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Background
Metabolomics is a unique part of modern life science and molecular biology due to its 
multidisciplinary requirements: knowledge from biology, chemistry, physics as well as 
mathematics and statistics needs to be integrated. It deals with the quantification and 
identification of small molecules called metabolites (< 1500 Da) which are the interme-
diate and ending products in cellular processes of an organism [1]. The key technology 
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to investigate the metabolites that are abundant in an organism or a tissue is mass spec-
trometry, where state-of-the-art methods allow gaining tens of thousands of mass spec-
tra within a few minutes which in turn characterize hundreds of potential compounds. 
The entirety of these metabolites in a cell at a specific moment can be considered as a 
high-dimensional molecular snapshot of the organism which carries an imprint of all 
genetic, epigenetic and environmental factors. Thus, one of the main goals of metabo-
lomics research is to bridge the gap between the genotype and phenotype in order to 
get a complete picture of the internal structure and behavior of a cell [2]. Metabolomics 
has a wide application in many different fields such as toxicology assessment, nutritional 
genomics, biomarker discovery and identification, drug development and disease prog-
nosis [3].

High-throughput metabolomics experiments, generally, follow an untargeted 
approach which is characterized by the simultaneous measurement of a large number 
of metabolites from each sample, thus analyzing the global metabolomic profile [4]. In 
this, raw datasets obtained from compound separation and detection techniques, such 
as Gas Chromatography (GC) or Liquid Chromatography (LC) coupled to Mass spec-
trometry (MS), are transformed to quantitative metabolite information [5–7]. The gen-
eral processing strategy includes noise filtering and baseline reduction [8] followed by 
peak detection [9] and deconvolution [10], chromatographic alignment [11], identifica-
tion of metabolomic features [12], substitution of missing values [13], normalization [14] 
and statistical analysis [15, 16].

To support researchers in the complicated and complex analytical workflow, a large 
number of software tools have been developed. Some of the available tools are focused 
either on the quantification or identification of metabolites. For instance, iMet-Q [17] 
and apLCMS [18] deal with the quantification step while Metabolyzer [19] with the 
identification of metabolites. Similarly, MetaBox [20] puts the focus only on the sta-
tistical analysis that follows the processing step. Other software packages include both 
the quantification and identification step like XCMS [21], MetAlign 3.0 [22], MZmine 
2 [23], MAVEN [24], mzMatch [25] or MS-Dial [26]. However, they either lack statis-
tical capabilities or are not web-based, which confines them at the usage of computa-
tional resources. There are also web-based tools like MeltDB [27], XCMS Online [28] 
and MetaboAnalyst [29] that not only offer support in data storage and retrieval but also 
analytical tools for quantification, identification and statistical analysis. However, none 
of these tools is able to deal with large collections of data sets, referred to as large-scale 
metabolomics. In the context of this work, we categorize data sets ranging from more 
than a couple of hundreds to thousands of files to be a large-scale metabolomics data set. 
For instance, MeltDB is a semi-automated system not prepared for big amounts of data 
and XCMS Online places the focus on processing with restrictions in the storage and 
limited statistics, while the recently released MetaboAnalyst 5.0 at least supports up to 
200 files.

With repositories giving access to hundreds or even thousands of files from differ-
ent experiments we see a clear demand for an easy-to-use software solution capable of 
handling large amounts of metabolomics data in short processing and analysis times. 
In recent years, first big data frameworks and libraries have been developed which 
have proven to be capable of dealing with such amounts of data. PhenoMeNal [30] is 
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a framework that can handle large volumes of data as it utilizes a cluster of comput-
ers. However, it follows the Infrastructure-as-a-Service cloud model and requires prior 
knowledge of cloud computing concepts, which most metabolomics researchers may 
not be familiar with. In a similar manner, workflow4metabolomics [31] is a repository 
for Galaxy-based workflows that covers many aspects of metabolomics data process-
ing and analysis. Yet again this requires set up of the technical infrastructure and does 
not include a scalable storage solution. In this study, we present MetHoS, a ready-to-
use web-based platform for large-scale processing, storage and analysis of metabolomics 
data sets. MetHoS is based on big data frameworks and provides users efficient and user-
friendly handling of their own experimental metabolomics data. With Apache Spark 
[32], Apache Cassandra [33] and KNIME (Konstanz Information Miner) [34] as our fun-
dament we propose a different way of handling large-scale datasets with the prospect of 
handling even largest amounts of data.

Implementation
Application architecture

Cloud computing allows for the parallel execution of tasks on a large number of virtual 
machines. Moreover, it allows for scalability: if the size of the problem increases, more 
machines can easily be added. MetHoS supports horizontal scaling, thus ensuring per-
formance by not being limited to the capacity of a single unit and redundancy with no 
single point of failure. It is written in Java and utilizes a set of software tools that enable 
parallel processing, distributed storage and distributed analysis on the cloud (Fig.  1). 
MetHoS uses a variable number of computer nodes and has been designed for Open-
Stack, the popular open-source software platform for cloud computing.

Fig. 1  This figure shows the data-flow during the processing and analysis steps of the combination of 
Apache Spark, Apache Cassandra and KNIME
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The general processing of uploaded metabolomics data is relying on the software 
KNIME, which is a well-known open-source data workflow engine and analytics plat-
form. Apache Cassandra, a NoSQL database for distributed storage, was selected to 
store the results of the processing across the cluster. We integrated Apache Spark, a fast 
in-memory cluster-computing engine, that can perform distributed processing and anal-
ysis of big amounts of data. Finally, we combined all three software tools together with 
the Spring Application framework providing users a friendly and easy-to-understand 
web-based application.

Project and data management

MetHoS provides sophisticated user and project management, in which uploaded sam-
ples can be grouped to create experiments in already pre-defined projects. The owner of 
a project has the ability to edit it and also manage access rights. MetHoS makes use of 
OpenStack’s object storage through the swift API, where the experiments are stored in a 
shared storage space (Fig. 1).

An experiment in MetHoS refers to a biological experiment that consists of many bio-
logical replicates. After uploading, experiments can be processed (quantification and 
identification step) by selecting one of the automated KNIME workflows. In result, each 
workflow is also responsible for storing the results straight into the Cassandra data-
base. Apache Spark verifies fair job-scheduling and workload distribution, e.g. in terms 
of KNIME workflow processing, giving thus the ability to process thousands of experi-
ments in a matter of hours.

Results of the processing are presented in the View section. The representation can be 
either in a form of a table by selecting an experiment and observing all the identified and 
unidentified metabolomic features or with boxplots by selecting more experiments and 
observing the metabolomic features among them. Various statistical tests enable further 
investigation and analysis of the processed metabolomics data within an experiment but, 
in particular, across a multitude of experiments. The results are presented and visualized 
with the help of the D3 Javascript library.

Parallel processing

The architecture and design of MetHoS are based on flexibility allowing for an easy inte-
gration of workflows implemented in KNIME Analytics Platform. KNIME has integrated 
OpenMS [35], an open-source software C++ library for management and analyses of 
metabolomics data, allowing for quantification and identification of metabolites, against 
spectral databases, in each sample or group of samples.

Once the raw chromatographic data are uploaded to the Openstack object storage, 
they can be selected for processing (Fig.  1, step 1) with a pre-defined workflow. The 
Spark master, which is a single coordinator that acquires cluster nodes (Spark Workers), 
receives the request and distributes the tasks to each node (Fig. 1, steps 2 and 3). Then, 
each Spark Worker activates a Spark Executor, an agent responsible for carrying out the 
task and activating KNIME on every node in order to process the selected experiments 
(Fig. 1, steps 4 and 5).

MetHos supports the well-known and accepted open-source file formats .mzML, 
.mzData and .mzXML as inputs and produces information about identified and 
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unidentified metabolites which is automatically being stored in the Cassandra data-
base (Fig. 1, step 6). The workflows currently provided in MetHoS target MS1 and MS2 
level data and support identification by exact mass search as well as spectral matching. 
Figure 2 gives an example of two of these workflows which cover all steps required to 
analyze metabolomics data: conversion of mass spectra in an appropriate format, the 
quantification and normalization (Additional file 4: Table S1), the control of ionization 
mode, corrections of retention time distortions (Additional file  5: Table  S2 and Addi-
tional file  6: Table  S3), the identification of metabolites and the storage of metabolite 
measurements into the Cassandra database. For the quantification of metabolites both 
workflows rely on the software tool FeatureFinderMetabo [36] of OpenMS. Concerning 
the identification of metabolites the first workflow uses the AccurateMassSearch algo-
rithm, which identifies metabolite features by comparing their exact mass to databases 
like HMDB [37], MassBank [38] and MoNA:Fiehn [39], while the second workflow uses 
the MetaboliteSpectralMatcher [40], which identifies small molecules from tandem MS 
spectra using a spectral library such as MassBank.

Distributed storage

The main advantage of a NoSQL database over an SQL database is horizontal scalability 
and distributed storage, giving the possibility to store any amount of data, just limited 
by the number of utilized storage nodes. Apache Cassandra is such a NoSQL distrib-
uted database. Its masterless architecture appoints it unique among other NoSQL data-
bases as it ensures high availability of data at all times. In combination with adjusting 

Fig. 2  This figure shows the steps of two of the workflows currently implemented in MetHoS. a Identification 
by exact mass, b Identification by spectral matching
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the replication factor to three in our Cassandra model, we are able to provide a no single 
point of failure model.

Cassandra-specific, our data model (Fig.  3) was modeled around queries, with the 
experiment column family being the most important where the processing results of mil-
lions of metabolomic features are stored with the KNIME workflows. Furthermore, with 
an appropriate partitioning within Cassandra, it is made sure that data is equally distrib-
uted and stored efficiently.

Distributed statistical analysis

Apache Spark is a fast, distributed in-memory large-scale data processing engine pro-
viding powerful Machine Learning algorithms, with their own library, which perform 
statistical tests in a distributed manner. MetHoS uses the Apache Spark Machine Learn-
ing library (Spark MLlib) in combination with the recently developed data structure 
called Dataset, which provides the convenience of an RDD, less memory consumption 
and automatic optimization. For every statistical test of our application, Apache Spark 
creates jobs which are comprised from tasks that are distributed from the Spark master 
and executed from the Spark executors on data partitions. Each executor of a node has 
been assigned a number of cores and the more cores can be used the more tasks can be 
performed in parallel.

The statistical methods for analysis available in MetHoS are:

•	 Basic statistics (mean and standard deviation)
•	 Metabolite filtering (mean and standard deviation between two defined groups of 

experiments)
•	 Pearson correlation
•	 Spearman correlation
•	 Principal component analysis (PCA)
•	 Clustering (K-means, Bisecting k-means)

In our analyses, we provide a set of choices depending on the desired depth of analysis. 
Specific metabolites can be selected to set the focus of the analysis. If required, handling 
of missing values can be incorporated. In the default settings, analyses are conducted 
on any common metabolite that exists in every selected experiment. Respectively, for 
the replicate level, the list of the metabolites that exist at least once in every replicate of 
the selected experiments will be selected for analysis. Missing values strategies include 
replacement with zero, mean or median. Results of an analysis, e.g. basic statistics such 

Fig. 3  This figure shows the conceptual data model of the Cassandra database
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as mean and standard deviation values of all or common metabolites in experiments can 
be exported in .csv format for further analysis and observation.

Results
The capabilities of MetHoS are presented with more detail in the following evaluation 
and a use case in which we performed a large-scale processing, storage and statisti-
cal analysis in thousands of experiments downloaded from the MetaboLights database 
belonging to 38 different studies [36, 41–73].

Evaluation of scalability

Processing thousands of experiments in a linear manner with the traditional methods 
would take several days or weeks depending on the complexity and size of the files. 
In order to prove the efficiency of parallel processing and the horizontal scalability of 
MetHoS, we processed 200 experiments originating from a study of MetaboLights 
repository, under the study identifier MTBLS28, with a variable number of Spark work-
ers (Fig. 4). The results indicated that the more worker nodes are added in the cluster, 
the faster the processing is completed.

Use case data

In our comprehensive use case, we extended to all the samples of studies from 2012 to 
2020 which were downloaded and grouped in experiments, after excluding problematic 
and corrupted files. They originate from mass spectrometry experiments of the human 
organism which contain .mzData, .mzML and .mzXML files (Additional file 7: Table S4). 
Uploading the experiments in MetHoS resulted in 4827 experiments occupying approxi-
mately 1.1 Tb of disk space in the Openstack object storage space.

Fig. 4  This figure shows the scalability of MetHoS with 1, 2, 4, 8 and 16 Spark workers compare to the time it 
takes to process 200 experiments. The processing was performed 3 times on the same 200 experiments for 
every number of workers
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Processing

The processing with MetHoS lasted approximately 12 hours and ended up quantifying 
and identifying more than 2 billion metabolite features. The results were automatically 
stored in MetHoS (Fig. 5a).

Analysis results

For our analysis, we performed a k-means clustering in all 4.827 experiments using 15 
clusters, with all metabolites, on experiment level and replacing missing values with the 
mean (Fig. 5b, Additional file 1: Fig. S1). Results show that two big clusters were formed, 
clusters 1 and 14 (Additional file 8: Table S5, Additional file 9: Table S6). Although there 
are similarities between several urine samples and blood or blood plasma or blood serum 
samples, the majority of samples in cluster 1 belong to blood samples and for cluster 14 
to urine samples. Clusters 3, 6, 7, 8, 11, 12, 13 and 15 consist exclusively of urine sam-
ples, while clusters 2 and 9 only of solvent samples. Moreover, cluster 4 consists only of 
blood serum samples and cluster 10 only of blood plasma samples. Samples originating 
from lung, feces, renal tubule or cerebrospinal fluid have been split almost equally in 
clusters 1 and 14 indicating the formation of two distinct groups possibly originating 
from two different conditions in each group of experiments. Furthermore, all samples 
originating from THP-1-cell and Breath have been clustered together in cluster 1 and all 
samples from MCF-10A-cell and umbilical vein endothelial cell line in cluster 14. Finally, 
cluster 5 suggests similarities between some solvent and urine samples.

We selected 201 experiments (Additional file 7: Table S4) of blood and urine and per-
formed a Principal Component Analysis on experiment level, selecting all metabolites, 
replacing missing values with zero and using the z-score normalization. The analysis 
ended up differentiating the urine samples from the blood samples successfully in an 
interactive PCA plot (Fig. 5c). It is shown that the intensities of 40.101 metabolites from 
201 experiments took part in the calculation of the PCA, while metabolites that were not 
present in all the experiments are depicted in the table next to the PCA plot.

Fig. 5  a Web interface of a project. b K-means clustering on all 4827 experiments (re-scaled). c PCA 
analysis of 144 experiments originating from whole blood, blood plasma and erythrocyte samples and 57 
experiments originating from urine samples. d Pearson Correlation of 90 experiments on 112 compounds



Page 9 of 14Tzanakis et al. BMC Bioinformatics          (2022) 23:267 	

Afterwards, 90 experiments (Additional file 7: Table S4) were selected, containing blood 
samples from 30 individuals, 15 young and 15 elderly (30 whole blood, 30 erythrocyte 
and 30 blood plasma samples). Pearson Correlation was implemented on 112 compounds 
(Additional file 10: Table S7) that according to literature [47], show age-related increases or 
decreases while replacing the missing values with zero (Fig. 5d).

The results indicated that Fructose 6-phosphate and Glucose 6-phospate are highly posi-
tively correlated. The same stands for 2-Phosphoglyceric acid and 2,3-Diphosphoglyceric 
acid which have a very strong correlation. Closely correlated are also Nicotinamide Adenine 
Dinucleotide (NAD) and Nicotinamide Adenine Dinucleotide Phosphate (NADP). Last but 
not least, there were missing values of NADP and Uridine Triphosphate which indicates 
that they were not present in all 90 experiments.

Thereafter, we selected 45 of the 90 aforementioned experiments that contain samples 
originating from the 15 young individuals and performed a k-means clustering with 10 
clusters, on metabolite level and replacing missing values with zero. The same was imple-
mented for the rest 45 experiments of the 15 elder individuals (Additional file 2: Fig. S2, 
Additional file 3: Fig. S3).

The results suggest that metabolites like Leucine and Isoleucine, which may play a dis-
tinct role in supporting skeletal muscle activity, are clustered together in both cases (Addi-
tional file 11: Table S8, Additional file 12: Table S9). Ergothioneine is clustered alone in both 
cases showing more fluctuations in the elder individuals. In both young and elder clusters, 
Adenosine Diphosphate (ADP) and NAD are clustered together while Adenosine Triphos-
phate (ATP) is clustered separately in both cases. L-Acetylcarnitine is clustered separately 
for the young people while for the elder people it is clustered together with metabolites that 
are involved in the glucose metabolism (2-phosphoglyceric acid, 3-phosphoglyceric acid, 
Guanosine Triphosphate (GTP), NADP and Uridine Diphosphate Glucose) and shows a 
decrease of its abundance in the elder people.

Cluster setup

MetHoS is using Apache Spark 3.0.1 in standalone mode and currenctly uses 16 worker 
nodes and 1 master node. Each Spark worker has one executor with two cores making it 
possible to parallelize two tasks per worker or 32 tasks in total. We provide 23 Gb of RAM 
to every executor and 115 Gb to the master node. Spark is able to access the Cassandra 
database through the Spark-Cassandra-Connector 3.0.0 while it is also authorized to access 
Openstack Object Storage for downloading the experiments to be processed every time.

In the same 16 computer nodes, we have also installed KNIME providing it with 2 Gb of 
RAM. Spark downloads an experiment locally on the node and activates KNIME so that it 
can be processed on the same node. Consequently, a number of 32 experiments can be pro-
cessed in parallel on the cluster. For our Cassandra setup, we are using the same 16 nodes 
used as Spark workers.

Conclusions
Here we introduced MetHoS as a flexible and easy-to-use web-based platform, based on 
big data frameworks, that provides automated processing, distributed storage and dis-
tributed analysis in short processing and analysis times (Additional file 13). Our aim was 
to provide users a bioinformatics platform for the efficient and user-friendly handling 
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of experimental data originating from different metabolomics studies allowing in that 
way the integration of metabolomics data. MetHoS is built on Apache Spark to enable 
metabolomics data processing and analysis using KNIME and SparkML but also to con-
stitute the basis for future analysis functionalities. We evaluated the scalability of the 
platform using a variable number of Spark workers and demonstrated its capabilities by 
handling 1.1 Tb of data which were processed in only 12 h ending up to more than 2 
billion metabolite features. MetHoS allows for automated processing of large numbers 
of chromatographic datasets in terms of untargeted metabolite profiling, quantification 
and de novo identification and by that reaches a time-efficient and target-oriented inte-
gration and interpretation of metabolomics data.
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