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Multi-modal molecular programs regulate
melanoma cell state
Miles C. Andrews 1,2,15, Junna Oba 3,4,15, Chang-Jiun Wu 5,15, Haifeng Zhu3,15, Tatiana Karpinets5,

Caitlin A. Creasy3, Marie-Andrée Forget3, Xiaoxing Yu4, Xingzhi Song5, Xizeng Mao5, A. Gordon Robertson6,7,

Gabriele Romano8, Peng Li8, Elizabeth M. Burton5, Yiling Lu5, Robert Szczepaniak Sloane2, Khalida M. Wani8,

Kunal Rai 5, Alexander J. Lazar 5,8,9, Lauren E. Haydu 2, Matias A. Bustos 10, Jianjun Shen11,

Yueping Chen11, Margaret B. Morgan12, Jennifer A. Wargo 2,5, Lawrence N. Kwong8, Cara L. Haymaker 8,

Elizabeth A. Grimm3, Patrick Hwu3,13, Dave S. B. Hoon 10, Jianhua Zhang 5, Jeffrey E. Gershenwald 2,

Michael A. Davies 3, P. Andrew Futreal 5, Chantale Bernatchez 3,14 & Scott E. Woodman 3,5✉

Melanoma cells display distinct intrinsic phenotypic states. Here, we seek to characterize the

molecular regulation of these states using multi-omic analyses of whole exome, tran-

scriptome, microRNA, long non-coding RNA and DNA methylation data together with

reverse-phase protein array data on a panel of 68 highly annotated early passage melanoma

cell lines. We demonstrate that clearly defined cancer cell intrinsic transcriptomic programs

are maintained in melanoma cells ex vivo and remain highly conserved within melanoma

tumors, are associated with distinct immune features within tumors, and differentially cor-

relate with checkpoint inhibitor and adoptive T cell therapy efficacy. Through integrative

analyses we demonstrate highly complex multi-omic regulation of melanoma cell intrinsic

programs that provide key insights into the molecular maintenance of phenotypic states.

These findings have implications for cancer biology and the identification of new therapeutic

strategies. Further, these deeply characterized cell lines will serve as an invaluable resource

for future research in the field.
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Early gene expression profiling of metastatic melanoma tumors
demonstrated that melanoma cells display distinct gene
expression signatures, corresponding broadly with either a

“proliferative” or an “invasive” in vitro phenotype1,2. Expression of
melanocyte-inducing transcription factor (MITF) maintains a
more differentiated melanocytic phenotype, associated with a set of
features including melanin production, expression of melanocytic
antigens, and proliferation3,4. Conversely, the receptor tyrosine
kinase AXL has become a prototypic gene expressed at high levels
in the invasive or “de-differentiated” state, characterized also by
high expression of ZEB1 and low expression of MITF5. Single-cell
methods confirm that both subtypes of melanoma cells can co-exist
within tumors6, and phenotypic switching between these two
subtypes can occur2 accompanied by transcriptional changes that
resemble the epithelial-to-mesenchymal transition (EMT)7.

The layers of molecular regulation that control cellular phe-
notypes and EMT-like processes in melanoma, and their rela-
tionships to therapeutic outcome, are only partly understood.
Multiple in vitro studies have shown that MITF-high melanoma
cells are more sensitive to small-molecule BRAF inhibition than
MITF-low cells8–11, but the connection between melanoma cell
phenotype and BRAF inhibitor sensitivity is affected by the
duration of drug exposure12,13, co-occurring resistance aberra-
tions, and in vivo environmental factors14–16. The implications of
melanoma cell phenotypes for immunotherapy are also not yet
clear. Therapeutic antibodies that block inhibitory immune
checkpoint receptors or their ligands (CTLA-4, PD-1, PD-L1;
collectively termed immune checkpoint inhibitor (CPI) therapies)
have shown dramatic results in the treatment of melanoma and
other cancers17–20 achieving durable responses, but only in
a minority of patients21. We, and others, have shown that a
variety of factors influence responsiveness to CPI, including
tumor mutation burden22–25, somatic copy-number alterations
(CNA)25,26, antigen processing and presentation27, CD8+ T cell
tumor infiltration28,29, presence of B cells and tertiary lymphoid
structures30,31, spatial relationships between immune and cancer
cells32, presence of specific functional immune cell subsets33, and
characteristics of the gut microbiota34–36. Notably, no single
feature accounts for response or resistance in all cases.

In this work, in order to identify key molecular features that
regulate melanoma cell transcriptomic states (hereafter “MCS”)
and corresponding phenotypes, we perform a large-scale inte-
grative assessment of mRNA, microRNA mature strand (miR)
and long non-coding RNA (lncRNA) expression, somatic muta-
tions, CNA, and DNA methylation profiles across highly pure,
patient-derived melanoma cell lines. We identify concurrent and
multi-modal molecular interactions that underlie three distinct
MCS, and find evidence for relative molecular stability of the
most prevalent melanocytic/differentiated state. Furthermore, we
show that the MCS-defining gene sets can also be used to infer
MCS states of unsorted melanoma tumor specimens, demonstrate
correlations with distinct tumor immune infiltrates, and impact
treatment responses.

Results
Ex vivo gene expression subtypes incorporate a melanoma
lineage spectrum. We performed gene expression profiling of
68 early passage melanoma cell lines (“MDACC cell lines”) to
characterize transcriptomic signatures originating specifically
from melanoma cells, without accompanying stromal and
immune elements. In total, 68 cell lines derived from distinct
metastatic tumors of 62 patients underwent RNA sequencing
(RNA-Seq), broadly surveying melanomas of varying subtypes
and clinical backgrounds (Supplementary Data 1). Three dis-
tinct transcriptomic subtypes were identified by unsupervised

consensus clustering using non-negative matrix factorization
(NMF) of the top 1500 most-variant genes (Supplementary
Fig. 1a–c). Differential gene expression analysis identified 98
genes upregulated in cluster 1 (Supplementary Data 2, Fig. 1a),
which we termed the melanocytic-like (MEL) set due to the
presence of classic melanocytic markers (e.g. MITF, MLANA,
TYR, DCT, SILV, OCA2, SOX10), and significant gene ontology
(GO) enrichment for melanin biosynthetic process, melanocyte
differentiation (false-discovery rate (FDR) < 0.005), and enrich-
ment of the melanogenesis KEGG pathway (FDR < 0.10) (Sup-
plementary Data 3). Similarly, 149 genes were upregulated in
cluster 3, which we termed the mesenchymal-like (MES) set
(Supplementary Data 2) due to the inclusion of classic EMT-
implicated genes (e.g. ZEB1, AXL, ADAM12, COL1A1/5A1/6A2),
GO enrichments encompassing extracellular matrix organization,
cell adhesion, and cell migration (FDR < 0.00001), and enrich-
ments of focal adhesion and PI3K-AKT signaling KEGG path-
ways (FDR < 0.0005), consistent with a more motile/invasive
phenotype (Supplementary Data 3).

Mixed neural and plasticity characteristics define the non-
MEL/non-MES state. Melanoma cell lines with high expression
of MEL or MES genes are referred to being in the MEL or MES
states, respectively. The presence of a third set of clustered
samples (cluster 2) was superficially consistent with a transitional
state in the phenotype-switching model of melanoma previously
proposed by others1,2,37,38. Compared with MEL and MES state
samples, cluster 2 samples had significantly enriched expression
of 78 genes, and decreased expression of 6 genes (Supplementary
Data 2), with KEGG pathway enrichments (pooling all differen-
tially expressed genes) for sphingolipid metabolism, axon gui-
dance, JAK-STAT signaling pathway, VEGF signaling pathway,
BCR signaling pathway, focal adhesion, apoptosis, pancreatic
cancer, small cell lung cancer (all q= 0.061), and TCR signaling
pathway (q= 0.085)(Supplementary Data 3).

To characterize cluster 2 further, we used the SubMap
algorithm39 to compare cluster assignments between our cell
lines and a previous transcriptomic analysis of melanoma; the
MEL state was highly and specifically associated with the
“melanocytic” state described by Tsoi et al.38, while the MES
state was highly associated with the “undifferentiated” state, and
weakly with the “neural crest like” state. Cluster 2 was highly
associated with both the “neural crest like” and “transitory” states
of Tsoi (Supplementary Fig. 1d), and cluster 2 enriched genes
showed overlaps of at least 5% exclusively with the “transitory”,
“transitory-neural crest cells” and “neural crest cells” signatures.
Genes downregulated in cluster 2 samples showed a minor but
significant overlap only with the “melanocytic” signature
(Supplementary Fig. 1e). Overall, these findings support the
assignment of a hybrid transitory state with neural crest features
to our cluster 2, which we thus call a “neural-plastic” (NPLAS)
state. This was additionally supported by gene set enrichment
analysis of genes specifically enriched/depleted in our three-
cluster model with the signatures proposed by Rambow et al.40,
based on single-cell sequencing analyses of melanoma xenografts.
The MEL gene set was enriched for the Rambow MITF, mitosis,
pigmentation, and immune signatures (q < 0.001), and the
hypometabolic signature (q < 0.005), consistent with the inter-
pretation of the MEL state samples as being more melanocytic/
differentiated and proliferative. Differentially expressed genes in
NPLAS samples were enriched for the Rambow neuro signature
(q < 0.001), supporting our designation of these samples. Finally,
the MES state samples were enriched for the Rambow invasion
signature (q < 0.001), also consistent with the known invasive/
motile potential of EMT-shifted cell states.
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Fig. 1 Differentially expressed genes between MEL and MES clusters. Genes that were differentially expressed (p < 0.05) between MEL and MES
samples. a Early passage melanoma MDACC cell lines (n= 53, see also Supplementary Fig. 2b, d). b High-purity metastatic TCGA melanoma samples
(n= 77, purity= 0.85 by ABSOLUTE and/or CPE) with cluster assignments by cNMF clustering based on MEL and MES gene expression (one MEL gene
was unavailable in TCGA data). In both panels, samples are ordered (left to right) within each cluster by decreasing the MEL-MES score (see “Methods”).
Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31510-1 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:4000 | https://doi.org/10.1038/s41467-022-31510-1 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Common biology underpins published gene sets. We also
evaluated the similarity of our MEL and MES gene sets with
several published transcriptomic signatures derived from mela-
noma microarray analyses (Hoek et al.2), sequencing (Verfaillie
et al.41) and single-cell studies (Tirosh et al.6) (Supplementary
Fig. 1f). Overlaps with the Tirosh set were heavily driven by MEL
genes; overlaps with the Hoek gene set were fairly balanced for
MEL and MES representation, consistent with both gene set
discovery strategies considering the extremes of the phenotypes
for the purposes of differential expression. MEL and MES gene
overlaps with the Verfaillie gene sets were also balanced, not-
withstanding the lack of overlap for the vast majority of Verfaillie
signature genes with any other signature due to their large size
and content of non-coding RNA species. Re-clustering of our
melanoma cell line panel based on the expression of all these
gene sets excluding non-coding, deprecated, or pseudogene
content demonstrated overall good consensus (Supplementary
Fig. 2a), consistent with a common underlying biology driving
sample clusters, rather than gene signature redundancy given the
relatively minimal overlap of specific genes included in these
signatures.

In general, melanoma cells derived from the same patient
(11 samples from 5 patients) clustered closely together, and the
few lower purity samples were consistently placed within the MES
state (Supplementary Fig. 2b). To enable the application of the
MCS as defined in our cell line panel to other datasets, we trained
a random forest MCS classifier algorithm on our melanoma cell
lines using cNMF cluster assignments as the classification input
(see Methods; top 20 most informative genes by the variable
importance metric shown in Supplementary Fig. 2c; retained
genes in the final model shown in Supplementary Data 4).
Subsequent analyses were performed on a refined subset of 53 cell
lines after removing samples of lower purity or non-cutaneous
melanoma subtypes, and retaining only one distinct cell line per
individual source patient (Fig. 1a, details provided in Supple-
mentary Fig. 2b, d).

MCS can be inferred from bulk tumor gene expression data. To
determine if the gene sets that defined the MCS in highly pure
melanoma populations ex vivo could also identify clusters in
melanoma tumors, we examined their expression in metastatic
samples from The Cancer Genome Atlas skin cutaneous mela-
noma (SKCM) dataset (hereafter “TCGA melanoma”)42. Within
high tumor purity metastases (cancer cell fraction ≥ 0.85 (pro-
portion of nuclei), mean purity= 0.91 (CPE, see “Methods”);
n= 77), 24 (31%) and 15 (19%) of samples displayed pre-
dominantly MEL or MES gene expression, respectively, and the
remaining 38 (49%) clustered in a third, less-specific group
analogous to the NPLAS group in cell lines (Fig. 1b). When
considering all metastatic tumors regardless of tumor purity (%
tumor nuclei ≥ 0.50, mean purity= 0.70 (CPE, see “Methods”);
n= 368), similar patterns of MEL or MES gene expression were
observed, albeit with less precise delineation between MEL and
NPLAS gene expression patterns, as would be expected in a
sample cohort of lower average tumor purity (Supplementary
Fig. 3a). Notably, unlike the unsupervised cNMF approach, the
random forest MCS classifier appeared highly conservative when
classifying samples as MES, largely assigning predominantly MES
gene-expressing samples as NPLAS, suggesting that in the context
of bulk (i.e. multicellular) tumors, gene expression data contains
signals that confound the ability of the classifier to identify MES
samples. Nevertheless, despite these apparent limitations in
classifying some individual samples, the MEL and MES gene sets
can be used broadly to infer the MCS of melanoma cells con-
tained within the whole (bulk) tumors.

MCS is associated with tumor immune content. To determine
whether MCS influences tumor immune content, we categorized
all metastatic TCGA melanoma samples using cNMF clustering
based on the expression of our MEL and MES gene sets. We then
estimated the content of major immune and stromal cell types
from gene expression data with the MCP-counter algorithm43

and observed substantial variation in immune composition
between the three MCS groups (Fig. 2a). When immune infil-
trated, MEL samples displayed generally lymphoid/monocytic
content, MES samples displayed high stromal (endothelial,
fibroblast) and/or myeloid/monocytic content, and NPLAS
samples tended to have the least multi-lineage immune repre-
sentation (Fig. 2a–c). Some MEL samples nevertheless displayed
marked enrichment of cytolytic markers such as PRF1 and GZMA
(Fig. 2d). The median expression levels of most lymphocytic
marker genes varied across MCS groups, including regulatory
molecules FOXP3, PDCD1, CTLA4, and LAG3, with the lowest
expression observed in NPLAS samples, (all q < 1e−03; Supple-
mentary Fig. 3b). MES samples displayed significantly higher
expression of the M2-macrophage markers MRC1 (CD206),
CD163, and IL10 compared to other MCS (all q < 1e−10; Fig. 2e),
a cell population which has been implicated in driving the for-
mation of a cancer-promoting tumor microenvironment across
multiple cancer types44,45.

Stromal signatures confound interpretation of MCS in MES
samples. Of the gene sets used by MCP-counter to enumerate 10
non-cancer cell populations, only the fibroblast (3 of 8 genes
shared; COL1A1, COL6A1, COL6A2) and endothelial (2 of 33
genes shared; ESM1, HECW2) gene sets exhibited overlap with
the MES gene set, and no overlaps with the MEL gene set were
observed. Furthermore, we applied four widely used immune
deconvolution algorithms (EPIC46, quanTIseq47, MCP-counter43,
and TIMER48) to our cell line data for which non-tumor content
is minimal or absent, and confirmed that estimation of stromal
and myeloid signatures are highly inaccurate in melanoma sam-
ples, being particularly unreliable for estimation of cancer-
associated fibroblast scores in MES cluster melanoma samples
(Supplementary Fig. 4). Tumor purity was not identical across
MCS subtypes of the TCGA melanoma samples, although was
more similar by histologic assessment (median percent tumor
cells by histology; 85% MEL, 90% NPLAS, 85% MES; p= 4.8e
−05, Kruskal–Wallis test) than by genomic measures for which
MES samples scored lowest (median purity estimate by CPE
method; 0.79 MEL, 0.82 NPLAS, 0.66 MES; p= 2.2e–16,
Kruskal–Wallis test). Together, these data indicate that over-
lapping gene expression profiles between MES state melanoma
cells and stromal elements, and potentially in some cases lower
tumor purity, confound the interpretation of stromal deconvo-
lution in melanoma tumors, if based on gene expression alone.

MCS gene expression patterns indicate complex underlying
regulation. Expression of MEL/MES genes in our melanoma
cell lines revealed distinct patterns suggesting the culmination
of multiple regulatory inputs, including graded (linear) rela-
tionships for canonical marker genes such as MITF (MEL) and
ZEB1 and AXL (MES) or switch-like expression (abrupt and
non-overlapping “on” or “off” levels of expression) for genes
such as SOX10 and EDNRB (MEL) and EGFR (MES) (Fig. 3a).
To understand how these MCS-defining genes achieve complex
expression patterns, we next analyzed the same melanoma
cell lines for somatic mutations, CNA, DNA methylation,
protein levels, and miR and lncRNA expression (Supplementary
Data 5 and 6).
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MCS are not driven by mutational differences. Among a diverse
landscape of mutations and CNA affecting known oncogenes
and tumor suppressor genes in melanoma49 (Fig. 3b), the most
frequently altered genes were BRAF (73%), CDKN2A (71%),
CDKN2B (57%), PTEN (55%), and TP53 (55%), with high pre-
valence of NRAS mutations in this cohort (41%). There was little
association between recurrently altered genes and MCS;

however, we did observe a higher frequency of BRAF hotspot
events in the MEL samples (p= 0.016, Fisher’s exact test) and of
NRAS hotspot events in the MES samples (p= 0.03, Fisher’s
exact test), consistent with the typically mutually exclusive
alteration of these two genes. In high-purity TCGA melanoma
samples, BRAF mutations were not associated with MCS (Sup-
plementary Fig. 5); thus, we cannot exclude a potential selective
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advantage for BRAF mutated MEL samples when grown in vitro.
At the nucleotide level, mutations were dominated by C>T
transitions, as is typical for the UV signature in melanoma; no
clear mutational signature differences were evident between the
three MCS (Fig. 3b).

MCS display distinct patterns of CNA. In contrast to the
mutational landscape, distinct CNA differences were observed
between MCS, with MEL samples showing relative gains of
chromosomes 1p, 7q and 15 (p+ q), and losses of chromosomes
9p, 11 (p+ q), 18p and 19q (Fig. 3c). As a group, MEL genes were
more commonly affected by gene-level CNA than MES genes (32
of 98 (33%) MEL vs 35 of 149 (23%) MES genes, Chi-square test
p= 0.15; Supplementary Data 6). Furthermore, CNAs affecting
MES genes were typically driven by gene-level losses in MEL or
NPLAS samples rather than gains in MES samples, consistent
with CNA events (of either direction) primarily occurring in
MEL cells.

Dissimilar global copy-number profiles across the three MCS,
particularly affecting chromosomes 7q, 8q, 10, and 18 (red
asterisks in Fig. 3c), appeared inconsistent with the NPLAS state
simply being comprised of a combination of the MEL and MES
profiles, as would be expected for a truly transitional or mixed
state lying midway on a MEL-to-MES spectrum. We then
examined this relationship in melanoma cell lines of the Cancer
Cell Line Encyclopedia (CCLE), using RNA-Seq data and cNMF
clustering to define each sample’s MCS (Supplementary Fig. 6a)
followed by a comparison of genome-wide segmented CNA
profiles across each cluster (Supplementary Fig. 6b). As in our
own cell lines, CNA profiles of NPLAS samples displayed
regions of apparently distinct CNA (e.g. 2p, 5p, 9q, 12q, 14p,
18) inconsistent with these samples representing mixtures or an
alternative phenotypic state of cells harboring the MEL and
MES profiles, supporting the existence of a distinct NPLAS
state. Importantly, regional CNA observed in CCLE samples
were not directly equivalent to those seen in our early passage
cell lines; previous studies50 have demonstrated the evolution of
copy-number profiles in samples following extended passaging
in vitro, which may explain some of these differences.

DNA methylation associates with MCS. We next identified
numerous strong DNA methylation associations with MEL and
MES gene expression, acting variably at canonical promoters/
enhancers, or gene-body sites. Transcript levels of conventional
melanocytic markers (e.g. SILV, MLANA, and TYR) which are
known to be dominantly regulated by MITF4,51, and ofMITF itself
were significantly inversely correlated with DNA methylation in
the cell lines and TCGA melanoma samples (Fig. 4a, Supplemen-
tary Data 6–8). Expression of melanocytic differentiation markers
(e.g. MLANA, TYR, TRPM1, DCT) was widely variable in NPLAS
samples, and DNA methylation was frequently associated with low
expression, similar to that found in MES samples (Supplementary

Data 7–8). Although DNA hypomethylation of EMT-upregulated
genes AXL and KRT8/1852 was observed in MES samples, other
MES genes were positively correlated with DNA methylation,
including EGFR, EPHB2, WNT5A, and SERPINB7 (Fig. 4b, Sup-
plementary Data 6, 9, 10). In some cases, DNA methylation at
different regions of the same gene had discordant associations with
transcript abundance. For example, promoter methylation of ZEB1
was associated with low ZEB1 expression (MEL samples) and gene-
body methylation was significantly correlated with high ZEB1
expression (MES samples) (Fig. 4b, Supplementary Data 6, 9, 10).
In vitro, MEL state cell lines displayed heightened sensitivity to the
global hypomethylating agent decitabine (5-aza-2′-deoxycytidine)
compared with MES state cell lines, suggesting a more specific
cytotoxic/cytostatic effect in MEL state cells (Supplementary
Fig. 7a). Whether this is due to greater dependence on specific
methylation events in MEL cells or a skewed balance of hypo-
methylation to hypermethylation events between the MCS remains
to be determined.

To determine if differences in epigenetic aging characterize the
MCS, we evaluated the DNA methylation age (DNAmAge)
estimates of our melanoma cell lines using the method of
Horvath53. We found a very poor correlation between the
chronological age of the patient at the time the source tumor was
sampled and the calculated DNAmAge, similarly to what was
originally described across multiple tumor types (Supplementary
Fig. 7b). Despite high data dispersion, linear regression revealed
highly similar trends for both MEL and MES groups for which
DNAmAge was nearly constant regardless of chronological age
(slope=−0.024 MEL, −0.023 MES). By contrast, the epigenetic
age of NPLAS samples showed a positive correlation with
chronological age (slope= 0.50). Together with distinct CNA
profiles, these findings add further support to the existence of
fundamental molecular differences between the NPLAS and either
MEL or MES states.

Differentially expressed miRs characterize MCS. MiRs exert
post-transcriptional regulation of gene expression. Thus, we
performed whole-miRNome profiling using small RNA sequen-
cing and found significant differential upregulation of 13 miRs in
MEL and 9 miRs in MES cell lines (Fig. 5a and Supplementary
Data 6). On a gene-by-gene basis, there was a consistent inverse
correlation between MEL-associated miRs and MES genes, and
vice versa in cell lines (Supplementary Fig. 7c); these associations
were largely maintained in high-purity metastatic TCGA mela-
noma samples (Supplementary Fig. 7d and Supplementary
Data 6). Minimal overlap was seen between genes affected by
CNAs and genes showing evidence of regulation by miRs (Sup-
plementary Data 6), suggesting additive regulatory potential.

Twelve of the 22 differentially expressed miRs had at least one
MEL or MES gene in its set of known regulatory targets according
to validated and predicted miR target databases (see “Methods”;
Fig. 5b, c). The most highly differentially expressed miR of this
group was miR-211-5p, a known melanoma tumor suppressor54

Fig. 2 MCS are associated with differences in tumor immune content. a Heatmap of immune and stromal cell type composition in metastatic TCGA
melanoma samples of any tumor purity (n= 368) derived using MCP-counter transcriptomic deconvolution. Also indicated are tumor cell purity estimates
derived from histologic examination as provided in the TCGA melanoma metadata (% tumor nuclei, range 60–100%), and the MCS membership
defined by cNMF clustering of samples using MEL and MES gene expression. Statistical significances are given as Benjamini-Hochberg corrected q values,
from two-sided Kruskal–Wallis tests for differences across the three clusters. In the same metastatic TCGA melanoma samples (n= 368), distributions
of (b) MCP-counter endothelial cell signature scores, and (c) MCP-counter fibroblast signature scores, (d) cytolytic markers PRF1 and GZMA, (e) key M2-
macrophage marker genes MRC1, CD163 and IL10. In (b–e), Benjamini–Hochberg corrected q values from two-sided Kruskal–Wallis tests across all three
sample classes are shown. Boxplots indicate the median (thick bar), first and third quartiles (lower and upper bounds of the box, respectively), lowest and
highest data value within 1.5 times the interquartile range (lower and upper bounds of the whisker), and all individual data points are shown. Source data
are provided as a Source Data file.
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located within an intron of the TRPM1 gene, a member of the
MEL gene set. The coordinated upregulation of TRPM1 and miR-
211-5p in MEL samples was consistent with a shared transcrip-
tional regulation, which in the case of miR-211-5p, reinforces
MEL gene set expression due to miR targeting of several MES
genes including EPHB2, THSD4 (thrombospondin type I domain
containing 4), NUAK1 (cancer-promoting driver of EMT)55,
KCNMA1 (cancer invasion and metastasis)56, and ZEB1 (a key
driver of EMT-like processes in melanoma)7. Indeed, miR-211

can play tumor suppressive or promoting roles under different
cell states and microenvironmental conditions in melanoma,
at least partly dependent on target mRNA expression. We
confirmed miR-211-5p targeting of ZEB1 at both transcript and
protein level and demonstrated knockdown of ZEB1 protein
following transfection-mediated overexpression of miR-211-5p in
melanoma cells with high endogenous levels of ZEB1 in vitro
(Fig. 5d, e), supporting the validity of our approach to the
identification of meaningful multi-modal regulatory relationships.
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Fig. 3 Relationships of mutations and DNA methylation to MEL or MES gene expression. a Violin plots comparing expression of selected MEL and MES
genes between cNMF-derived clusters in the early passage melanoma MDACC cell lines (n= 53) reveal several distinct types of relationship between
gene expression and sample cluster type. These include: graded relationships (gradual transition in expression level across the MCS, e.g. MITF, AXL,
SLC24A5); switch (non-overlapping high/low) relationships (e.g. SOX10, EDNRB); or genes almost exclusively expressed in one MCS only (e.g EGFR). Boxes
indicate the median (thick bar), first and third quartiles (lower and upper bounds of the box, respectively). Violins (kernel probability density) extend to the
lowest and highest data value. All individual data points are shown. b Oncomap of genomic alterations affecting a panel of genes commonly mutated or
copy number altered in melanoma, with cNMF-derived MCS clusters indicated in the tracks above based on RNA expression, miR expression, protein
expression (measured by RPPA), or DNA methylation pattern. Summary data of mutation type (synonymous or non-synonymous), and nucleotide changes
are indicated below for each sample. The histogram at the left indicates the cumulative frequency of genomic events affecting each gene. c Genome-wide
CNA indicated by heatmap and segmentation map, comparing results from MDACC cell lines grouped by cNMF-defined MCS. Source data are provided as
a Source Data file.
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Fig. 4 DNA methylation demonstrates site- and gene-specific associations with MEL and MES gene expression. a, b Overview of statistically significant
DNA methylation events for (a) 3 MEL genes and (b) 3 MES genes contrasting the observed exclusively negative (green bars), exclusively positive (pink
bars), and mixed patterns of correlation between individual methylation probes and expression of the indicated gene. FDR-corrected two-sided Spearman
correlation p values are shown. For each gene, DNA methylation in MDACC cell lines is shown at the left, and in TCGA melanoma samples at the right;
note that due to processing pipelines used, the available datasets report overlapping but non-identical probesets per gene.
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Levels of miR-31-5p were inversely associated with expression of
its target MEL gene EDNRB, known to play an essential role in
normal melanocyte development as well as melanoma prolifera-
tion, metastatic initiation, and BRAF inhibitor resistance57–59.
Additionally, the mRNA levels of MEL genes IRF4, IL16, and
IL6R, all of which have known immunomodulatory roles affecting
lymphocyte activation, chemotaxis and differentiation, were
diminished in cells expressing the MES-associated miR-125b-

5p, implicating miR-125b-5p as a pan-immune modifying miR in
melanoma (Fig. 5b, c).

Long non-coding RNAs are differentially expressed between
MCS. Several lncRNAs were highly differentially expressed
between the MCS (Supplementary Fig. 8a–d). Compared to MES,
MEL samples were enriched for LINC00518, a marker that
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differentiates melanoma from nevi in gene signature analysis60

and is associated with prognosis of uveal melanomas61 (Supple-
mentary Fig. 8a). Conversely, MEL samples had low levels of the
hypoxia-inducible H19 which may trigger a disseminating phe-
notype via SNAIL upregulation62 (Supplementary Fig. 8c).
Although absolute expression levels of these non-coding RNA
species may be low, substantial signal amplification of effects on
target gene expression may be a feature of such multi-step
interactions. Detailed experimental evaluation of the lncRNA
associations presented here will be required to elucidate the
molecular mechanisms promoting specific MCS.

Combined assessment of regulatory modalities suggests less
intrinsic plasticity in the MEL state. To compare multi-modal
regulation between MCS further using the MDACC cell lines, we
generated combined representations and summarized the three
independent regulatory modes of CNA, DNA methylation and
miR upon each member of the MEL and MES gene sets as
directed categorical factors (−1 = significant inverse correlation,
+1 = significant direct correlation, 0 = no significant correlation;
see Methods) and clustered the genes based on similar patterns of
multi-modal regulation (Fig. 6a, b; Supplementary Data 6). A
small set of genes displayed all 3 modulatory features: MEL genes
MITF, TBC1D16, ENDRB, RAB27A, HPS4, SLC16A6, IL16, and
SGK1; and MES genes AFAP1, ZEB1, GLIS3, MICAL2, ARNTL2,
AMOTL2, and MYLK (Fig. 6a, b; Supplementary Data 6). CNA
typically co-occurred with at least one additional regulatory
mode, although infrequently with miR regulation (67 CNA
regulated; 48 (72%) DNA methylation co-regulated, 20 (30%)
miRNA co-regulated). DNA methylation events were the most
common modality of regulation occurring in isolation (109 of 247
genes, 44%; Fig. 6a, b). Overall, MEL genes were more frequently
copy number altered than MES genes (32 of 98 (33%) MEL vs 35
of 149 (23%) MES genes) and a higher proportion of MES genes
displayed evidence of regulation by non-CNA mechanisms (86 of
149 (58%) MES vs 43 of 98 (44%) MEL genes displaying non-
CNA regulation; p= 0.045, Chi-squared test). MEL genes were
significantly more affected by suppressive DNA methylation
patterns (58 negative versus 9 positive mRNA-methylation cor-
relations) than MES genes for which reinforcing DNA methyla-
tion patterns predominated (49 negative versus 58 positive
correlations; MEL versus MES p= 1.8e–07, Chi-squared test).
Furthermore, genes whose expression is known to enforce the
differentiated state (SOX10 and MITF) were copy-number
amplified, while genes that transition cells to a de-differentiated
state (AXL and ZEB1) were allelic copy-number low in MEL
samples (Supplementary Data 7, 9). Individual NPLAS samples
typically expressed either AXL or ZEB1, whereas MES samples
expressed both AXL and ZEB1 at a high level, with high EGFR
expression being a defining feature of this MCS and each of these
genes being subject to multiple regulatory modalities (Fig. 6c).
Conversely, the heavily regulated MEL gene EDNRB revealed
frequent discordance between the expression of MITF and its
transcriptional target gene TRPM163 as a defining feature of cells
with an NPLAS phenotype (Fig. 6d). Notably, TRPM1 and the
miR-211 locus contained within its intron, are located on one of
the most significantly differentially CNA regions in MEL samples
(chromosome 15q13) (Fig. 3c) and are additionally subject to
inhibitory DNA methylation patterns (Supplementary Data 7).
Thus, a highly differentiated (MEL) state is associated with a
higher burden of fixed structural aberrations, raising the possi-
bility that this state is inherently less susceptible to perturbation
by chemical or other microenvironmental signals, which may
explain the higher prevalence of MEL samples in published
cohorts of both cell lines and tumor samples1,64. Not all

regulatory associations identified in tumor cells (cell lines)
remained identifiable in TCGA melanoma tumor samples (Sup-
plementary Data 6), potentially due to genomic signal dilution by
the diversity of cell types present even in high-purity tumor
samples, but differences in the tissue sites of origin between the
cell line and TCGA melanoma cohorts may have impacted these
findings. However, the overall patterns observed at the cluster
level (e.g. preponderance of CNA affecting MEL genes) were
preserved.

Clinical outcomes for melanoma sample donors are associated
with MCS. Many studies have explored the association between
melanoma gene expression signatures and therapeutic
outcomes12,23,65,66 but are often limited by the timing of tumor
sampling versus initiation of the treatment under study, or dif-
ferences between experimental models. We leveraged the com-
prehensive clinical data of patients from whom our melanoma
cell line cohort was derived to evaluate whether MCS were
associated with clinical outcomes to the immediate next line of
therapy received by the donor patients. Our cohort provides a
wide survey of systemic treatment regimens including cytotoxic,
targeted, and immune therapies (most common categories; TIL
therapy, MAPK targeted therapy, biochemotherapy, each n= 7;
Fig. 7a, Supplementary Data 1). Each of these groups showed
trends for the lower duration of clinical benefit (defined as time
from first dose until starting another line of therapy) in MES
samples, although sample numbers were limiting for formal
stratified analyses (Supplementary Fig. 9a). When considering all
patients receiving subsequent therapy, regardless of treatment
type, MES samples had a numerically lower duration of clinical
benefit (MEL 172d [IQR 86-413d], NPLAS median 121d [IQR
79-180d], MES median 79d [IQR 34-97d]; Fig. 7b). Interestingly,
this trend was also seen within NPLAS samples after subdivision
into more MEL-like or more MES-like subgroups based on
clustering strictly into two classes based on MEL/MES gene
expression (Fig. 7b). As expected, MEL state cell lines harboring
BRAFV600E mutations were markedly more sensitive to treatment
with the BRAF inhibitor vemurafenib in vitro, experiencing near-
complete loss of viability at 1 μM, in contrast to the highly
resistant MES and NPLAS samples (Supplementary Fig. 9b).

MEL state associates with favorable tumor immune micro-
environments and depletion following CPI. PD-1 CPI now
forms the backbone of melanoma treatments but were not widely
available at the time most of our cell lines were developed. Thus,
to evaluate the relationship between MCS and response to PD-1
blockade we utilized a publicly available dataset of pre- and on-
PD-1 CPI melanoma samples profiled for gene expression67. As
expected, samples clearly separated into our three MCS based on
MEL and MES gene expression (Fig. 7c), regardless of pre- or on-
treatment time point and with inferred immune content for each
cluster similar to that observed in TCGA melanoma samples
which, notably, were treatment-naïve (Supplementary Fig. 10a,
b). We assigned MCS classes to individual samples using a ran-
dom forest classifier model trained on the MDACC cell line
samples (see methods) and found a trend for significantly dif-
ferent RECIST-based objective responses (binary responder/non-
responder) between MCS subgroups across the entire cohort
(p= 0.081, Fisher exact test); however, this was driven by a sig-
nificantly higher proportion of responders in the non-MEL sub-
groups at the on-treatment time point (p= 0.0055, Fisher exact
test) as there was no significant difference in response by MCS in
pre-treatment samples only (p= 0.61). When considering only
cutaneous-type melanomas and samples with available response
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annotation, a strong trend for differential response by MCS
remained at the on-treatment time point (p= 0.051).

Of the 42 patients with longitudinal samples and known
response status, 9 displayed discordant MCS categories when we
compared on-treatment with pre-treatment samples. A MEL-wise
shift occurred in 2 patients (1 MES to NPLAS, 1 NPLAS to MEL)
who were both non-responders. In contrast, a MES-wise shift

occurred in 7 patients (2 MEL to NPLAS, 5 NPLAS to MES),
comprised of 3 non-responders and 4 responders (p= 0.069,
Fisher’s exact test; Fig. 7d). These data require further
corroboration using a larger cohort, but suggest that regardless
of the starting MCS, patients who display a shift in MCS towards
a more MES phenotype during PD-1 CPI treatment, may have a
higher likelihood of response to this therapy.
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Discussion
We hypothesized that unraveling the multiple molecular inputs
governing MCS would reveal previously unrecognized biological
interactions that drive clinically relevant outcomes. We worked
with early passage patient-derived melanoma cell lines for two
reasons: (1) to overcome the challenge of tumor heterogeneity,

and (2) to explore multi-omics that are not currently available by
single-cell methods. In this way, we determined that MCS,
representing distinct biological capabilities, are highly conserved
in patient tissue samples and are differentially associated with
immune gene profiles and immune cell content within the tumor
microenvironment in vivo. Individual MEL or MES genes that

Fig. 6 Multi-modal regulatory influences on MEL and MES gene expression. Regulatory associations with expression of the (a) MEL genes and (b) MES
genes summarized (from inside to outside): CNA, miR expression, and DNA methylation at gene promoter, gene body, and any site. Genes are grouped
according to similarity of active regulatory mechanisms, determined by unsupervised clustering using a Gower distance, as described in Methods. The
direction of association between DNA methylation and gene expression is indicated by color (orange= inverse, green = direct). c, d Key molecular
regulatory influences active on the hallmark genes (c) EGFR and (d) EDNRB, indicating key features affecting ZEB1/AXL and MITF/TRPM1 in MES and MEL
genes, respectively. From top down, annotation rows indicate: (in the upper block) MCS group (“Type”), gene expression (“mRNA_Expr”), copy number
(“CopyNum”), copy-number gains/losses (“gain/loss”); (in the middle block) gene expression of MITF, SOX10, TRPM1, ZEB1 and AXL; and (in the lower
block) expression of the indicated significantly anti-correlated microRNA mature strands (miRs). Correlation statistics are indicated graphically to the right
of each feature; one-sided (positively) Spearman correlation p values (mRNA-CopyNum) and FDR-corrected two-sided Pearson correlation p values
(mRNA-miR). Samples are ordered left to right by expression of EGFR (c) or EDNRB (d). Missing data for individual samples are indicated by white. Source
data are provided as a Source Data file.
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Fig. 7 Clinical associations of MCS. a Systemic therapies received by patients (n= 53) subsequent to the tumor harvests from which the early passage cell
lines were generated, grouped by treatment category. The total number of patients in each category is indicated above each bar, and the MCS of
each tumor-derived cell line is indicated in color. b Time, in days, from the initiation of the next line of systemic therapy after cell line-generating tumor
harvest, until a further change in therapy was required or last follow-up. Boxplots indicate the median (thick bar), first and third quartiles (lower and upper
bounds of the box, respectively), lowest and highest data value within 1.5 times the interquartile range (lower and upper bounds of the whisker),
and all individual data points (n= 41) are shown. c Heatmap of MEL and MES gene expression in pre-PD-1 inhibitor treatment samples of the Riaz cohort,
ordered by decreasing MEL-MES score (see “Methods”). Objective response to treatment (Response), sampling time point (Time point; all pre) and
random forest model-assigned cluster (RFcluster) are shown for each sample. d Longitudinally sampled patients within the Riaz PD-1 inhibitor cohort
revealed a trend towards higher proportion of responders in patients demonstrating a MES-wise shift (i.e. MEL to NPLAS, MEL to MES, or NPLAS to MES)
in model-assigned cluster type (p= 0.069, two-sided Fisher exact test). Source data are provided as a Source Data file.
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displayed similar expression patterns (e.g. switch-like, graded,
etc.), were subject to distinct combinations of molecular regula-
tion at genomic, transcriptional and post-transcriptional levels.
Multiplatform analyses revealed a high degree of regulatory het-
erogeneity even within each MCS.

Most notably, we found that the simultaneous action of
multiple modalities of gene regulation provides differential
opportunity for cellular plasticity; specifically, the MEL state
was associated with less readily reversible regulatory modalities
(e.g. CNA), suggesting that it may be more molecularly ‘fixed’ or
‘stable’. The relative minority of MES samples in our own patient
cohort, as well as from high-purity samples of the TCGA mel-
anoma cohort, may thus reflect a lower frequency of cancer cells
that are able to escape the MEL state to become the dominant
population in melanoma tumors. Predominance of the MEL state
was also observed in a single-cell RNA-Seq analysis of melanoma
tumors in which 7 of 10 tumors at bulk level displayed an MITF-
high (here MEL) phenotype, despite all tumors evaluable at
the single-cell level (n= 7) showing admixed MITF-high and
AXL-high (here MEL and MES, respectively) phenotype cells6.
Depending on prevailing microenvironmental pressures, in vivo
studies also suggest that the MES state may inherently
tend towards reversion to a MEL state68. These data are inter-
esting in light of the lower frequency of MES (or analogous
MITF-low/AXL-high) samples across many published mela-
noma cell line and patient tumor cohorts1,64, indicating that the
higher prevalence of the MEL state in cell line panels is unlikely
to be explained solely by a selective advantage to sustained
in vitro culture.

Examination of the specific underlying regulatory modalities
unexpectedly revealed that samples which clustered in the non-
MEL/non-MES group (here called NPLAS) did not simply repre-
sent a mixture or a transitional state between MEL and MES and
may in fact be a distinct melanoma cell state. Other recent reports
have found additional support for multiple melanoma cell states
and a molecular basis for variable stability of such states69,70.
Indeed, as multi-dimensional molecular profiling becomes more
feasible, the number of distinct cell states detected within each
tumor may continue to increase; further functional analyses will
need to be combined with ‘omics’ studies in order to determine the
number of states beyond which further subdivision is no longer
clinically relevant. However, as therapeutics evolve, so too will the
meaningful groupings of melanoma cell states. Overall, it is clear
that gene expression profiling alone will not be sufficient to identify
high-yield molecular therapeutic targets. By identifying multiple
regulatory features that simultaneously underlie MCS, our study
suggests many potential combinatorial treatment strategies aimed
at different cell states within a tumor.

In our analyses, all cohorts of clinical samples demonstrated
clear evidence of segregation into MCS, which were in turn asso-
ciated with distinct immune microenvironments in tumors,
including immunosuppressive populations in MES samples.
Interestingly, we observed an apparent shift in the MCS within
tumors toward a more MES state in longitudinal samples
responding to PD-1 CPI, suggesting depletion of more ther-
apeutically susceptible MEL cell content in response to PD-1
blockade. These results are consistent with the expression of mel-
anocyte differentiation antigens in MEL cells, which are highly
immunogenic and targets of anti-cancer CD8+ T cell clones.
Conversely, isolated MES cells intrinsically express CCL2 and
PDCD1LG2, which can facilitate a pro-tumor microenvironment
by attracting monocytes and inhibiting T-cell proliferation/cyto-
kine production, respectively71,72. Several MEL genes (IRF4, IL16,
IL6R) that are known to be associated with an anti-tumor milieu
(e.g. lymphocyte activation, chemotaxis, and differentiation)73

appear actively suppressed in MES cells through mechanisms such

as miR-125b-5p targeting and DNA methylation, reinforcing a
potentially immunotherapy-resistant microenvironment.

These data confirm the utility of performing parallel ‘omics’
analyses to identify multi-modal molecular regulatory features and
relating these to observable clinical outcomes. The determinants of
MCS cannot be adequately inferred from a single data type, are
complex, and may cumulatively determine the degree of cellular
plasticity. We provide additional data supporting the molecular
independence of the NPLAS state, still largely thought to represent
a transition or mixed state between MEL and MES extremes.
Importantly, the large cohort of patient-derived cell lines will serve
as an ongoing resource to the research community. The molecular
characterization we performed using five distinct ‘omics’ platforms
can be further integrated with data from emerging molecular
techniques and functional studies to guide future strategies tar-
geting melanoma cell-intrinsic phenotypes as independent or
adjunct anti-cancer therapies.

Methods
Ethics Statement. The University of Texas MD Anderson Cancer Center Insti-
tutional Review Board (IRB) approved our study involving melanoma cell line
generation from metastatic tumor specimens as part of the Adoptive T-cell
Therapy Clinical Program (LAB06-0755 and 2004-0069). Written informed con-
sents were provided by the participants prior to enrollment, including consent to
harvest tumor material and use in parallel cancer-related research as presented in
this study. All experimental methods abided by the Declaration of Helsinki. Par-
ticipants did not receive compensation for their participation.

Cell Lines. Melanoma cell lines (referred to here as “MDACC cell lines”) were
generated previously74,75, as follows. Briefly, each specimen from a metastatic
melanoma tumor was collected and processed into a single-cell suspension by
incubation with an enzymatic digestion cocktail (0.375% collagenase type I, 75 µg/
mL hyaluronidase, and 250 U/mL DNase-I) in tumor digestion medium (RPMI-
1640 containing 10 mM HEPES, 1% penicillin/streptomycin and 20 μg/mL genta-
micin; Gibco/Invitrogen) in a humidified incubator at 37 °C with 5% CO2 with
gentle rotation for 2–3 h. The tumor digest was filtered through a 70 µm filter,
washed in sterile PBS, and re-suspended in serum-free media, which was then
plated in one well of a 6-well culture plate and incubated at 37 °C in a 5% CO2

atmosphere. After 24 h, the media was replaced with fresh complete tumor media,
comprised of RPMI-1640 supplemented with 1% GlutaMAX, 10% FBS, 1% peni-
cillin/streptomycin, 20 μg/mL gentamicin, 50 μM β-mercaptoethanol (Gibco/Invi-
trogen), 10 mM HEPES, and 5 μg/mL insulin-selenium-transferrin (Gibco/
Invitrogen). Cells were grown-on in enriched DMEM/F12 culture media (Gibco/
Invitrogen) supplemented as above and with 1 mM sodium pyruvate and
MycoZap-PR (Lonza). Once enough cells were grown in pre-cell line culture,
tumor cell purity was tested using a melanoma tumor surface marker (MCSP-1) by
flow cytometry. Controlled serum starvation was performed to eliminate fibro-
blasts. Cultures were deemed established when the cells stained positive for a
melanoma tumor marker (MCSP, 1:50, Miltenyi, cat# 130-117-347) and negative
for a fibroblast marker (CD90, 1:50, BD Pharmingen, cat# 561558). All the cell
lines were derived from metastatic melanoma tumors that had advanced to various
sites (e.g., lymph nodes, soft tissues, lungs). Tissues were harvested primarily by
surgical resection and cell lines were generated by the MD Anderson Cancer Center
TIL Laboratory between 2007 and 2014. All MDACC cell lines were used within 10
passages of tumor line establishment; cells were cryopreserved and kept in stocks in
liquid nitrogen until use.

Commercially available human melanoma cell lines MEL888, SKMEL23,
WM902B, and WM115 were generously provided by Dr. Michael A. Davies at the
University of Texas, MD Anderson Cancer Center.

All cell lines were tested for mycoplasma using the MycoAlert detection kit
(Lonza) and authenticated by STR fingerprinting compared with matched-patient
peripheral blood mononuclear cell samples to confirm identity.

Nucleic acid extraction. Cell line-derived DNA was extracted from freshly isolated
cell pellets using the DNeasy Blood and Tissue kit (Qiagen) and eluted in TE buffer.
DNA concentration was measured using a Quant-iT PicoGreen assay kit (Ther-
moFisher) and quality assessed using an Agilent Bioanalyzer 2100 and DNA 1000
kit (Agilent). A total of 250 ng DNA was submitted for DNA sequencing. A total of
1 μg DNA was submitted for DNA methylation analysis.

Total RNA including miR were extracted using the mirVana microRNA
Isolation Kit (ThermoFisher) and eluted in nuclease-free water. RNA was
quantitated using a Qubit fluorimeter and quality was assessed using a Fragment
Analyzer (Advanced Analytical). Only analytes with an RNA Quality Number
(RQN) ≥ 7.0 proceeded to RNA sequencing. For miR (small RNA) sequencing,
total RNA quality was assessed using the Bioanalyzer 2100 and RNA6000 Nano

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31510-1 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:4000 | https://doi.org/10.1038/s41467-022-31510-1 | www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications


assay (Agilent); all analytes had RIN ≥ 8.0, except for three cell lines; 2350 (RIN
7.9), 2417 (RIN 6.9) and 2734 (RIN 5.2). All samples proceeded to miR sequencing
given that RIN values may be poorly reflective of sample miR quality76.

RNA sequencing library construction and sequencing. Illumina compatible
libraries were prepared using the TruSeq Stranded Total RNA LT Sample Prep Kit
with Ribo-Zero Gold (Illumina, Inc.), per the manufacturer’s protocol. Briefly, 250-
1000 ng of total RNA was DNase-I treated and then depleted of ribosomal RNA
(rRNA) using biotinylated target-specific oligos. Following purification, the RNA
was fragmented using divalent cations and first-strand cDNA synthesis carried out
using random primers. Second-strand cDNA synthesis was then performed, and
the ends of the resulting double-stranded cDNA fragments were repaired, 5′-
phosphorylated and 3′-A tailed. Illumina-specific Y-shaped indexed adapters were
then ligated. The products were purified and enriched with 12 cycles of PCR to
create the final cDNA library. The libraries were quantified fluorometrically using
the Qubit™ dsDNA HS Assay (ThermoFisher) and assessed for size distribution
using the Fragment Analyzer (Advanced Analytical) or a TapeStation 2200 (Agi-
lent), then normalized and pooled, 20 or 24 samples per pool. The pools were
sequenced in 3 and 4 Illumina HiSeq3000 lanes respectively, using the 75 bp
paired-end format. Following sequencing BCL files were converted to FASTQ files
and individual sample libraries were de-multiplexed and adapters trimmed using
bcl2fastq2 Conversion Software (v2.17.1.14). RNA reads were aligned to the
GRCh37/hg19 genome assembly using STAR (v2.3.0)77. Gene expression was
quantified using htseq-count78 against a customized annotation compilation based
on UCSC known-gene annotations (v.June 2011). Log2-transformed transcripts
per million (TPM) values were used for subsequent analysis. For cross-cohort
analyses, raw read counts were normalized using the variance-stabilizing trans-
formation implemented in R package DESeq2 v1.32.079.

Transcriptome analysis
Unsupervised clustering. For clustering, a set of 1500 protein-coding genes that were
most variably expressed (highest median absolute deviation, MAD) across 68
melanoma cell line samples were identified. Consensus negative matrix factoriza-
tion (cNMF) clustering was implemented using the GenePattern NMFConsensus
module (Broad Institute) with 2- to 5-cluster-solutions and 1,000 iterations80.
Silhouette plots and cophenetic correlations were assessed to define the number of
clusters in the optimal cluster solution (k= 3), defining three subtypes: cluster 1
(n= 27), cluster 2 (n= 22), and cluster 3 (n= 19) (Supplementary Fig. 1a–c). A
similar cNMF approach was applied to data of other platforms: miR (input= all
623 expressed mature strand miRs), protein (input= 287 proteins/modifications),
and DNA methylation (input= top 2,500 most variable probes) (Fig. 3b). NPLAS
cell lines from the MDACC cohort were defined as more MEL-like or more MES-
like based on their grouping with MEL or MES samples, respectively, following
unsupervised hierarchical clustering of the refined cell line cohort (n= 53) using
MEL/MES gene expression, Euclidean distance and complete linkage, cutting the
dendrogram at k= 2.

Gene set analyses. Gene set enrichment analyses were performed using the Broad
Institute’s GSEA desktop module v4.1.0 with default settings81. Cluster member-
ship comparisons between datasets were performed using the SubMap algorithm
using the original code as described by Hoshida et al.39, dated 14 Oct 2008
downloaded from the Broad Institute GenePattern module archive on 29 July 2021.
R package biomaRt (v2.48.2) was used where necessary to cross-map gene iden-
tifiers in the datasets analyzed.

Cluster-defining gene set identification. After identifying the transcriptome-defined
sample clusters as above, we identified the statistically significantly differentially
expressed genes between clusters using pairwise comparisons between clusters with
a cutoff of unpaired t-test FDR < 0.05 and 10 times fold change. A total of 98 sig-
nificantly upregulated and 149 significantly downregulated genes were identified in
the MDACC cell line cluster 1 versus cluster 3 samples. Inspection of these cluster-
defining genes with regard to known biological functions of included genes per-
mitted the classification of a melanocytic-like cluster (cluster 1, MEL), a
mesenchymal-like cluster (cluster 3, MES) and a neural-plastic cluster (cluster 2,
NPLAS). Functional annotation of these MEL and MES gene sets within Gene
Ontology – Biological Process (GO-BP) annotations and also within KEGG
pathways was performed using DAVID (v6.8, http://David.ncifcrf.gov)82,83.

Long non-coding RNA (lncRNA) analysis. RNA-Seq reads were aligned to GRCh37/
hg19 (Ensembl 74) and annotated with GENCODE (release 19), and the expression
of long non-coding RNAs (lncRNA) was determined as transcripts per million
(TPM) using the RSEM algorithm (v1.2.12). After filtering out the lncRNAs having
TPM values < 1, a total of 586 lncRNAs remained. For the n= 53 melanoma
MDACC cell line cohort, we used SAM two-class unpaired analyses to identify
lncRNA that were differentially expressed between MCS: MEL (n= 21) and MES
(n= 11), MES and other (n= 42), MEL and other, and NPLAS (n= 21) and other
(n= 32) (R package samr v2.0, with settings nperms= 1000, testStatistic= “
wilcoxon”, center.arrays = FALSE, and fdr.output= 0.05). For each SAM run the
input was a matrix of normalized TPM abundance, in which we required lncRNAs

to have a mean TPM ≥ 1.0 in either group being compared, and |fold change
(FC) | ≥1.25. This filtering resulted in inputs of 592 lncRNAs for the MEL vs MES
comparison, 567 lncRNAs for MES vs other, 445 lncRNAs for MEL vs other, and
398 lncRNAs for NPLAS vs other. In SAM outputs we retained only lncRNAs with
q-value < 0.05. We generated summary barplots showing the 20 largest positive and
negative FC ≥2.0, clipping FCs at ± 40, and displaying the FC, then the mean TPM
in each group to the right of each barplot (Supplementary Fig. 8).

MicroRNA sequencing. For each sample, 1 μg of total RNA was used to prepare a
small RNA library using the TruSeq Small RNA Library Prep Kit (Illumina),
according to the manufacturer’s recommended protocol. Libraries were purified
using BluePippin DNA size selection in the range 125–160 bp (Sage Science) and
the quality was assessed using the Bioanalyzer DNA HS Assay (Agilent) to confirm
appropriate fragment size, complexity, and absence of adaptor dimers. These
purified miR libraries were then sequenced using 35 bp single-end reads on an
Illumina HiSeq 2500 System.

miR sequencing reads were aligned to the human mature miR sequences of
miRBase release 20, and numbers of reads with an exact-match alignment were
calculated. From 2588 miRs that were quantified per sample, those with no count
in all the samples were removed, resulting in a total of 2196 expressed miRs.
Mature strand miR counts were quantified by a customized pipeline which used
bowtie2 to search for the longest exact match (parameters: -norc -N 1 -L 16 -k 5
-local): Of the 2196 expressed miRs, 623 were expressed in at least 90% of all
samples, and were used in unsupervised clustering and subtype marker
identification. We further identified miRs upregulated in RNA-defined MCS, using
a 10 times fold change threshold between MEL vs MES with an unpaired t-test
FDR < 0.05. MiR sequencing data were not available for cell lines S2365, S2391, and
S2654 (refined cohort) and S2316, S2354, S2399, and S2844 (complete cohort).

Determining miR targets within MEL/MES marker genes. To identify the MEL or
MES genes targeted by miRs we used three computationally derived target data-
bases and two experimental databases as follows.

Computationally derived databases: miRDB v5.084 (http://www.mirdb.org/
download.html); TargetMiner 2012 release85 (https://www.isical.ac.in/~bioinfo_
miu/download20.htm); TargetScan v7.186 (http://www.targetscan.org/vert_71/).
Experimentally-derived/validated databases: miRTarBase v6.187,88 (http://
mirtarbase.mbc.nctu.edu.tw/php/index.php); miRWalk v2.089,90 (http://zmf.umm.
uni-heidelberg.de/apps/zmf/mirwalk2/).

We considered a gene to be a miR target if the miR-gene pair was found in at
least one experimental or two computational databases. Anti-correlation with
mRNA in the cell lines was then combined with these verified miR-gene pairs to
identify putative regulatory relationships of interest (Pearson’s correlation
coefficient, FDR ≤ 0.1).

Whole-Exome Sequencing. Whole-exome sequencing (WES) of 250 ng of DNA
from melanoma cell lines and matched normal blood samples was performed using
the Agilent SureSelect Human All Exon 44Mb v2.0 bait set (Agilent Technologies,
USA)91,92. Briefly, genomic DNA was sheared, end repaired, ligated with barcoded
Illumina sequencing adapters, amplified, size selected, and subjected to in-solution
hybrid capture. The resulting exome Illumina sequencing libraries were then qPCR
quantified, pooled, and sequenced with 76 base paired-end reads using Illumina
GAII or HiSeq 2000 sequencers (Illumina, USA). BCL files were processed using
Illumina’s Consensus Assessment of Sequence and Variation (CASAVA) tool
(Illumina, USA; https://www.illumina.com/documents/products/datasheets/
datasheet_genomic_sequence.pdf). Read alignment and processing were performed
using BWA-aln93 and Picard (http://broadinstitute.github.io/picard/), to genome
assembly GRCh37/hg19. Tumor coverage was up to 150×, with a median of 122
million read pairs generated per sample. WES data were not available for cell lines
S2350 and S2667 (refined cohort), and S2844 (complete cohort).

Somatic variant calling and significance analysis. Somatic mutations and short
insertions/deletions (indels) were called and post-filtered using the MuTect2
module of GATK (v3.8.1.0) with default settings94,95. Variants that did not pass
default alt_allele_in_normal or germline risk thresholds were excluded. Identified
variants were then annotated to genes, transcripts, and variant severity using
Annovar rev 521 (2013 May)96. The variant allele frequency threshold was
set at 5%.

Somatic copy-number alteration and purity analysis. Somatic copy-number
alterations (CNA) in melanoma cell lines were identified from WES data using
ExomeCNV97 (ExomeLyzer v1.6.2) and HMMCopy v1.24.098. Segmented data was
processed using GISTIC2 (v2.0.21), and values in focal_data_by_gene.txt were used
to define copy-number alterations. Genes having log2-copy-number value <−0.5
were considered to have losses, and those with values= 0.5 were considered to have
amplifications. Cell line purity and ploidy were estimated from WES data using
Sequenza v2.1.0 (2014 Oct)99. Direct correlation between CNA and transcript
expression was assessed for each MEL and MES gene using one-sided Spearman
correlation tests with p < 0.05 considered significant.
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DNA methylation analysis. DNA methylation was evaluated using the Illumina
Infinium Human Methylation 450 K BeadChips (HM450K; Illumina)100. Briefly,
1 μg of genomic DNA was bisulfite converted using the EZ DNA Methylation-
Direct kit (Zymo Research Irvine, CA). The bisulfite conversion efficacy was
evaluated using the MethyLight assay for a panel of defined markers. Samples
passing quality control (QC) were whole genome amplified, enzymatically frag-
mented, hybridized onto HM450K BeadChips, and scanned using the Illumina
iScan microarray scanner (Illumina). The raw data (in IDAT file format) was
processed with the ‘lumi’ R package using default parameters, and DNA methy-
lation values were calculated as M values for use in subsequent analyses. Anno-
tation of HumanMethylation450 probes was downloaded from the Illumina
website (‘https://support.illumina.com/downloads/humanmethylation450_
15017482_v1-2_product_files.html’). Probes associated with individual genes were
corrected according to gene location information from GENCODE Human v19.
Briefly, probes located within 2000 bp upstream of the gene start site were anno-
tated as ‘TSS2000’ or ‘Promoter’, and probes located between gene start and gene
end were annotated as ‘GeneBody’. Existing annotations of 5’UTR or 3’UTR were
retained. DNA methylation data were not available for two cell lines in the refined
cohort (S2350, S2667).

Reverse-phase protein array (RPPA). Samples were analyzed at the RPPA Core
Facility at The University of Texas MD Anderson Cancer Center. Protein was
extracted from PBS-washed cell pellets using RPPA lysis buffer (1% Triton X-100,
50 mmol/L HEPES (pH 7.4), 150 mmol/L NaCl, 1.5 mmol/L MgCl2, 1 mmol/L
EGTA, 100 mmol/L NaF, 10 mmol/L NaPPi, 10% glycerol, 1 mmol/L phe-
nylmethylsulfonyl fluoride, 1 mmol/L Na3VO4, and aprotinin 10 µg/mL). Cell
lysates were adjusted to 1.5 µg/µL concentration after estimation by the bicinch-
oninic acid assay (BCA) and boiled with 1% SDS without bromophenol blue for
5 min. Each sample had three biological replicates.

Cell lysates underwent five 2-fold serial dilutions in lysis buffer (from undiluted
to 1:16 dilution) and were printed on nitrocellulose-coated slides (Grace Bio-Labs,
Inc., Bend, OR) by Aushon Biosystems 2470 Arrayer (Quanterix Corp., Lexington,
MA). Slides were probed with a total of 291 primary antibodies (validated by the
RPPA Core) followed by corresponding secondary antibodies (biotin-conjugated
goat anti-rabbit IgG, goat anti-mouse IgG or rabbit anti-goat IgG). Signal was
captured using the CSA amplification approach and visualized by 3′-
diaminobenzidine (DAB) colorimetric reaction. Slides were scanned in a CanoScan
9000 F scanner to produce 16-bit tiff images. Spots from tiff images were identified
and the densities quantified using Array-Pro Analyzer (Meda Cybernetics) to
generate signal intensities, then processed using SuperCurve101 to estimate the
relative protein expression levels, and were normalized by median polishing.
During this process, raw spot intensity data were adjusted to correct for spatial bias
before model fitting. A QC metric102 (range, 0-1) was returned for each slide, and
only those slides with QC score above 0.8 were retained for further analysis. If more
than one slide was stained with an antibody, the slide with the highest QC score
was used for analysis. The final selection of antibodies was determined by the
availability of high-quality antibodies that consistently passed a strict validation
process, including high correlation (R ≥ 0.7) with single-probe immunoblots,
absence of non-specific binding, proportional change in signal following
perturbation of the target (phospho)protein, and examination of protein-mRNA
correlation103. In total, 291 antibodies (181 “validated”, 101 “use with caution”, 4
“under evaluation”, 5 “QC”) were evaluated for 67 of the 68 cell lines studied
herein in triplicate. RPPA data were not available for cell line S2844. Antibody
information (company, catalog number, dilution, species) and normalized log2
values for each protein within each sample are provided in Supplementary Data 5.

Integrative analysis. For the combined assessment of molecular regulatory
modalities, CNA, methylation and miR acting upon each MEL or MES gene
(Supplementary Data 2) were expressed in the form of directed binarized tables,
wherein −1 indicated significant inverse correlation, +1 indicated significant direct
correlation, and 0 indicated no significant correlation with gene transcript abun-
dance, with statistical significance taken as per the thresholds defined for each
individual data type. Individual methylation probes displayed either direct or
inverse correlations with host gene transcript abundance; in cases where equal
numbers of methylation probes were statistically significantly correlated in both
directions (details for each gene provided in Supplementary Data 6), the consensus
value used for regulatory modality clustering was taken as the direction of the
probe with the most significant q-value. To identify gene relationships based on
these regulatory modalities, each of the MEL and MES genes was subjected to
unsupervised clustering after generating dissimilarity matrices based on a gen-
eralization of Gower’s formula as implemented by the “daisy” function of the
“cluster” package (v2.0.7-1) in R, due to the inclusion of categorical input variables.
The resulting dendrograms were then plotted radially and annotated for each type
of molecular regulation for each gene (Fig. 6a, b).

Public transcriptome datasets
TCGA melanoma dataset. Normalized gene transcript abundances of 471 mela-
noma tumor samples contained within the TCGA melanoma (“SKCM”) cohort42

were downloaded from http://gdac.broadinstitute.org/ using the Broad Firehose

2016 version. Tumor purity information was obtained from42,104. The samples
were filtered by selecting only metastatic tumors (n= 368) and further by high
tumor purity (≥0.85) determined by ABSOLUTE and/or CPE104,105, resulting in a
total of 77 samples for “high-purity metastatic” sample analyses and 368 samples
for “any-purity metastatic” sample analyses.

Cancer cell line encyclopedia (CCLE). Gene expression (TPM) and segmented copy-
number profile data (segmeans) and annotations for all CCLE cell lines were
downloaded via the CCLE portal at https://portals.broadinstitute.org/ccle (accessed
October 18, 2020). Due to evolution of the CCLE dataset over time, cell lines
annotated as melanomas (Histology= “malignant_melanoma”, type_refined= ”
melanoma”, tcga_code= ”SKCM”) were then matched between gene expression
and copy-number datasets to identify only samples with both types of data and
confirmed as melanoma lines by manual review (n= 60). MCS of each cell line was
determined by unsupervised cNMF clustering based on the expression of the MEL/
MES genes using k= 3 clusters (Supplementary Fig. 6a). Segment mean data were
converted to absolute CN estimates using the formula CN= (2^segmean)*2 and
CNA frequency plots generated using the “cnFreq” command in the R package
GenVisR v1.14.2106 applied to samples of each MCS using default thresholds for
considering segment gains (CN_high_cutoff= 2.5) or losses (CN_low_cutoff=
1.5) (Supplementary Fig. 6b).

Immune checkpoint inhibitor-treated clinical datasets and response definitions.
Transcriptome data (raw counts) from a PD-1 inhibitor-treated melanoma clinical
and gene expression dataset (Riaz et al.)67 were downloaded from https://github.
com/riazn/bms038_analysis/tree/master/ (accessed 10/17/20), and response defi-
nitions were utilized as provided in the paper, indicated as radiographic objective
response categories according to standard RECIST v1.1 criteria including sub-
categorization into complete response (CR), partial response (PR), stable disease
(SD), or progressive disease (PD).

Transcriptomic machine learning classification of melanoma intrinsic pro-
grams. To train models for the classification of individual samples into one of the
three MCS based on the expression of the MEL and MES genes, the caret package
(v6.0-81) in R was used to generate a random forest (RF) classifier model taking
cNMF-assigned cluster membership as the class labels for training. In keeping with a
melanoma cell-intrinsic phenotype, the RF model was trained on the MDACC cell
line cohort which due to limited sample size was not amenable to use for randomized
split training and test subsets. Input data was normalized gene expression data using
the variance-stabilized transformation applied to raw count input as implemented
with default settings using DESeq2 (v1.32.0) in R, in order to maximize equivalence
to vst-transformed data of other clinical datasets for which raw count data tables
are commonly available. The MDACC cell line cohort MEL and MES gene set
expression data was pre-processed using the preProcess() function with meth-
od=c(“nzv”,”corr”), to retain non-zero value features and remove highly correlated
features; a random seed was set to 10110 and the RF model trained using the train()
function with method= ”ranger”, importance= ”impurity”, metric= ”Accuracy”,
tuneGrid=expand.grid(mtry= c(1:50), splitrule=c(“gini”,”extratrees”), min.node.-
size= 1) and trControl=trainControl(method= ”repeatedcv”, number= 10,
repeats= 10, selectionFunction= ”tolerance”, sampling= ”down”). The final values
used for the model were mtry= 1, splitrule=extratrees, and min.node.size= 1 with
an overall accuracy of 0.97 [95%CI 0.898–0.996], p= 2.2e= 16, kappa= 0.96 based
on cross-validation.

Marker gene analyses and immune deconvolution. For each sample, a MEL-
MES score was calculated as the difference between the averaged expression of
MEL and MES marker genes, i.e. (MEL_average–MES_average).

Immune, stromal and tumor composition of clinical samples was inferred from
transcriptomic data (TPM or VST-normalized counts) using MCP-counter
(v1.2.0)43 which enumerates several broad immune cell lineages as well as
fibroblasts and endothelial cells. Additional deconvolution methods (EPIC,
quanTIseq, TIMER) were implemented using R package “immunedeconv”
v2.0.4107. For individual marker gene analyses, normalized expression data (TPM
or VST-normalized counts) were used. A cytolytic gene signature was calculated as
previously, using the geometric mean of normalized expression data for GZMA and
PRF1108. An M2-macrophage gene signature was developed similarly, using the
geometric mean of gene expression values for MRC1, CD163, and IL10.

MiR-211-5p targeting of ZEB1. Cell lines as indicated in the results were treated
with miR-211-5p mimic at 20 nM (Cat. No. 4464066, ThermoFisher Scientific,
MA, USA) or scrambled control (Cat. No. 4464058, ThermoFisher Scientific,
MA, USA) using lipofectamine RNAiMAX transfection reagent (Cat. No.
1378150, ThermoFisher Scientific, MA, USA) according to the manufacturer’s
recommendations, and the effect on ZEB1 mRNA level evaluated by RT-PCR
using ZEB1 TaqMan gene expression assays (Assay ID: Hs00232783_m1, Cat.
No. 4331182, ThermoFisher Scientific, MA, USA), and GAPDH TaqMan gene
expression assay (Assay ID: Hs99999905_m1, Cat. No. 4331182, ThermoFisher
Scientific, MA, USA) as control, using the ABI StepOnePlus real-time PCR-
system (Cat. No. 4376600, ThermoFisher Scientific, MA, USA). All quantitative
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PCR (qPCR) assays were conducted with a total reaction volume of 20 μL,
according to the manufacturer’s instructions. ZEB1 protein level was measured
by Western Blot using the rabbit anti-human ZEB1 (H-102) polyclonal IgG
(1:500, Cat. No. sc-25388, Santa Cruz Biotechnology, CA, USA), and mouse
anti-GAPDH monoclonal IgM (1:10000, clone GAPDH-71.1, Cat. No. G9295,
Sigma Aldrich, MO, USA) as house-keeping control.

Cell viability assays with BRAF inhibitor or decitabine. Cell viability was
determined using the MTT assay kit (Cat 11465007001, Sigma-Aldrich) according
to the manufacturer’s instructions. Briefly, 5 × 104 cells were seeded per well in
100 μL DMEM (HyClone; Thermo Scientific, 90 Logan, UT) supplemented with
10% fetal bovine serum (FBS) (Atlanta Biologicals, 91 Lawrenceville, GA) and 1%
penicillin/streptomycin mixture (Sigma-Aldrich, MO). Melanoma cell lines treated
with decitabine were considered MEL-like or MES-like based on the protein
expression of E-cadherin versus N-cadherin and ZEB1, respectively, which showed
similar results to our patient-derived cell lines. For the experiments, cells were
exposed to increasing concentrations of either the BRAF inhibitor vemurafenib
(Roche, IN) for 24 h or the demethylating agent decitabine (Sigma-Aldrich, MO)
for 72 h, or DMSO vehicle control. At the end of treatment, the cells were incu-
bated with 10 μL/well of the MTT labeling reagent for 4 h, then incubated with
100 μL of the Solubilization solution overnight. Absorbance of each sample was
measured on a microplate reader (Molecular Devices, CA) at the wavelength of
560 nm.

General statistical considerations. Data were collected/collated directly in
tabulated form using Microsoft Excel (Excel 2016 or later versions) or R (v4.1.0).
Because of the nature of the current study utilizing a very limited patient-
derived resource (generation of melanoma cell lines from metastatic tumor
specimens as part of IRB-approved Adoptive T-cell Therapy Clinical Program),
the sample size was not calculated beforehand. The total number of 68 patient-
derived, early passage melanoma cell lines and the 53 in the refined cohort are
arguably the largest of their type analyzed using multiple platforms to this
extent, and we believe that our data, made publicly available here, will serve the
research community to further the understanding of this disease. The University
of Texas MD Anderson Cancer Center has a large and active melanoma service
and TIL therapy program which attracts patients from within and beyond the
local geographic catchment, thus the recruited patient population is expected to
be representative of the broader advanced melanoma patient population.
Additionally, not all patients had TIL harvest procedures performed at the same
stage of their disease, thus minimizing biases introduced by sampling only
patients at a time point of very advanced and heavily pre-treated disease. For
inclusion in this study patient samples did have to produce a cell line suitable for
analysis however as the success of this process is somewhat random it is not
subject to any known/proven systematic sources of bias. Between-group com-
parisons of genomic data utilized the Mann–Whitney U test (two groups) or
Kruskal–Wallis (>two groups) with post-hoc Dunn tests when appropriate, and
for categorical variables/features the Fisher’s Exact test (two-tailed). Compar-
isons were generally considered statistically significant at p < 0.05 unless
otherwise indicated, including multiple comparison correction, where appro-
priate, at a false-discovery rate threshold of 0.05. For box-whisker plots, the box
represents the first (lower bound) and third (upper bound) quartiles, with
median bar, and the whiskers indicate the most extreme data value within 1.5
times the interquartile range above or below the third or first quartiles,
respectively.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The genomic data generated in this study have been deposited in the European Genome-
Phenome Archive (EGA) under accession EGAS00001004536. These data are available
upon request to the corresponding author for academic cancer research purposes in
accordance with the conditions of consent agreed to by the source participants. Requests
will be addressed within 8 weeks and, if approved, access will be made available for a one-
year period, renewable upon additional request. Relevant non-identifiable clinical
metadata and processed data generated in this study are provided in the Supplementary
Data and Source Data. The Cancer Genome Atlas (TCGA) melanoma (“SKCM”) cohort
publicly available gene expression data used in this study are available from http://gdac.
broadinstitute.org/ as the “Broad Firehose 2016” version. Publicly available Cancer Cell
Line Encylopedia (CCLE) gene expression (TPM), segmented copy-number profile data
(segmeans) and annotations are available via the CCLE portal at https://portals.
broadinstitute.org/ccle (registration required). Publicly available transcriptome data (raw
counts) from the PD-1 inhibitor-treated melanoma clinical and gene expression dataset
of Riaz et al.67 are available from https://github.com/riazn/bms038_analysis/tree/master/.
Source data are provided with this paper. The remaining data are available within the
Article, Supplementary Information or Source Data file. Source data are provided with
this paper.
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