. Thus, the proposed estimation method 

effectively uncovers the latent structure of the population, produces consistent estimators, 

and yields valid statistical inference.

6. A real study.

The ARIC study is a prospective epidemiological cohort study conducted in the United 

States. In the study, a total of about 15,000 subjects received a baseline examination in 

1987–1989 and potentially six subsequent examinations in 1990–1992, 1993–1995, 1996–

1998, 2011–2013, 2016–2017, and 2018–2019. At each examination, medical data, such as 

body mass index (BMI), blood pressure, and cholesterol levels, were collected. The subjects 

were also followed through reviews of hospital records, and potentially right-censored 

observations on time to myocardial infarction (MI), stroke, and death were also obtained.

We aimed to study the risk of cardiovascular diseases or death among African American 

subjects and to detect the presence of latent subgroups. The event of interest is MI, stroke, 

or death. The African American subjects were recruited from two centers of study in Forsyth 

County, NC and Jackson, MS. We set study location, sex, and BMI, glucose level, smoking 

status, and age at the first examination as covariates; these are referred to as the baseline 

covariates in the sequel. We considered systolic blood pressure and total cholesterol level, 

which were measured at each examination, as longitudinal outcomes. After removing 347 

subjects with prior (or unknown status of) stroke or coronary heart disease at baseline and 

178 subjects with missing data, the sample size is 3284, and the censoring proportion is 

49.2%.

We fit models (1)–(3), where T is the time from the first examination to MI, stroke, or death, 

whichever occurred first, (Y1k,Y2k) are respectively the systolic blood pressure and total 

cholesterol level at the kth examination, and Nj is the total number of examinations (k = 

1,…,Nj;j = 1,2). The set of covariates W consists of the baseline covariates (and the constant 

1 for the intercept). For the jth longitudinal outcome at the kth examination, we assumed 

model (5) with the set of covariates Xk consisting of the baseline covariates and the time of 

the kth examination. In the survival model, the set of covariates Z(t) is time-independent and 

consists of the baseline covariates, and the set of random effects consists of a single term b3. 

We set the degree of the B-spline functions to be 1 and considered 2–4 interior knots. The 

locations of the knots were chosen to be empirical quantiles of the observed event times. We 

ranged the number of latent classes G from 1 to 6.

For any numbers of knots for the B-spline functions, the BIC picked G = 4 latent classes. 

The BIC values at G = 1,…,6 under 2 interior knots are plotted in Figure S1 of the 

supplementary materials [21]. Since the estimation results across different numbers of knots 

are similar, we reported the results under 2 interior knots. The point estimates, standard 

errors, and p-values of all Euclidean parameters in the survival model are given in Table 

1, and the estimated class-specific cumulative hazard functions are plotted in Figure 1; the 
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estimation results for the remaining Euclidean parameters are given in Tables S3 and S4 

of the supplementary materials [21]. The estimated trajectories of the mean longitudinal 

outcomes for a typical subject from each latent class are plotted in Figure S2 of the 

supplementary materials [21]. We classified a subject to a latent class if the (estimated) 

posterior probability of the class is larger than 0.7; a subject is unclassified if none of the 

posterior probabilities is larger than 0.7. The Kaplan–Meier curves for the (predicted) latent 

classes are plotted in Figure S3 of the supplementary materials [21].

Older subjects, males, and smokers have higher risk of MI, stroke, or death across all latent 

classes. Subjects with higher BMI tend to have higher risk of disease or death in the third 

latent class, but BMI has no significant association with the risk in other latent classes. 

Glucose level has highly significant positive effect on the risk of disease or death in all 

but the second latent class. The random effect b3, which captures the dependence of the 

systolic blood pressure and the total cholesterol level, is significantly associated with the 

risk of disease or death only in the second latent class. This suggests that systolic blood 

pressure and total cholesterol level are associated with the risk of disease or death even 

conditional on the latent class membership. The estimated class-specific cumulative hazard 

of the second latent class is substantially higher than those of the other classes, and the 

empirical survival probabilities of the second latent class are smaller. The mean systolic 

blood pressure of subjects in the second latent class tends to be higher than those of the other 

classes. The results suggest that the second latent class is characterized by elevated risk of 

disease or death. The other groups also exhibit differences in the risk of disease or death, 

distributions of the longitudinal outcomes, and effects of covariates on the longitudinal 

and survival outcomes. In the latent-class membership model, the regression parameters for 

glucose level are significantly negative for the first three latent classes, suggesting that the 

fourth latent class is characterized by high glucose level. In addition, the second latent class 

is characterized by older subjects, and the third latent class is characterized by males and 

subjects with higher BMI.

Suppose that we are interested in the conditional survival function for a subject at risk at 

time s given the trajectories of the longitudinal outcome measurements up to s. For a subject 

with time-independent covariates in the survival model, this probability function can be 

estimated by h(t)/h(s) for t ≥ s, where

ℎ t = ∑
g = 1

G
eαgTW

∑l = 1
G eαl

TW ∫ exp −Λg t eγgTZ + ηgTb ∏
j = 1

J
∏

k = 1

Kj
σgj−1e

− 1
2σgj2 Y jk − βgTXjk − bTXjk

2

× Σ ξg
−1/2e− 1

2bTΣ ξg
−1bdb,

Kj is the number of observations on the jth longitudinal outcome by time s, and the 

parameters are evaluated at the sieve NPMLE. Figure S4 in the supplementary materials 

[21] shows the estimated curves for two hypothetical subjects at s = 10.

We use cross-validation to evaluate the robustness of the latent-class structure. We split the 

data into 20 pairs of training and validation datasets with a ratio of sample sizes of 3 : 

2. On each training dataset, we fit the latent-class model with G = 4 and 2 interior knots 
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for the B-spline functions, and for each subject in the corresponding validation dataset, we 

used the estimated model to compute the posterior probabilities of class membership given 

the subject’s covariates and longitudinal outcomes (but not the event time). A subject is 

predicted to belong to a latent class if the posterior probability of the class is larger than 0.7; 

a subject is unclassified if none of the posterior probabilities is larger than 0.7. Note that 

the prediction of latent class does not directly involve the event time of the subjects in the 

validation dataset.

To evaluate the explanatory power of the (predicted) latent classes, in each validation 

dataset, we fit the Cox model with covariates, including the baseline systolic blood pressure, 

the baseline total cholesterol level, and the predicted latent classes; unclassified subjects 

were discarded. We tested the significance of the latent classes in the model using the 

likelihood-ratio test. The combined p-value across data splits is 0.0248, where the combined 

p-value is defined as Φ 0.05∑s = 1
20 Φ−1 ps , ps is the p-value for the sth split, and Φ is the 

standard normal distribution function. In addition, we fit a stratified Cox model, stratifying 

on the latent classes, with covariates including the baseline covariates, the baseline systolic 

blood pressure, the baseline total cholesterol level, and the interaction between the latent 

classes and the other covariates. The combined p-value for the likelihood-ratio tests for 

the interaction terms is 0.0250. These results suggest the existence of heterogeneity in 

the population that is not captured by the observed covariates. Subjects from different 

latent classes have not only different baseline hazards but also different association patterns 

between the covariates and the risk of disease or death.

7. Discussion.

In this article, we consider a semiparametric latent-class model for the joint analysis of 

longitudinal outcomes and a potentially right-censored event time. We develop a novel 

estimation approach that combines NPMLE and sieve estimation. We prove that the 

nonparametric components of the proposed estimators are consistent at a rate of o(n1/4). 

Although sieve estimators generally converge at a rate slower than n1/2, the Euclidean 

components of the estimators are nevertheless n1/2-consistent and asymptotically normal.

Under the proposed model, covariates may be associated with the event time through 

the latent class membership or directly through the class-specific survival models. The 

regression parameters in the survival models are best interpreted conditional on the latent 

variables b and C, so that for a subject in a specific latent class, each covariate in the survival 

model contributes multiplicatively to the baseline hazard. To obtain an “overall” effect of 

the covariates, we may adopt a Monte-Carlo approach: repeatedly generate data from the 

estimated model and the observed covariates, and fit the Cox model on the generated event 

times and covariates. The estimated regression parameters could be interpreted as the overall 

effects of the covariates, combining the effects on the latent class membership and the 

class-specific event-time distributions.

We proposed to estimate the standard error of the estimators by the inverse of the 

observed information matrix. This approach yields satisfactory performance in our extensive 

numerical studies, but it may be numerically unstable in very large samples or models. If 
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one is interested only in the inference of the Euclidean parameters, then alternative methods 

based on the profile likelihood can be adopted [22].

The constraints on the number of B-spline functions given by condition (C4) guarantee that 

ψng g = 2, …, G  converges to the true value at a rate faster than n1/4, so that the Euclidean 

parameters can attain the efficiency bound. Because ψ0g’s are continuously differentiable 

up to the third order, the approximation error of the spline functions is of rate O(n−3q), 

and q > 1/12 is necessary for ψng − ψ0g 2 = op n−1/4 ; this bound can be relaxed under 

stronger assumptions on the smoothness of Λ0g’s. The upper limit q < 1/8 arises from the 

shrinking-neighborhood-based argument for consistency. In the proof, we show that a local 

maximum of the log-likelihood exists in an o(n−1/4)-neighborhood of the true parameter 

values. The upper limit q < 1/8 is to guarantee that the second-order term in the linear 

expansion of the log-likelihood dominates other terms in the expansion.

An intuitively appealing nonparametric estimation approach is to set each class-specific 

cumulative baseline hazard function to be a step function that jumps at the observed event 

times. This approach, however, yields inconsistent estimators even in the simple settings 

considered by Ma and Wang [12] and Wang, Garcia and Ma [20] because the parameter 

space is overly complex. Each (uncensored) observation belongs to a specific latent class 

and should only contribute to the jump of the corresponding cumulative baseline hazard 

function at the observed event time. However, the latent class membership is unknown, 

and this nonparametric approach incorrectly allows all cumulative baseline hazard functions 

to jump at the event time. To overcome this difficulty, we only estimate the cumulative 

baseline hazard function of a reference class nonparametrically and approximate the relative 

magnitudes of the baseline hazard functions between the reference class and other classes 

using spline functions. With a properly-chosen number of grid points for the spline 

functions, the complexity of the parameter space is controlled to yield consistent estimators.

During the preparation of this article, independent work of Liu et al. [10] was brought to our 

attention. Our model is more general than that of Liu et al. [10], which allows only a single 

type of longitudinal outcome with a random intercept in the longitudinal outcome model, 

and Liu et al. [10] adopted spline approximation for all nonparametric functions. In addition, 

we establish the asymptotic properties of the proposed estimators under specific assumptions 

on the proposed models and the observed data, whereas the assumptions in Liu et al. [10] are 

expressed in very general terms and are difficult to verify for given models. To demonstrate 

the extra flexibility of the proposed model over that of Liu et al. [10], we conducted a 

simulation study, which showed that misspecification of the latent variable structure may 

yield substantial estimation bias; see Section S4 of the supplementary materials [21].

Our work can be extended in several directions. First, one may be interested in the joint 

analysis of multiple event times, such as the times to the occurrence of different diseases. 

The proposed modeling framework can be readily extended to allow for multivariate event 

times by assuming a separate regression model for each event time with a set of shared 

random effects b. The sieve NPMLE can be easily extended to the multivariate setting, and 

its theoretical properties can be established along the lines of the proofs of Theorems 4.1 and 

4.2.

WONG et al. Page 15

Ann Stat. Author manuscript; available in PMC 2022 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Second, one may consider interval-censored event time(s). In ARIC, the onset of 

asymptomatic diseases, such as diabetes and hypertension, was not directly observed but 

was known to fall within certain time intervals. To accommodate interval censoring, we can 

extend the proposed methods and use the NPMLE [28] to estimate the cumulative baseline 

hazard function of the reference class. However, interval censoring results in a different 

likelihood function, which poses great challenges to the derivation of the asymptotic 

properties of the sieve NPMLE.

Finally, it would be of interest to consider high-dimensional longitudinal outcomes or 

covariates. In current biomedical studies, different types of molecular data, such as DNA 

alteration and gene expression, are collected along with clinical data. Such molecular data 

are often high-dimensional, with the number of variables much larger than the sample 

size. These data contain rich genetic information that can be used to classify subjects into 

biologically distinct disease subtypes [17]. We can set variables for the molecular data 

as longitudinal outcomes or covariates in models (1)–(3) and adopt a penalized (sieve) 

likelihood approach for estimation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A: PROOFS OF THEOREMS

In this appendix, we prove Theorems 4.1 and 4.2. The proofs make use of the lemmas 

given in Appendix B. To facilitate the presentation, we introduce the following notation. 

Let ℳK = Λ ∈ ℓ∞ 0, τ :Λ is monotone nondecreasing, Λ 0 = 0, Λ τ < K}. For some large 

enough positive constant K, let ΞK = Θ ×ℳK × BVK 0, τ G − 1 be the parameter space 

of (θ,Λ,ψ2,…,ψG), where BVK 0, τ = ψ ∈ ℓ∞ 0, τ : ψ V < K , and || · ||V is the total 

variation over 0, τ , such that

f V = sup
0 = t0 ≤ t1 < ⋯ < tm = τ

∑
j = 1

m
f tj − f tj − 1 .

The subscript K for the parameter spaces may be suppressed in the sequel. Let Ψ θ, Λ, ℬ
denote
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∑
g = 1

G
eαgTW

∑l = 1
G eαl

TW ∫ ∏
j = 1

J
∏

k = 1

Nj
σgj−1e

− 1
2σgj2 Y jk − βgTXjk − bTXjk

2
eγgTZ T + ψg T + ηgTb Δ

× exp −∫0

T
eγgTZ t + ψg t + ηgTbdΛ t Σ ξg

−1/2e− 1
2bTΣ ξg

−1bdb,

so that the likelihood for a generic subject is proportional to Λ T ΔΨ θ, Λ, ℬ . Let 

Ψ̇θ θ, Λ, ℬ  denote the derivative of Ψ θ, Λ, ℬ  with respect to θ, Ψ̇Λ θ, Λ, ℬ H  denote the 

derivative of Ψ θ, Λ, ℬ  with respect to Λ along the direction H, and Ψ̇ψg θ, Λ, ℬ ℎ  denote 

the derivative of Ψ θ, Λ, ℬ  with respect to ψg along the direction h.

In the sequel, we use || · || to denote the Euclidean norm for vectors and the L2-norm 

with respect to the Lebesgue measure for functions over 0, τ . For a set of functions 

ℬ ≡ ψ2, …, ψg , let ℬ 2 = ∑g = 2
G ψg 2. Let ℙ and ℙn denote the true and empirical 

measures, respectively.

PROOF OF THEOREM 4.1. Following Schumaker [15], under condition (C1), there exist 

functions ψn2, …, ψnG  such that ψng − ψ0g ∞ = O mn−3  for g = 2,…,G, where 

ψng = ∑s = 1
mn agsBs for some regression parameters ags g = 2, …, G; s = 1, …, mn . Let

Nϵn = ψ2, …, ψG :ψg = ∑
s = 1

mn
agsBs: ∑

s = 1

mn
ags − ags

2 ≤ ϵn2, g = 2, …, G ,

where ϵn is a positive sequence such that ϵn = o mn−3/2 . For ℬn ≡ ψn2, …, ψnG ∈ Nϵn,

ψng − ψ0g V ≤ ∑
s = 1

mn
ags − ags Bs′ ∞ = O mn ϵn2mn

1/2 = o 1 .

Therefore, each function ψng of Nϵn has bounded total variation and converges uniformly to 

ψ0g.

The outline of the proof is as follows. For any sequence of ℬn ∈ Nϵn, we define

θn ℬn , Λn ℬn = argmax
θ, Λ

ℙnℓ θ, Λ, ℬn .

First, we show that θn ℬn , Λn ℬn p θ0, Λ0  uniformly over ℬn ∈ Nϵn. Then, we derive 

the rate of convergence of θn ℬn , Λn ℬn  in terms of ϵn. Finally, we show that the 

maximum of the profile log-likelihood ℙnℓ θn ℬn , Λn ℬn , ℬn  over ℬn ∈ Nϵn lies in 
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the interior of Nϵn for some ϵn = o n−1/4mn1/2  and for large enough n. For simplicity of 

presentation, we suppress the argument ℬn in θn ℬn  and Λn ℬn  in the sequel.

Step 1. We prove the existence of the NPMLE, i.e., Λn τ < ∞. Let πg = eαgTW /∑l = 1
G eαl

TW

and fg(Y,b) denote the joint density of (Y, b) for the gth latent class (given N1, …, NJ ); we 

suppress the parameter or covariate values in the expressions for simplicity of presentation. 

Note that

Ψ O; θ, Λ, ℬ

≲ ∑
g = 1

G
πg∫ e γgTZ T + ηgTb + ψg T Δ 1 + ∫0

T
eγgTZ s + ηgTb + ψg s dΛ s

−κ
fg Y , b db

≤ ∑
g = 1

G
πgeψg T Δ 1 + ∫0

T
eψg s dΛ s

−κ∫ eO 1 + b fg Y , b db

for some constant κ > 1, where ≲ denotes “smaller than up to a scaling factor.” Therefore, 

if Λ τ = ∞, then the right-hand side of the above inequality is zero. We conclude that 

Λn τ < ∞, so that the NPMLE exists.

Step 2. We show that the NPMLE is uniformly bounded. Note that

1
nlogLn θn, Λn, ℬn ≤ 1

n ∑
i = 1

n
ΔilogΛn Ti + 1

n ∑
i = 1

n
log ∑

g = 1

G
πgieψng Ti Δ

× 1 + ∫0

Ti
eψng s dΛn s

−κ

∫ eO 1 + b fg Y i, b db .

Let Nn = n−1∑i = 1
n ΔiI T i ≤ ⋅ . We have

1
nlogLn θ0, Nn, ℬn ≥ − 1

n ∑
i = 1

n
Δilogn + Op 1 ,

where the second term on the right-hand side is asymptotically bounded uniformly over 

ℬn ∈ Nϵn. Thus,

1
nlogLn θn, Λn, ℬn − 1

nlogLn θ0, Nn, ℬn

≤ 1
n ∑

i = 1

n
Δilog nΛn Ti − κ

n ∑
i = 1

n
log 1 + Λn τ + Op 1 .

Using a partitioning argument similar to that of Murphy [13], we can show that 

the right-hand side of the above inequality tends to ‒∞ if limsupnΛn τ = ∞. By 
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the definition of θn, Λn , the left-hand side of the inequality is nonnegative, so that 

limsupnsupℬn ∈ NϵnΛn τ < ∞.

Step 3. We show that θn, Λn  is consistent. Because Λn belongs to a function space with 

bounded total variation, by Helly’s selection theorem, for every subsequence of {n}n=1,2,…, 

there exists a further subsequence such that θn θ∗ and Λn Λ∗ for some (θ*,Λ*). We 

show that θ∗ = θ0 and Λ∗ = Λ0 for any subsequence. With an abuse of notation, let 

{n}n=1,2,… be the subsequence. Let

Λn t = − ∑
i = 1

n
ΔiI Ti ≤ t ∑

j = 1

n Ψ̇Λ Oj; θ0, Λ0, ℬ0 I Ti ≤ ⋅
Ψ Oj; θ0, Λ0, ℬ0

−1
.

Note that Ψ̇Λ θ, Λ, ℬ I ⋅ ≥ t = − I T ≥ t ∑g = 1
G πg∫ Qg O, b eγgTZ t + ηgTb + ψg t db, where

Qg O, b = e γgTZ T + ηgTb + ψg T Δexp −∫0

T
eγgTZ t + ηgTb + ψg t dΛ t fg Y , b .

By the definition of the NPMLE, ℙnℓ θn, Λn, ℬn ≥ ℙnℓ θ0, Λn, ℬn , so

ℙnΔlogΛn T
Λn T

+ ℙnlog
Ψ θn, Λn, ℬn
Ψ θ0, Λn, ℬn

≥ 0. (6)

Note that

ℙnlogΨ θn, Λn, ℬn − ℙlogΨ θ∗, Λ∗, ℬ0
= ℙn − ℙ logΨ θn, Λn, ℬn + ℙ logΨ θn, Λn, ℬn − logΨ θ∗, Λ∗, ℬ0 ,

where the first term on the right-hand side goes to zero almost surely because the class 

of logΨ θ, Λ, ℬ  is Gilvenko–Cantelli by Lemma B.1, and the second term is o(1) by the 

dominated convergence theorem; note that both terms converge uniformly over ℬn ∈ Nϵn. 

By a similar argument on ℙnlogΨ θ0, Λn, ℬn , the second term on the left-hand side of (6) is

ℙnlog
Ψ θn, Λn, ℬn
Ψ θ0, Λn, ℬn

= ℙlog
Ψ θ∗, Λ∗, ℬ0
Ψ θ0, Λ0, ℬ0

+ op 1 ,

where the op(1) term tends to 0 almost surely.

Consider the first term on the left-hand side of (6). Note that
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Λn t = ∫
0

t ℙnν θ0, Λ0, ℬ0; s
ℙnν θn, Λn, ℬn; s

dΛn s , (7)

where ν θ, Λ, ℬ; t = Ψ̇Λ θ, Λ, ℬ I ⋅ ≥ t /Ψ θ, Λ, ℬ . By Lemma B.1, 

ν θ, Λ, ℬ; t : t ∈ 0, τ , θ, Λ, ℬ ∈ Ξ  is Glivenko-Cantelli, so

sup
t ∈ 0, τ

ℙn − ℙ ν θ0, Λ0, ℬ0; t + sup
ℬn ∈ Nϵn

sup
t ∈ 0, τ

ℙn − ℙ ν θn, Λn, ℬn; t a . s . 0.

By the dominated convergence theorem, ℙν θn, Λn, ℬn; t  converges to ℙν θ∗, Λ∗, ℬ0; t  for 

each t. In addition, it is easy to see that the derivative of ℙν θn, Λn, ℬn; t  with respect to 

t is uniformly bounded, so that ℙν θn, Λn, ℬn; t  is equicontinuous with respect to t. Thus, 

by the Arzela-Ascoli theorem, ℙν θn, Λn, ℬn; t ℙν θ∗, Λ∗, ℬ0; t  uniformly in t ∈ 0, τ . 

Furthermore, we can follow the argument in Zeng, Lin and Lin [26, p. 374] to show by 

contradiction that mint ∈ 0, τ ℙν θ∗, Λ∗, ℬ0; t > 0. Taking limit on both sides of (7) yields

Λ∗ t = ∫0

t ℙν θ0, Λ0, ℬ0; s
ℙν θ∗, Λ∗, ℬ0; s

dΛ0 s .

We conclude that Λ∗ is absolutely continuous with respect to Λ0 and thus is differentiable. 

Let λ∗ be the derivative of Λ∗. Combining the above results with (6), we have

ℙlog
λ∗ T ΔΨ θ∗, Λ∗, ℬ0
λ0 T ΔΨ θ0, Λ0, ℬ0

≥ 0.

By the nonnegativity of the Kullback-Leibler divergence and Lemma B.2, the left-hand side 

of the above inequality is nonpositive and is equal to zero if and only if (θ*,Λ∗) = (θ*,Λ∗). 

Therefore, θn, Λn  is consistent.

Step 4. We derive a bound on θn − θ0 + Λn − Λ0 ∞ in terms of ℬn − ℬ0 . For any 

hθ ∈ ℝd and ℎΛ ∈ BV 0, τ , let

ℓ̇θΛ θ, Λ, ℬ hθ, ℎΛ = ∂
∂ϵ ℓ θ + ϵhθ, Λ + ϵ∫ ℎΛdΛ, ℬ

ϵ = 0
.

Clearly, ℙnℓ̇θΛ θn, Λn, ℬn hθ, ℎΛ = 0 and ℙnℓ̇θΛ θ0, Λ0, ℬ0 hθ, ℎΛ = 0 for any (hθ,hΛ). 

Suppressing the arguments (hθ,hΛ), we have
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ℙℓ̇θΛ θn, Λn, ℬ0 − ℙℓ̇θΛ θ0, Λn, ℬ0
= ℙℓ̇θΛ θn, Λn, ℬ0 − ℙnℓ̇θΛ θn, Λn, ℬn
= − ℙn − ℙ ℓ̇θΛ θn, Λn, ℬn − ℙ ℓ̇θΛ θ0, Λn, ℬ0 − ℓ̇θΛ θ0, Λ0, ℬ0

− ℙ ℓ̇θΛ θn, Λn, ℬn − ℓ̇θΛ θ0, Λ0, ℬn − ℓ̇θΛ θn, Λn, ℬn − ℓ̇θΛ θ0, Λ0, ℬ0 .

By Lemma B.1, the class ℓ̇θΛ θ, Λ, ℬ hθ, ℎΛ : θ, Λ, ℬ ∈ Ξ, hθ ≤ 1, ℎΛ V ≤ 1  is 

Donsker, so that the first term on the right-hand side above is Op(n−1/2) uniformly over 

ℬn ∈ Nϵn. By repeated applications of the mean-value theorem, we can show that the second 

term is O ℬn − ℬ0  and the third term is o θn − θ0 + Λn − Λ0 ∞ . To evaluate the 

left-hand side of the above display, note that ℓ̇θΛ θ, Λ, ℬ0  is the score statistic of a survival 

model with a single nonparametric component; the model falls under the framework of, for 

example, Zeng and Lin [25]. Using arguments analogous to the proof of Theorem 3.2 of 

Zeng and Cai [24] and the proof of Theorem 2 of Zeng and Lin [27], we can show that the 

map θ, Λ ℙℓ̇θΛ θ, Λ, ℬ0  is Frechet-differentiable with a derivative ∇ℙℓ̇θΛ that takes the 

form of a Fredholm operator. By Lemma B.4, ∇ℙℓ̇θΛ(evaluated at the true parameter values) 

is one-to-one, so it is continuously invertible. Therefore, there exists some positive constant 

c1 such that ∇ℙℓ̇θΛ θn − θ0, Λn − Λ0 ≥ c1 θn − θ0 + Λn − Λ0 ∞ , where the norm on the 

left-hand side of the inequality is the supremum norm over hθ, ℎΛ : hθ ≤ 1, ℎΛ V ≤ 1 . 

By the consistency of θn, Λn  and the differentiability of ℙℓ̇θΛ,

ℙℓ̇θΛ θn, Λn, ℬ0 − ℙℓ̇θΛ θ0, Λ0, ℬ0 ≥ c1 + o 1 θn − θ0 + Λn − Λ0 ∞ .

Combining the above results, we conclude that

θn − θ0 + Λn − Λ0 ∞ ≤ An n−1/2 + ℬn − ℬ0 ,

where An is some random variable that may depend on ℬn and satisfies 

supℬn ∈ Nϵn An = Op 1 .

Step 5. We show that a local maximum of ℙnℓ θn, Λn, ℬ0  with respect to ℬn
exists in the interior of Nϵn for large enough n. It suffices to show that 

supℬn ∈ ∂Nϵnℙnℓ θn, Λn, ℬ0 < ℙnℓ θ0, Λn, ℬn  with probability going to 1 as n → ∞, where 

ℬn = ψn2, …, ψnG . Let

Bn = ℙnℓ θn, Λn, ℬn − ℙnℓ θ0, Λn, ℬn
= ℙn − ℙ ℓ θn, Λn, ℬn − ℓ θ0, Λn, ℬn + ℙ

ℓ θn, Λn, ℬn − ℓ θ0, Λn, ℬn
− ℙ ℓ θ0, Λn, ℬn − ℓ θ0, Λn, ℬ0 .

(8)
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By Lemma B.1, the first term on the right-hand side of (8) can be written as Cnn−1/2 for 

some variable Cn such that supℬn ∈ Nϵn Cn = op 1 . To evaluate the second term on the 

right-hand side above, let

ξ ϵ; Λ = ℙℓ θ0 + ϵ θn − θ0 , Λ + ϵ∫ ℎΛdΛ, ℬ0 + ϵ ℬn − ℬ0 ,

where ℎΛ is a step function that jumps at the observed event times, with 

ℎΛ = dΛn/dΛn − 1 points. The second term of the right-hand side of (8) is equal to 

ξ 1; Λn − ξ 0; Λn = ξ′ 0; Λn + ξ″ ϵ; Λn  for some ϵ ∈[0, 1]. Note that ξʹ(0;Λen) is equal to

ℙ ΔℎΛ T + Ψ̇ θ0, Λn, ℬ0 θn − θ0,∫ ℎΛdΛn, ℬn − ℬ0 /Ψ θ0, Λn, ℬ0

= ℙ ΔℎΛ T + Ψ̇ θ0, Λ0, ℬ0 θn − θ0,∫ ℎΛdΛ0, ℬn − ℬ0 /Ψ θ0, Λ0, ℬ0

+ ℙ Ψ̇ θ0, Λn, ℬ0 θn − θ0,∫ ℎΛdΛn, ℬn − ℬ0 /Ψ θ0, Λn, ℬ0

−Ψ̇ θ0, Λ0, ℬ0 θn − θ0,∫ ℎΛdΛ0, ℬn − ℬ0 /Ψ θ0, Λ0, ℬ0

= Op Λn − Λ0 ∞ θn − θ0 + ℎΛ V + ℬn − ℬ0 V ,

where Ψ̇ θ, Λ, ℬ hθ, HΛ, ℎℬ = Ψ̇θ θ, Λ, ℬ Thθ + Ψ̇Λ θ, Λ, ℬ HΛ + ∑g = 2
G Ψ̇ψg θ, Λ, ℬ ℎg

for ℎℬ = ℎ2, …, ℎG . The last equality above follows from the mean-value theorem 

and that the score statistic is mean zero. By standard arguments for the NPMLE, 

Λn − Λ0 ∞ = Op n−1/2 . Also, ℎΛ V = op 1  and ℬn − ℬ0 V = o 1 , so the right-hand side 

of the above equation is op(n−1/2). To evaluate ξ″ ϵ; Λn , we write

ξ″ ϵ; Λn = ξ″ ϵ; Λn − ξ″ 0; Λn + ξ″ 0; Λn − ξ″ 0; Λ0 + ξ″ 0; Λ0 .

Using the mean-value theorem, we can show that the first term on the right-hand side of the 

above equation is Op θn − θ0
3 + ℎΛ ∞

3 + ℬn − ℬ0 3
3 + op Λn − Λ0 ∞ . Following the 

arguments for the evaluation of ξ′ 0; Λn , we can show that the second term is op(n−1/2). 

Note that the third term is the negative information of the one-dimensional submodel 

θ = θ0 + ϵhθ, dΛ = (1 + ϵhΛ)dΛ0, and ℬ = ℬ0 + ϵhℬ, where hθ = θn − θ0, ℎΛ = ℎΛ, 

and hℬ = ℬn − ℬ0. Let ℋ = ℝd × L2 0, τ G. For any ℎ ≡ hθ, ℎΛ, ℎψ2, …, ℎψG ∈ ℋ, the score 

statistic of the submodel along direction h is
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ℓ̇ ℎ = ∑
g = 1

G
πg∫ Qg T, Δ, Y , b 1 −

∑l = 1
G πl∫ Ql T , Δ, Y , b db

∫ Ql T , Δ, Y , b db
W Thαg

+ Δ Z T Thγg + bThηg + ℎΛ T + ℎψg T

− ∫0

T
eZ s Tγ0g + η0g

T b + ψ0g s Z s Thγg + bThηg + ℎΛ s + ℎψg s dΛ0 s

+
fg

1 Y , b ThY g
fg Y , b db/ ∑

g = 1

G
πg∫ Qg T, Δ, Y , b db

≡ K T, Δ, Y ; ℎ ,

where Qg T, Δ, Y , b = Qg O, b , fg
1 Y , b  is the derivative of fg(Y, b) with respect to 

βg, σg2, ξg , hY g = hβg
T , ℎσg, hξg

T T
, hαg, hβg, hσg, hξg, hγg, hηg  are the directions that correspond 

to the parameters αg, βg, σg2, ξg, γg, ηg  for g = 1, …, G, hαG = 0, and ℎψ1 ⋅ = 0. For h(1), 

ℎ 2 ∈ ℋ, we can write

ℙℓ̇ ℎ 1 ℓ̇ ℎ 2 = hθ
1 TG1 ℎ 2 + ∑

g = 1

G ∫0

τ
ℎΛ

1 t + ℎψg
1 t G2g t; ℎ 2 dt,

where G1(h) is some linear function of h, and G2g(t;h) is equal to

E
πg∫ Qg t, 1, Y , b db

∑l = 1
G πl∫ Ql t, 1, Y , b db

fT t Y SU t Y K t, 1, Y ; ℎ

− E I t ≤ T
πg∫ Qg T, Δ, Y , b eZ t Tγ0g + η0g

T b + ψ0g t db

∑l = 1
G πl∫ Ql T , Δ, Y , b db

K T, Δ, Y ; ℎ λ t

= aThθ + E
πg∫ Qg t, 1, Y , b db

∑l = 1
G πl∫ Ql t, 1, Y , b db

fT t Y SU t Y ℎΛ t

+ ∑
k = 2

G
E

πgπk∫ Qg t, 1, Y , b db∫ Qk t, 1, Y , b db

∑l = 1
G πl∫ Ql t, 1, Y , b db

2 fT t Y SU t Y ℎψk t

− ∑
k = 1

G ∫0

τ
ℎΛ s + ℎψk s I s ≤ t E πgπkfT t Y SU t Y

×
∫ Qg t, 1, Y , b db∫ Qk t, 1, Y , b eZ s Tγ0k + η0k

T b + ψ0k s db

∑l = 1
G πl∫ Ql t, 1, Y , b db

2 + I t ≤ s E πgπk

×
∫ Qg s, 1, Y , b eZ t Tγ0g + η0g

T b + ψ0g t db∫ Qk s, 1, Y , b db

∑l = 1
G πl∫ Ql s, 1, Y , b db

2 fT s Y SU s Y

− E I s ≤ T I t ≤ T πgπk

×
∫ Qg T, Δ, Y , b eZ t Tγ0g + η0g

T b + ψ0g t db∫ Qk T, Δ, Y , b eZ s Tγ0k + η0k
T b + ψ0g s db

∑l = 1
G πl∫ Ql T , Δ, Y , b db

2

× λ0 s ds,
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where fT (· | Y) is the conditional density of the survival time T given Y, SU(· | Y) is the 

conditional survival function of the censoring time U given Y, and a is a d-dimensional 

vector. Define an inner product 〈.,.〉 on ℋ such that

ℎ 1 , ℎ 2 = hθ
1 Thθ

2 + ∫0

τ
ℎΛ

1 t ℎΛ
2 t + ∑

g = 2

G
ℎψg

1 t ℎψg
2 t dt,

and let ℓ̇∗ be the adjoint operator of ℓ̇. By the definition of ℓ̇∗, 

ℙℓ̇ ℎ 1 ℓ̇ ℎ 2 = ℎ 1 , ℓ̇∗ℓ̇ ℎ 2 , such that

ℓ̇∗ℓ̇ ℎ = G1 ℎ , ∑
g = 1

G
G2g ⋅ ; ℎ , G22 ⋅ ; ℎ , …, G2G ⋅ ; ℎ .

On the space ℋ, we define a seminorm ℎ I = ℎ, ℓ̇∗ℓ̇ ℎ
1/2

. By Lemma B.4, ||h||I = 0 

implies that h = 0, such that || · ||I is a norm in ℋ. Clearly, ||h||I ≤ c2〈h,h〉1/2 for some constant 

c2. By the bounded inverse theorem in Banach spaces, we have 〈h,h〉1/2 ≤ c3||h||I for some 

constant c3. We conclude that

ξ″ 0; Λ0 = − θn − θ0, ℎΛ, ℬn − ℬ0 I
2 ≤ − c3

−2 θn − θ0
2 + ℎΛ

2 + ∑
g = 2

G
ψng − ψ0g 2 .

By Donsker properties of the class of ν θ, Λ, ℬ; t  and the mean-value theorem,

ℎΛ ∞ = Op θn − θ0 + Λn − Λ0 ∞ + ℬn − ℬ0 2 + n−1/2 .

In addition, a linear expansion argument shows that the third term of (8) is of order up to 

ℬn − ℬ0 ∞
2 . Combining the above results, we have

Bn ≤ Dnn−1/2 + En ℬn − ℬn 3
3 + ℬn − ℬ0 ∞

2 − c3
−2 ∑

g = 2

G
ψng − ψ0g 2

≤ Dnn−1/2 + c4En mn−1ϵn3 + mn−6 − c3
−2 ∑

g = 2

G
ψng − ψ0g 2

for some sequences of positive variables Dn and En such that supℬn ∈ NϵnDn = op 1  and 

supℬn ∈ NϵnEn = Op 1  and some positive constant c4. The second inequality holds because 

by Theorem 5.2 of de Boor [2],

ψng − ψng 3
3 = O mn−1 ∑

s = 1

mn
ags − ags

3 = O mn−1ϵn3 .
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Suppose that ℬn ∈ ∂Nϵn. By the same theorem of de Boor [2], ψng − ψng
2 ≥ c5mn−1ϵn2 for 

some g and c5 > 0. Therefore, by choosing ϵn such that ϵn = o n−1/4mn1/2  and

ϵn2 ≫ sup
ℬn ∈ Nϵn

Dnn−1/2mn + mn−5,

we have P(Bn < 0) → 1; the existence of such an ϵn with ϵn = o mn−3/2  is guaranteed under 

condition (C4). We conclude that there exists a local maximum of ℙnℓ θn, Λn, ℬn  with 

respect to ℬn in the interior of Nϵn; let ℬn be the maximizer. Note that by Theorem 5.2 of 

de Boor [2], ψng − ψng
2 = O mn−1∑s = 1

mn ags − ags
2 = O mn−1ϵn2  for all ℬn ∈ Nϵn. We have

θn − θ0
2 + Λn − Λ0 ∞

2 + ℬn − ℬ0
2 = Op n−1 + ℬn − ℬ0

2 = Op mn−1ϵn2 + mn−6 = op n−1/2 .

□

PROOF OF THEOREM 4.2. Let ℓ̇θ be the score statistic for θ, ℓ̇Λ ℎΛ  be the score 

statistic for Λ along the submodel Λ + ϵ∫ ℎΛdΛ, and ℓ̇ψg ℎψg  be the score statistic 

for ψg along the submodel ψg + ϵhψg (g = 2,…,G). For a set of functions h 

≡ (h1,…,hd), let ℓ̇Λ h = ℓ̇Λ ℎ1 , …, ℓ̇Λ ℎd
T and ℓ̇ψg h = ℓ̇ψg ℎ1 , …, ℓ̇ψg ℎd

T. Let hΛ
and hψg be the least favorable directions for the nonparametric functions, such that 

hΛ, hψ1, …, hψG = argminhΛ, hψ2, …, hψGℙ ℓ̇θ − ℓ̇Λ ∫ hΛdΛ0 − ∑g = 2
G ℓ̇ψg hψg

2
, where the 

integration in the second term in the norm is carried out componentwise. The existence of 

hΛ and hψg follows from the invertibility of the information operator, established in Step 

5 of the proof of Theorem 4.1. In addition, from the expressions of ℓ̇∗ℓ̇ given in Step 5 

of the proof of Theorem 4.1 and condition (C6), each component of hψg is continuously 

differentiable up to the third order. Let hn, ψg be the (componentwise) projection of hψg onto 

the sieve space, such that hn, ψg − hψg ∞ = O mn−3 . By the definition of the sieve NPMLE, 

ℙnℓ̇θ θn, Λn, ℬn = 0, ℙnℓ̇Λ θn, Λn, ℬn ∫ hΛdΛn = 0, and ℙnℓ̇ψg θn, Λn, ℬn hn, ψg = 0. Note 

that

ℙnℓ̇ψg θn, Λn, ℬn hψg
= ℙnℓ̇ψg θn, Λn, ℬn hn, ψg + ℙℓ̇ψg θ0, Λ0, ℬ0 hψg − hn, ψg

+ ℙn − ℙ ℓ̇ψg θn, Λn, ℬn hψg − hn, ψg
+ ℙ ℓ̇ψg θn, Λn, ℬn hψg − hn, ψg − ℓ̇ψg θ0, Λ0, ℬ0 hψg − hn, ψg .

The first two terms of the right-hand side above are zero. By Lemma B.1, the class 

of ℓ̇ψg θ, Λ, ℬ ℎ  is Donsker, so that the third term is op(n−1/2). By the mean-value 

theorem, Theorem 4.1, and condition (C4), the fourth term is op(n−1/2). Obviously, 

ℙℓ̇θ θ0, Λ0, ℬ0 = 0, ℙℓ̇Λ θ0, Λ0, ℬ0 ∫ hΛdΛ0 = 0, and ℙℓ̇ψg θ0, Λ0, ℬ0 hψg = 0. We have
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n1/2 ℙn − ℙ ℓ̇θ θn, Λn, ℬn − ℓ̇Λ θn, Λn, ℬn ∫ hΛdΛn

− ∑
g = 2

G
ℓ̇ψg θn, Λn, ℬn hψg

= − n1/2ℙ ℓ̇θ θn, Λn, ℬn − ℓ̇Λ θn, Λn, ℬn ∫ hΛdΛn

− ∑
g = 2

G
ℓ̇ψg θn, Λn, ℬn hψg

− ℓ̇θ θ0, Λ0, ℬ0 + ℓ̇Λ θ0, Λ0, ℬ0 ∫ hΛdΛ0

+ ∑
g = 2

G
ℓ̇ψg θ0, Λ0, ℬ0 hψg + op 1 .

(9)

By Lemma B.1, the class

ℓ̇θ θ, Λ, ℬ Tv − ℓ̇Λ θ, Λ, ℬ HΛ − ∑
g = 2

G
ℓ̇ψg θ, Λ, ℬ hψg : θ, Λ, ℬ ∈ Ξ, v ≤ 1, HΛ V ≤ 1

is Donsker. Therefore, the left-hand side of (9) is equal to

n1/2 ℙn − ℙ ℓ̇θ θ0, Λ0, ℬ0 + ℓ̇Λ θ0, Λ0, ℬ0 ∫ hΛdΛ0 − ∑
g = 2

G
ℓ̇ψg θ0, Λ0, ℬ0 hψg + op 1 ,

which converges in distribution to N 0, I , where

I ≡ ℙ ℓ̇θ θ0, Λ0, ℬ0 − ℓ̇Λ θ0, Λ0, ℬ0 ∫ hΛdΛ0 − ∑
g = 2

G
ℓ̇ψg θ0, Λ0, ℬ0 hψg

⊗ 2

is the efficient information matrix for θ. By the Taylor series expansion, Theorem 4.1, and 

the definition of hΛ and hψg g = 2, …, G , the right-hand side of (9) is

−n1/2 θn − θ0
Tℙ ℓ̈θθ − ℓ̈Λθ ∫ hΛdΛ0 − ∑

g = 2

G
ℓ̈ψgθ hψg + op 1 = n1/2I θn − θ0 + op 1 ,

where ℓ̈θθ, ℓ̈Λθ are ℓ̈ψgθ the derivatives of ℓ̇θ, ℓ̇Λ, and ℓ̇ψg with respect to θ, respectively. 

As established in Step 5 in the proof of Theorem 4.1, the information operator is invertible, 

so the efficient information matrix is invertible. We conclude that n1/2 θn − θ0 d N 0, I−1 . 
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Because θn is an asymptotically linear estimator with the influence function lying in the 

space spanned by the score functions, θn is asymptotically efficient [1]. □

APPENDIX B: USEFUL LEMMAS

In this appendix, we present four lemmas that are useful for the proofs of Theorems 4.1 and 

4.2. The proofs of the lemmas are given in Section S3 of the supplementary materials [21].

LEMMA B.1. For any finite K, the classes of functions

G1 = logΨ θ, Λ, ℬ : θ, Λ, ℬ ∈ ΞK

G2 =
Ψ̇θ θ, Λ, ℬ Tv
Ψ θ, Λ, ℬ : θ, Λ, ℬ ∈ ΞK, v < K

G3 =
Ψ̇Λ θ, Λ, ℬ HΛ
Ψ θ, Λ, ℬ : θ, Λ, ℬ ∈ ΞK, HΛ V < K

G4g =
Ψ̇ψg θ, Λ, ℬ ℎψg

Ψ θ, Λ, ℬ : θ, Λ, ℬ ∈ ΞK, ℎψg V < K

are Donsker.

LEMMA B.2. Under conditions (C1)–(C3) and (C5), the latent-class model given by (1)–(3) is 

locally identifiable.

LEMMA B.3. Consider the following normal mixture model. Let W be a set of covariates 

and C be a latent class indicator with distribution specified by (1). For g = 1,…,G, let 

Yg ∼ N(µg, Ωg), where (µ1, …,µG) are vectors of mean parameters, and (Ω1,…,ΩG) are 

covariance matrices. The observed outcome variable is Y = ∑g = 1
G I C = g Y g. Let (µ0g,Ω0g) 

be the true values of (µg,Ωg). If (µ01,Ω01),…,(µ0G,Ω0G) are distinct and the components of 

W are linearly independent, then the score statistic along any submodel is nonzero.

LEMMA B.4. Under conditions (C1)–(C3) and (C5), the score statistic along any one-

dimensional submodel for the latent-class model given by (1)–(3) is nonzero.
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FIG 1. 
Estimated class-specific baseline hazard functions for the ARIC data.
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TABLE 1

Estimation results for the Euclidean parameters in the survival model for the ARIC data

Parameter Estimate SE p-value Parameter Estimate SE p-value

γ 1,Center 0.2431 0.3041 4.24E–01 γ 3,Glucose 0.2304 0.0450 3.15E–07

γ 1,BMI −0.0775 0.0949 4.14E–01 γ 3,Smoke 0.8147 0.1487 4.26E–08

γ 1,Glucose 0.4086 0.1325 2.04E–03 γ 3,Sex 0.3840 0.1355 4.61E–03

γ 1,Smoke 0.7848 0.1505 1.84E–07 γ 3,Age 0.5433 0.0673 7.13E–16

γ 1,Sex 0.5965 0.1617 2.25E–04 γ 4,Center 0.0770 0.3369 8.19E–01

γ 1,Age 0.6440 0.1303 7.75E–07 γ 4,BMI −0.1136 0.1082 2.94E–01

γ 2,Center 0.1269 0.1887 5.01E–01 γ 4,Glucose 0.2954 0.0411 7.05E–13

γ 2,BMI 0.1052 0.0552 5.65E–02 γ 4,Smoke 0.5983 0.2039 3.34E–03

γ 2,Glucose 0.0634 0.0403 1.16E–01 γ 4,Sex 0.4959 0.1986 1.25E–02

γ 2,Smoke 0.6472 0.1378 2.65E–06 γ 4,Age 0.2654 0.0980 6.78E–03

γ 2,Sex 0.3533 0.1298 6.49E–03 η 1 1.8929 2.5689 4.61E–01

γ 2,Age 0.3426 0.0721 2.00E–06 η 2 1.5561 0.6952 2.52E–02

γ 3,Center −0.0954 0.1920 6.19E–01 η 3 0.9861 2.3893 6.80E–01

γ 3,BMI 0.1853 0.0641 3.86E–03 η 4 1.3614 1.0065 1.76E–01

NOTE: For the parameters labeled γ, the first subscript represents the latent class, and the second subscript represents the covariate that 
corresponds to the parameter. “Center” is the indicator for the Jackson center; “Sex” is the indicator for male; “Smoke” is the indicator for smoker; 
“Glucose” represents glucose level. All continuous covariates are standardized. The parameter ηg is the regression parameter of b3 for the gth 

latent class.
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