
The Immune Modifying Effects of Chemotherapy and Advances 
in Chemo-Immunotherapy

Daniel R. Principe1,2, Suneel D. Kamath3, Murray Korc4, Hidayatullah G. Munshi5,6

1Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL

2Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, 
IL

3Cleveland Clinic Taussig Cancer Institute, Cleveland, OH

4Department of Developmental and Cell Biology, University of California, Irvine, CA

5Feinberg School of Medicine, Northwestern University, Chicago IL

6Jesse Brown VA Medical Center, Chicago, IL

Abstract

Immune checkpoint inhibitors (ICIs) have transformed the treatment paradigm for several 

malignancies. While the use of single-agent or combined ICIs has achieved acceptable disease 

control rates in a variety of solid tumors, such approaches have yet to show substantial therapeutic 

efficacy in select difficult-to-treat cancer types. Recently, select chemotherapy regimens are 

emerging as extensive modifiers of the tumor microenvironment, leading to the reprogramming of 

local immune responses. Accordingly, data is now emerging to suggest that certain anti-neoplastic 

agents modulate various immune cell processes, most notably the cross-presentation of tumor 

antigens, leukocyte trafficking, and cytokine biosynthesis. As such, the combination of ICIs 

and cytotoxic chemotherapy are beginning to show promise in many cancers that have long 

been considered poorly responsive to ICI-based immunotherapy. Here, we discuss past and 

present attempts to advance chemo-immunotherapy in these difficult-to-treat cancer histologies, 

mechanisms through which select chemotherapies modify tumor immunogenicity, as well as 

important considerations when designing such approaches to maximize efficacy and improve 

therapeutic response rates.
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1 – INTRODUCTION

Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy in the last 

decade and are now the preferred first-line treatment for several solid cancers. ICI-based 

immunotherapy consists of neutralizing antibodies against surface proteins that serve 

to negatively regulate immune function, most notably cytotoxic T-lymphocyte-associated 

protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), and PD-1 ligand 1 (PD-L1), 

thus impeding the ability of tumor cells to evade the cytotoxic immune program (Wei, Duffy, 

& Allison, 2018). These approaches have demonstrated substantial anti-tumor activity in 

most cancers (Borghaei, et al., 2015; Darvin, Toor, Sasidharan Nair, & Elkord, 2018; Garon, 

et al., 2015; Gibney, Weiner, & Atkins, 2016; Hodi, et al., 2010; Larkin, et al., 2015; 

Robert, et al., 2011), and have largely replaced chemotherapy as the preferred treatment 

for select cancers including melanoma, renal cell carcinoma, and others (Robert, 2020). 

However, despite significant advances in cancer immunotherapy, there are several cancer 

types in which ICIs have yet to show significant single-agent efficacy. Additionally, the 

development of ICI-refractory disease remains a pressing issue in clinical oncology, as many 

patients initially able to achieve adequate disease control with ICI-based immunotherapy 

may eventually progress on treatment and require additional line therapy (Barrueto, et al., 

2020).

Contrasting the long-held belief that chemotherapy is immunosuppressive, 

mounting evidence suggests several cytotoxic chemotherapy regimens have various 

immunostimulatory effects, leading to extensive reprogramming of the tumor immune 

microenvironment and potentiating therapeutic responses to immunotherapy (Bracci, 

Schiavoni, Sistigu, & Belardelli, 2014; Emens, 2008; Opzoomer, Sosnowska, Anstee, Spicer, 

& Arnold, 2019; Wargo, Reuben, Cooper, Oh, & Sullivan, 2015). Accordingly, several 

chemo-immunotherapy regimens have now been approved by the FDA, with others showing 

early promise in clinical trials. In this review, we discuss past and present advances in 

chemo-immunotherapy, with a particular emphasis on difficult-to-treat cancer histologies. 

Additionally, we describe the many mechanisms through which chemotherapy can modify 

the tumor immune microenvironment and how this can be utilized in novel combinations 

to maximize treatment efficacy and improve therapeutic response rates for cancers in which 

ICIs have yet to show significant benefit.

2 – EARLY RATIONALE FOR COMBINING CHEMOTHERAPY AND 

IMMUNOTHERAPY

The intersection between chemotherapy and immunotherapy has long been under clinical 

evaluation. Though initial reports showed no added benefit to combining Bacille Calmette-

Guérin (BCG) and broad-spectrum chemotherapy (Jacquillat, Banzet, & Maral, 1982), 

several subsequent trials sought to exploit preclinical observations that select chemotherapy 
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agents can deplete what would come to be known as regulatory T-lymphocytes 

(Tregs), thereby promoting local immune responses. Tregs comprise a specialized T-cell 

subpopulation that acts to inhibit sterilizing immune responses and promote peripheral 

tolerance (Kondelkova, et al., 2010), and several have hypothesized that a reduction in 

tumor-associated Tregs may augment responses to cancer immunotherapy. Much of the 

early research on chemotherapy-induced Treg-depletion focused on cyclophosphamide, 

an alkylating agent belonging to the nitrogen mustard family (Ahmed & Hombal, 1984; 

Hughes, et al., 2018).

Tregs are highly sensitive to cyclophosphamide, particularly when compared to cytotoxic T 

lymphocytes (CTLs) and helper T cells (Heylmann, et al., 2013). Thus, cyclophosphamide 

has long been suggested as a potential means of targeting Tregs to potentiate cancer 

immunotherapy (Figure 1). This concept has been under investigation for nearly 40 years, 

following the 1982 observation that cyclophosphamide enhances the efficacy of adoptive 

transfer in the Meth A fibrosarcoma mouse model (North, 1982). More recent studies 

have confirmed that cyclophosphamide-mediated Treg depletion can enhance the efficacy of 

immunotherapy in a rat model of implanted PROb colon cancer cells (Ghiringhelli, et al., 

2004), potentiate non-myeloablative allogeneic stem cell transplantation through increased 

activation of autoreactive T-cells (Takeuchi, et al., 2012), and increase the frequency of 

active T-cell infiltration in tumor-bearing mice (P. Liu, Jaffar, Hellstrom, & Hellstrom, 

2010).

Though these and several other studies support cyclophosphamide as an immune modifier, 

translating these findings to clinical practice has been difficult. Very early reports indicated 

that treatment with cyclophosphamide can enhance the development of delayed-type 

hypersensitivity responses in otherwise unreactive patients with metastatic colorectal cancer 

or melanoma (Berd, Mastrangelo, Engstrom, Paul, & Maguire, 1982). Subsequent studies 

suggested that cyclophosphamide can enhance local immune cues and/or deplete suppressive 

CD4 responses (Berd, Maguire, & Mastrangelo, 1984a, 1984b; Berd & Mastrangelo, 1987, 

1988). This led to trials using cyclophosphamide as an adjuvant to therapeutic vaccines, 

first in melanoma. In a 1986 trial, pre-treatment with cyclophosphamide followed by 

an autologous melanoma cell vaccine led to objective clinical responses in only 2/19 

patients (Berd, Maguire, & Mastrangelo, 1986), despite observations that cyclophosphamide 

can impede suppressor cell responses (Hoon, Foshag, Nizze, Bohman, & Morton, 1990). 

Similarly, cyclophosphamide failed to meaningfully enhance immune responses to a 

melanoma antigen vaccine, inducing delayed-type hypersensitivity responses in 15/18 

patients compared to the 16/22 receiving only the vaccine, with no difference in overall 

or disease-free survival between groups (Oratz, et al., 1991).

Subsequent trials have also shown mixed results. A larger trial of 64 melanoma patients 

reported that the combination of cyclophosphamide and a therapeutic vaccine led to 

clinical responses in 5/40 evaluable patients with a median duration of 10 months (Berd, 

Maguire, McCue, & Mastrangelo, 1990). In a cohort of 121 patients with stage III 

melanoma, adjuvant cyclophosphamide and vaccination with either a GM2 ganglioside 

or GM2 ganglioside plus BCG showed poor efficacy, failing to show a statistically 

significant improvement in disease-free or overall survival (Livingston, et al., 1994). 
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Cyclophosphamide was next combined with a therapeutic lyophilized melanoma vaccine 

and interferon α (IFNα), and of the 39 evaluable patients, 10.2% showed a response with a 

median time to progression of 8 months (Vaishampayan, Abrams, Darrah, Jones, & Mitchell, 

2002). Subsequent trials have explored cyclophosphamide in combination with several 

other immunotherapies, though overall therapeutic efficacy has been relatively modest 

(Alexandru, Van Horn, & Bota, 2010; Audia, et al., 2007; Dudley, et al., 2005; Dudley, 

et al., 2008; Emens, et al., 2009; Ghiringhelli, et al., 2007; Holtl, et al., 2005; Ladoire, et 

al., 2010; Laheru, et al., 2008; Nistico, et al., 2009). Hence, while cyclophosphamide is 

still being evaluated in combination with newer immunotherapy approaches, research has 

primarily shifted to explore the immunomodulatory effects of several other chemotherapy 

agents, as discussed in detail below.

3 – CHEMOTHERAPY-INDUCED ANTIGEN PRESENTATION

As ICIs have become a cornerstone of cancer therapy, there is an ever-growing interest 

in identifying new ways to predict treatment responses. Recent evidence suggests that 

select cancers with a high tumor mutational burden (TMB-H) are likely to be sensitive 

to ICIs, particularly when PD-L1 positive (Chan, et al., 2019). Similarly, several tumors 

deficient in DNA mismatch repair (dMMR) with high microsatellite instability (MSI-H) are 

sensitive to anti-PD-1 therapy (Le, et al., 2017), leading to the tissue-agnostic FDA approval 

of the anti-PD-1 antibody Pembrolizumab for MSI-H/dMMR solid tumors in 2017. The 

sensitivity of MSI-H/dMMR tumors to ICIs is primarily due to the presumptive increase 

in mutational burden, leading to a high prevalence of abnormal peptides (Le, et al., 2017). 

These endogenous proteins can be subjected to proteasomal degradation into peptides, some 

of which can be further trimmed by cytosolic proteases. These peptides then translocate to 

the endoplasmic reticulum (ER) via Transporters associated with Antigen Processing (TAP). 

They can undergo additional processing by ER Aminopeptidase (ERAP), as either free 

peptides or after being loaded onto a class I Human Leukocyte Antigen (HLA-I) molecule 

(Major Histocompatibility Complex or MHC in mice). In brief, once loaded onto an HLA-I 

molecule, a complex consisting of the HLA-I heavy chain, a β2-microglobulin (β2m), and 

the antigenic peptide is exported to the cell surface where it is presented for recognition by 

primed CD8+ CTLs (Jhunjhunwala, Hammer, & Delamarre, 2021).

However, for the majority of tumors that are not MSI-H/dMMR, diminished antigen 

presentation can be a significant barrier to the therapeutic efficacy of ICI-based 

immunotherapy, particularly for those with a low mutational burden such as pancreatic 

ductal adenocarcinoma (PDAC) (Principe, Korc, Kamath, Munshi, & Rana, 2021). Several 

reports suggest that chemotherapy can enhance the antigen presentation capacity of tumor 

cells, as discussed below. This potentially allows for more efficient priming of CD8+ CTLs 

and improving therapeutic responses to ICI-based immunotherapy, particularly for poorly 

immunogenic cancers (Figure 2).

3.1 – Platinum-based Chemotherapy

Platinum-based chemotherapy such as cisplatin, carboplatin, and oxaliplatin are widely used 

to treat several cancers. These drugs exert their cytotoxic effects mainly by interacting with 
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select guanine moieties of DNA, resulting in intrastrand crosslinks (Di Francesco, Ruggiero, 

& Riccardi, 2002), impeding strand replication and transcription (Woynarowski, Chapman, 

Napier, Herzig, & Juniewicz, 1998). However, in addition to their tumoricidal activity, these 

medications have extensive and well-studied effects on local immune responses, many of 

which can enhance antigen availability within the tumor microenvironment (TME) (Table 1) 

(Rebe, Demontoux, Pilot, & Ghiringhelli, 2019).

The immuno-stimulatory effects of cisplatin are perhaps the best-studied among the 

platinum-based antineoplastics, directing various immune cell processes, including antigen 

presentation (de Biasi, Villena-Vargas, & Adusumilli, 2014). This increase in antigen 

presentation has been suggested as a potential means through which cisplatin can potentiate 

anti-tumor immune responses alone or when combined with immunotherapy (Spanos, et al., 

2009; Tseng, et al., 2008). For example, early reports demonstrate that cisplatin enhances 

tumor expression of MHC class I in colon cancer cells, exceeding that induced by non-

platinum chemotherapy agents 5-fluorouracil (5-FU) or the irinotecan metabolite SN-38 in 
vivo (Ohtsukasa, Okabe, Yamashita, Iwai, & Sugihara, 2003). Similarly, in BALB/c mice 

inoculated with MOPC 104E plasmacytoma cells, cisplatin enhanced anti-tumor immune 

responses, increasing the expression of MHC class I antigens, but not that of MHC class II 

antigens (Nio, et al., 2000).

In patients with esophageal squamous cell carcinoma, the combination of neoadjuvant 

cisplatin and 5-FU led to a substantial increase in tumor-infiltrating CD4+ and CD8+ 

T-cells, as well as an increase in HLA-I expression when compared to chemo-naïve 

patients (Tsuchikawa, et al., 2012). In lung cancer cells, sublethal exposure to cisplatin and 

vinorelbine enhanced sensitivity to HLA-restricted cell death induced by CTLs, consistent 

with the enhanced presentation of tumor antigen (Gameiro, Caballero, & Hodge, 2012). 

Cisplatin also enhanced MHC class I expression in breast cancer cells (Wan, et al., 

2012) and broadened the range of tumor antigens presented to CD8+ CTLs in a model 

of murine mesothelioma, suggesting that cisplatin reveals weaker tumor antigens to the 

cytotoxic arm of the immune system and may cooperate with cancer immunotherapy 

(Jackaman, Majewski, Fox, Nowak, & Nelson, 2012). This hypothesis is supported by 

recent preclinical observations in head and neck squamous cell carcinoma (HNSCC), where 

cisplatin enhanced antigen presentation and T-cell killing in vitro and cooperated with 

anti-PD-L1/PD-1 in vivo (Tran, et al., 2017).

Oxaliplatin also appears to have immunomodulatory effects in tumor cells, increasing 

antigenicity and promoting adaptive immune responses (W. M. Liu, Fowler, Smith, & 

Dalgleish, 2010). Cisplatin and oxaliplatin have been suggested to induce similar immune 

alterations, also in preclinical models of HNSCC. Specifically, both increased surface 

expression of MHC class I and enhanced therapeutic responses to anti-PD-1 in vivo (S. 

J. Park, et al., 2019). In colon cancer cells, oxaliplatin resistance led to the differential 

expression of telomerase reverse transcriptase (TERT), cytochrome C oxidase assembly 

factor 1 (COA-1), and mesothelin tumor antigens, leading to tumor-cell targeting by antigen-

specific CD4+ T-cells (Galaine, et al., 2019). This appears to be relevant clinically as high-

risk rectal patients undergoing neoadjuvant oxaliplatin-based chemotherapy demonstrated 

systemic immune responses associated with improved overall survival (Kalanxhi, et al., 
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2018). Similarly, in patients with metastatic hepatocellular carcinoma (HCC), neoadjuvant 

oxaliplatin-based chemotherapy enhanced both HLA-I and PD-L1 expression in tumors 

lacking an oncogenic RAS mutation, and the degree of immune response was associated 

with improved survival (Ledys, et al., 2018).

A recent study has offered a potential mechanism for oxaliplatin-induced antigen 

presentation. The lysine acetyltransferases p300/CREB-binding protein (CBP) appear to 

control the expression of MHC class I, as well as direct antigen processing/presentation, 

thereby controlling the abundance of neoantigen in tumor cells. The authors further 

demonstrated that, through an NF-κB-dependent mechanism, oxaliplatin enhanced p300-

mediated upregulation of MHC class I proteins, independent of IFNγ. Thus, oxaliplatin may 

enhance antigen presentation by overcoming epigenetic downregulation of MHC class I (Y. 

Zhou, et al., 2021).

Carboplatin may also enhance antigen presentation, though this is less established than with 

other platinum-based chemotherapies. Carboplatin appears to have immunogenic properties 

(Braly, et al., 2009) and increases HLA-I expression in ovarian cancer cells (Alagkiozidis, 

et al., 2011). However, in carboplatin-resistant ovarian cancer patients, increased HLA-I 

expression is associated with improved overall survival (Shehata, et al., 2009). Hence, the 

immunostimulatory effects of carboplatin warrant continued exploration, particularly in light 

of observations for structurally and functionally similar medications.

Beyond modulating antigen processing and presentation, platinum-based chemotherapy 

can also mobilize tumor-antigen by inducing immunogenic cell death (Figure 3). This 

process leads to increased damage-associated molecular patterns (DAMPs) within the TME, 

increasing the availability of tumor-antigen to professional antigen-presenting cells (APCs), 

thereby enhancing T-cell activation (Galluzzi, Buque, Kepp, Zitvogel, & Kroemer, 2017; 

Zhou, et al., 2019). The mechanisms through which cells undergo immunogenic cell death 

are diverse and highly complicated and have been linked to any number of cellular events, 

including exposure of calreticulin and other endoplasmic reticulum chaperones on the cell 

surface, autophagy and subsequent ATP release, Toll-like receptor 3 (TLR3) activation, as 

well as several cytokines and immune modulators including interleukin-1β (IL-1β), type I 

interferon (IFN), and CXCL10 (Galluzzi, et al., 2017; Zhou, et al., 2019).

In a seminal 2010 study, both oxaliplatin and cisplatin were shown to trigger the release 

of high-mobility group box 1 protein (HMGB1), an obligate step for immunogenic cell 

death (Tesniere, et al., 2010). However, only oxaliplatin stimulated the pre-apoptotic 

release of calreticulin. As both steps are required for immunogenic cell death, they 

determined that oxaliplatin was a more potent inducer of immunogenic cell death than 

cisplatin. In subcutaneous xenograft experiments, oxaliplatin-treated tumor cells induced a 

functional anti-cancer immune response that was mitigated by the silencing of calreticulin 

or HMGB1. Conversely, cisplatin failed to promote an anti-tumor immune response in 
vivo unless cells were supplemented with calreticulin. The authors further demonstrate that 

oxaliplatin-induced immunogenic cell death requires the HMGB1 receptor Toll-like receptor 

4 (TLR4). Patients with a loss-of-function mutation to TLR4 display poorer progression-

free and overall survival when treated with oxaliplatin-based chemotherapy (Tesniere, et 
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al., 2010). In a subsequent study from this group, the authors expanded on the failure 

of cisplatin to induce immunogenic cell death, which they attributed to an inability to 

activate protein kinase-like ER kinase (PERK)-dependent phosphorylation of eukaryotic 

translation initiation factor 2α (eIF2α). Cisplatin similarly failed to stimulate the formation 

of stress granules and macroautophagy, though this was reversed by the addition of ER 

stress-inducers thapsigargin or tunicamycin (I. Martins, et al., 2011). Hence, this approach 

warrants continued exploration.

While the ability of cisplatin to induce immunogenic cell death is still emerging, oxaliplatin 

is a well-established and robust inducer of immunogenic cell death, the degree of which is 

closely linked to its therapeutic efficacy (Tesniere, et al., 2010). In addition to triggering 

calreticulin and HMGB1, oxaliplatin-induced immunogenic cell death also involves several 

other mechanisms, including autophagy. Autophagy is dispensable for chemotherapy-

induced cell death but is required for chemotherapy-induced trafficking of T-lymphocytes 

and dendritic cells (Michaud, et al., 2011). Knockdown of autophagy-related genes severely 

impairs pre-apoptotic secretion of ATP by tumor cells undergoing immunogenic cell death, 

and only autophagy-proficient tumor cells can induce anti-cancer immune responses in vivo 
(I. Martins, et al., 2012). Consistent with these observations, while autophagy-deficient 

tumor cells exposed calreticulin, released HMGB1, and underwent apoptosis in response to 

oxaliplatin, they secreted less ATP than autophagy-proficient controls. As autophagic cell 

death is often disabled in tumor cells, this may impair chemotherapy-induced cell death, 

including that induced by oxaliplatin, and strategies to compensate for this diminished ATP 

release warrant additional exploration (Michaud, et al., 2011).

3.2 – Non-Platinum-based Chemotherapy

Though platinum-based agents are perhaps the best-studied regarding chemotherapy-induced 

antigen presentation, several non-platinum medications have also been implicated in 

regulating the cross-presentation of tumor antigen (Table 2) and immunogenic cell death. 

For example, there is mounting evidence that the nucleoside analog gemcitabine (2′, 2′-

difluoro 2′deoxycytidine or dFdC) has several effects on tumor cell antigenicity (Gravett, 

Trautwein, Stevanovic, Dalgleish, & Copier, 2018). Gemcitabine has been shown to enhance 

HLA-I expression in lung, breast, and colon cancer cells in vitro, as well as subcutaneous 

xenografts of colon cancer cells in vivo (W. M. Liu, et al., 2010). The effect of gemcitabine 

on HLA-I expression surpassed that of other medications in most cell lines, including 

cyclophosphamide and oxaliplatin (W. M. Liu, et al., 2010). Similarly, in B16 melanoma 

tumors, gemcitabine improved the cross-presentation efficiency of nuclear antigen in a 

dose-dependent manner (Anyaegbu, Lake, Heel, Robinson, & Fisher, 2014). The effects 

of gemcitabine on HLA-I have been confirmed in a similar study that determined that 

gemcitabine also altered the peptides eluted from HLA-I molecules (Gravett, et al., 2018). 

Though in vivo studies exploring are more limited, gemcitabine has also been shown to 

enhance HLA-I in various PDAC cell lines, and both xenograft and transgenic models 

of PDAC display enhanced MHC Class 1 expression following long-term treatment with 

gemcitabine (Principe, et al., 2020). Recent evidence suggests that gemcitabine treatment 

is also associated with a decrease in TAP, suggesting that gemcitabine may induce TAP-

independent peptide loading of HLA-I (D. Li, et al., 2021). Accordingly, gemcitabine has 
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been shown to overcome poorly immunogenic phenotypes and cooperate with immune 

checkpoint inhibition in vivo (Principe, et al., 2020; Salewski, et al., 2021).

Several other drugs also appear to enhance antigen presentation and HLA expression. 

These include but are not limited to the topoisomerase I inhibitor topotecan, which 

enhanced HLA-I expression in breast cancer cells (Wan, et al., 2012). Similar results were 

observed using the non-platinum agents etoposide, paclitaxel, and vinblastine (Wan, et 

al., 2012). Additionally, the topoisomerase inhibitor mitoxantrone was reported to enhance 

p300-mediated upregulation of MHC class I, independent of autocrine IFNγ signaling (Y. 

Zhou, et al., 2021). In pancreatic cancer cells, several non-platinum medications have been 

shown to enhance surface expression of HLA-I, including paclitaxel, 5-FU, irinotecan, some 

surpassing that induced by oxaliplatin (Principe, et al., 2020). Hence, while data regarding 

non-platinum-based agents and HLA-I are still emerging, several widely used medications 

may similarly enhance antigen presentation and warrant continued exploration.

Finally, a variety of non-platinum chemotherapies promote immunogenic cell death. 

Gemcitabine can lead to immunogenic cell death, increasing the exposure of calreticulin and 

HMGB1 in lung cancer cells (Zhang, et al., 2020). For example, mitoxantrone, as well as the 

related medication doxorubicin, have also been linked to immunogenic cell death (Casares, 

et al., 2005; Obeid, et al., 2007), which is not observed using other topoisomerase inhibitors 

including camptothecin and etoposide (Sukkurwala, et al., 2014). Similarly, several studies 

demonstrate that bortezomib, a selective inhibitor of the 26S proteasome, can also induce 

immunogenic cell death, in part via activation of the cyclic GMP-AMP Synthase (cGAS)/

Stimulator of Interferon Genes (STING) pathway (Gulla, et al., 2021; Serrano-Del Valle, 

Anel, Naval, & Marzo, 2019; Spisek, et al., 2007). Pemetrexed, a folate pathway inhibitor 

widely used in lung cancer, also induces immunogenic cell death, augmenting systemic 

intratumor immune responses and cooperating with cancer immunotherapy (Lu, et al., 

2020; Schaer, et al., 2019). Accordingly, these and other medications have been suggested 

as a potential means of overcoming poor antigenicity and restoring functional anti-tumor 

immune responses (Casares, et al., 2005; Dudek, Garg, Krysko, De Ruysscher, & Agostinis, 

2013; Schaer, et al., 2019).

3.3 – Chemotherapy and Dendritic Cell-Mediated Antigen Presentation

Though most studies have focused on chemotherapy-induced antigen presentation by tumor 

cells, additional evidence supports a role for chemotherapy in modulating the antigen 

function of professional antigen-presenting cells, mainly dendritic cells (DCs). Several 

chemotherapy agents have been shown to improve DC function at low doses, including 

cyclophosphamide, doxorubicin, methotrexate, mitomycin-C, paclitaxel, vinblastine, and 

vincristine (Kaneno, Shurin, Tourkova, & Shurin, 2009; Shurin, Tourkova, Kaneno, 

& Shurin, 2009). Several studies have offered mechanistic insight into the effects of 

chemotherapy on DC biology. For example, paclitaxel can directly affect DC maturation 

(John, et al., 2010; Pfannenstiel, Lam, Emens, Jaffee, & Armstrong, 2010). Further, 

paclitaxel has lipopolysaccharide-mimetic activity in mice, leading to the activation of TLR4 

and enhancing DC activation and cytokine biosynthesis (Byrd-Leifer, Block, Takeda, Akira, 

& Ding, 2001; Kawasaki, et al., 2000).
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Cyclophosphamide can increase circulating DCs during the recovery phase of drug-induced 

lymphodepletion, inducing their Flt3 ligand-dependent proliferation in the bone marrow 

prior to their expansion in the periphery (Salem, et al., 2010). These cyclophosphamide-

induced DCs appear to have normal phagocytosis and antigen-presenting capacity (Salem, 

et al., 2009), though cyclophosphamide can enhance anti-tumor immunity by preferentially 

depleting CD8+ T-cell-resident DCs, leading to diminished Treg suppression and increased 

effector T-cell function (Nakahara, et al., 2010).

Several other drugs can alter DC biology. Conditioned media from gemcitabine-treated 

PDAC cells stimulates DC maturation, thereby potentiating tumor-specific cytotoxic T-cell 

responses (Pei, et al., 2014). Accordingly, gemcitabine treatment increases both monocytes 

and dendritic cells in patients with advanced PDAC (Soeda, et al., 2009), and gemcitabine 

has been successfully combined with a DC-based vaccine in murine PDAC (Bauer, et al., 

2007). Additional evidence suggests that 5-FU and oxaliplatin decrease DC expression 

of immune checkpoints PD-L1 and PD-L2, promote DC maturation, and cooperate with 

therapeutic vaccination in tumor-bearing mice (X. Hong, et al., 2018). However, oxaliplatin 

can also promote PD-L1 expression on DCs and reduce the expression of the co-stimulatory 

molecules CD80/CD86, thereby decreasing T-cell responses (Tel, et al., 2012). Thus, the 

effects of these and other medications on DC function are likely complex, and additional 

factors, including drug dosing and duration, should be considered.

4 – CHEMOTHERAPY-INDUCED EXPRESSION OF IMMUNE 

CHECKPOINTS

Though chemotherapy has been shown to modulate immune-stimulating processes such 

as antigen presentation, several chemotherapy agents can also enhance the expression of 

immune checkpoints, with most focusing on PD-L1 (Figure 4). For example, in addition 

to enhancing immunogenic cell death and HLA-I, both cisplatin and oxaliplatin enhance 

surface expression of PD-L1 in HNSCC cells (S. J. Park, et al., 2019). Accordingly, 

cisplatin enhances therapeutic responses to PD-1/PD-L1 inhibition in a syngeneic mouse 

model of HNSCC (Tran, et al., 2017). In esophageal squamous cell carcinoma (ESCC) 

cells, incubation with carboplatin and paclitaxel or 5-FU and cisplatin enhanced PD-L1 

expression in an Epidermal Growth Factor Receptor (EGFR)/Extracellular signal-regulated 

kinase (ERK)-dependent mechanism (Ng, et al., 2018). This relationship has also been 

evaluated in colorectal cancer, where neoadjuvant, oxaliplatin-based chemotherapy enhanced 

tumor PD-L1 expression only for patients without an activating RAS mutation (Ledys, et al., 

2018). In TNBC cells, carboplatin, doxorubicin, gemcitabine, and paclitaxel have all been 

shown to enhance PD-L1 expression (Samanta, et al., 2018).

In NSCLC, patients receiving platinum-based neoadjuvant chemotherapy similarly displayed 

increased PD-L1 expression (Guo, et al., 2019; Shin, et al., 2019). In breast cancer cells, 

several drugs, including doxorubicin, paclitaxel, and topotecan, increase PD-L1 expression, 

which the authors presumed was due to a cell-stress response (Gilad, et al., 2019). In ovarian 

cancer, cisplatin paradoxically enhances antigen presentation and immunogenic cell death, 

as well as increases the surface expression of PD-L1 (Grabosch, et al., 2019). In PDAC, 
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several chemotherapy agents have been shown to enhance tumor expression of PD-L1, and 

in some cases, PD-L1 and CTLA-4. These include gemcitabine, paclitaxel, 5-FU, irinotecan, 

and oxaliplatin (Principe, et al., 2020). Gemcitabine-induced PD-L1 expression is further 

enhanced by the addition of a transforming growth factor β (TGFβ) inhibitor (D. Li, et 

al., 2021), consistent with prior observations that tumors with systemic ablation of TGFβ 
signals display increased PD-L1 expression (Principe, et al., 2019). Similar results have 

been reported in esophageal cancer in patients receiving neoadjuvant 5-FU and cisplatin, 

with enhanced PD-L1 expression localized to tumor-infiltrating immune cells (Fukuoka, et 

al., 2019). Though not an exhaustive summary, these and other related studies continue 

to provide evidence of chemotherapy-induced upregulation of immune checkpoints; the 

appropriately matched combination strategies warrant continued investigation (Bailly, 

Thuru, & Quesnel, 2020).

5 – CHEMOTHERAPY-INDUCED ALTERATIONS IN CYTOKINE SYNTHESIS

Chemotherapy has several, often contradictory roles in directing the local cytokine 

milieu, enhancing the biosynthesis of both immune-stimulatory and immune-suppressive 

signaling molecules (Figure 5). Early clinical observations noted that serum levels of the 

cytokines Granulocyte colony-stimulating factor (G-CSF) and IL-6 fluctuated in response to 

chemotherapy (Y. M. Chen, et al., 1996). Similar results have been observed in vitro, where 

etoposide and mitomycin C enhanced the production of several inflammatory cytokines, 

notably CXCL8 and Tumor Necrosis Factor α (TNFα) (Darst, et al., 2004). A seminal 

report in melanoma demonstrated that dacarbazine, temozolomide, and cisplatin enhance 

the release of various T-cell-attracting chemokines in vitro. This included several CXCR3 

ligands as well as CCL5, which cooperated to attract tumor-infiltrating effector T-cells 

(M. Hong, et al., 2011). Similarly, in HNSCC, low doses of 5-fluorouracil and cisplatin 

increased tumor cell release of IL-6 and G-CSF, as well as reduced IL-1β levels. In this 

study, primary tumor cells displayed chemotherapy-induced upregulation of Granulocyte-

macrophage colony-stimulating factor (GM-CSF) and Tumor necrosis factor α (TNFα), 

though 5-fluorouracil and cisplatin led to a decline in GM-CSF and TNFα levels in 

metastatic tumor cells (Reers, et al., 2013).

In PDAC, gemcitabine treatment can enhance the release of several T-cell attracting 

cytokines both in vitro and in vivo. These include several CCL, CXCL, and IL family 

members, as well as several components of the TGFβ pathway (Principe, et al., 2020). 

In breast cancer cells, paclitaxel and docetaxel induced TNFα biosynthesis in a toll-like 

receptor 4 (TLR4)-dependent mechanism (Sprowl, et al., 2012). Similar results have been 

observed in other cell lines, and the authors concluded that taxane-induced inflammatory 

cytokine production is dependent on the duration of exposure and is mechanistically 

distinct from LPS-induced cytokine production (Edwardson, et al., 2017). A similar study 

explored the effects of cyclophosphamide in tumor cells and showed that cyclophosphamide 

treatment led to an acute secretory activating phenotype characterized by increased release 

of CCL4, IL8, VEGF, and TNFα. These paracrine factors enhanced macrophage infiltration 

and phagocytic activity, suggesting that chemotherapy can increase the tumoricidal effects 

of the innate immune system by altering local cytokine levels (Pallasch, et al., 2014). 

Cyclophosphamide has also been shown to enhance the expression of GM-CSF, IL-1β, IL-7, 
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IL-15, IL-2, IL-21, and IFNγ, thereby potentiating anti-tumor immune responses (Bracci, 

et al., 2007). Also related to IFN signals, a recent study has demonstrated that anthracycline-

based chemotherapy stimulates the rapid production of type I IFNs following activation of 

TLR3. This leads to enhanced levels of CXCL10 within the breast tumor microenvironment, 

enhancing local immune responses. The authors concluded that chemotherapy could mimic 

sterilizing immune responses, which may constitute a hallmark of successful chemotherapy 

(Sistigu, et al., 2014). Additional research suggests that this response can be potentiated 

through STAT3 inhibition, which may also be of clinical utility (Yang, et al., 2015).

It is important to note that ovarian tumor cell debris induced by cisplatin or paclitaxel 

stimulated macrophage release of pro-inflammatory cytokines and bioactive lipids, 

thereby enhancing tumorigenesis. This was abrogated through pharmacologic inhibition of 

cyclooxygenase-2 (COX-2) and soluble epoxide hydrolase (sEH) pathways, suggesting that 

the effect of chemotherapy on local immune cues is both complex and context-specific 

(Gartung, et al., 2019). Additionally, chemotherapy-induced cytokine production has been 

implicated in chemotherapy-associated cognitive impairment (Cheung, et al., 2015; Ren, St 

Clair, & Butterfield, 2017). Hence, while chemotherapy-induced alterations to the tumor 

secretome may offer potential avenues for combination therapy, these and other adverse 

effects should be considered.

6 – LYMPHOCYTE TRAFFICKING, DIFFERENTIATION, AND EFFECTOR 

FUNCTION

Consistent with observations that select chemotherapies can alter tumor cytokine production, 

several studies have also identified a relationship between chemotherapy and tumor-

infiltrating immune cell populations. For example, an early report in breast cancer 

determined that patients receiving neoadjuvant paclitaxel had enhanced tumor-infiltrating 

lymphocytes, the degree of which correlated with therapeutic responses (Demaria, et al., 

2001). Several studies have also suggested that chemotherapy-induced immune responses 

are predictive of favorable outcomes, with most focusing on breast cancer. For example, 

breast cancer patients with a high CD8+ and low FoxP3 infiltrates have markedly improved 

overall survival following neoadjuvant treatment (Ladoire, et al., 2011). This has been 

confirmed through other studies, all suggesting that local immune responses may be a 

cornerstone of the anti-tumoricidal effects of chemotherapy (Asano, et al., 2017; Denkert, et 

al., 2010; H. Lee, Lee, Seo, Gong, & Lee, 2020; Ono, et al., 2012; Sasada, et al., 2020; K. 

Wang, Xu, Zhang, & Xue, 2016; N. R. West, et al., 2011). Comparable results have been 

observed in other disease histologies, including but not limited to colon, esophageal, ovarian, 

and pancreatic cancers (Cha, Park, Baik, Lee, & Kang, 2019; Fukuoka, et al., 2019; Lo, et 

al., 2017; Morris, Platell, & Iacopetta, 2008; Nejati, et al., 2017; Shibutani, et al., 2018).

Consistent with these observations, beyond modulating the immunogenicity of tumor cells, 

several chemotherapy agents directly affect leukocytes, most notably T-cells. As discussed, 

much of the early rationale for chemo-immunotherapy stemmed from observations 

that cyclophosphamide can deplete tumor-associated Tregs and improve responses to 

immunotherapy by favoring effector T-cell responses. In addition to cyclophosphamide, 
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many other chemotherapy agents also selectively target Tregs, favoring effector CD4+ T-cell 

responses (Roselli, et al., 2013). For example, docetaxel treatment increased the ratio of 

either CD4+ or CD8+ T-cells to T-regs in patients with metastatic breast cancer, with 

similar results observed in NSCLC patients treated with cisplatin and vinorelbine (Roselli, 

et al., 2013). Accordingly, lung cancer patients who received four cycles of docetaxel-based 

chemotherapy showed fewer peripheral Tregs than present at baseline (J. Y. Li, et al., 

2014). In metastatic colon cancer, the multidrug regimens FOLFOX (5-FU, leucovorin, 

and oxaliplatin) and FOLFIRI (5-FU, leucovorin, and irinotecan) also significantly reduced 

peripheral blood Tregs (Maeda, et al., 2011). Gemcitabine has also been shown to deplete 

T-cells in both humans and mice, as well as enhance the effector function of vaccine-specific 

CD8+ T-cells (Rettig, et al., 2011), with similar results observed in lung cancer patients (C. 

Chen, et al., 2015).

In addition to shifting the balance between Tregs and effector T-cells, several chemotherapy 

agents appear to directly alter T-cell function. For example, oxaliplatin has been shown to 

reduce spleen size and cellularity in BALB/c mice yet increased the relative frequency 

of pan-CD4+ and CD8+ T-cells, Tregs, and increased levels of TNFα. The authors 

presumed this was due to selective depletion of B-cells, thereby allowing for T-cell 

dominance (Stojanovska, et al., 2019). Further, the FOLFOX regimen (5-FU, leucovorin, 

and oxaliplatin) has been shown to depend on CD8+ T-cell responses to control tumor 

growth in vivo. The authors identified that FOLFOX-enabled tumor-infiltrating lymphocytes 

have a functional differentiation state characterized by lower levels of immune checkpoints 

PD-1 and TIM-3, and that T-cells from FOLFOX-treated tumors have improved effector 

function. They concluded that FOLFOX promotes a functional shift from an exhausted to 

functional T-cell phenotype (Guan, et al., 2020).

Similar results have been observed with cisplatin, as tumor-bearing mice treated with 

cisplatin demonstrated increased tumor CD8+ T-cell infiltration (Wakita, et al., 2019). 

Accordingly, cisplatin cooperated with immune checkpoint inhibition (Wakita, et al., 

2019) and has similarly been shown to enhance CD8+ T-cell responses induced by DNA 

vaccination (Tseng, et al., 2008). These and other studies have suggested that the therapeutic 

efficacy of cisplatin is dependent on CD8+ T-cell activation and sustained by CD80/86-

mediated co-stimulation (Beyranvand Nejad, et al., 2016; Wakita, et al., 2019).

Several other medications also alter T-cell responses. Though paclitaxel is known to increase 

the T-cell-activating ability of ovarian cancer cells (Tsuda, et al., 2007), additional evidence 

supports more direct mechanisms through which paclitaxel can enhance T-cell function, 

particularly in combination platinum-based agents. In NSCLC, paclitaxel, carboplatin, and 

bevacizumab directly enhanced CD8+ T-cell proliferation, notably for effector and memory 

subsets (de Goeje, et al., 2019). In cervical cancer, neoadjuvant paclitaxel and cisplatin 

reduced the tumor infiltration of T-regs and increased the accumulation of active CD8+ cells, 

though no change was observed with cisplatin alone (Heeren, et al., 2019). In metastatic 

melanoma patients, paclitaxel and carboplatin were able to overcome clinical resistance to 

anti-PD-1 therapy, associated with an increase in a subset of tumor-reactive CD8+ effector 

T-cells. Subsequent in vitro experiments determined that incubation with chemotherapy 

potentiated the cytotoxic function of these T-cells, supporting a direct stimulatory role for 
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these agents in isolated T-cells (Yan, Dronca, Liu, Markovic, & Dong, 2017). Accordingly, 

low dose paclitaxel has been shown to support therapeutic vaccination with melanoma 

antigens in mice (Sevko, et al., 2012).

Gemcitabine also appears to have direct effects on T-cell biology, though our understanding 

of these actions is still emerging. Following a transient reduction in absolute lymphocytes, 

gemcitabine may decrease the presence of memory T-cells while also promoting naive T-cell 

activation in PDAC (Plate, Plate, Shott, Bograd, & Harris, 2005). However, subsequent 

studies suggest that gemcitabine may also impede T-cell activation, suppressing proliferation 

and inducing apoptosis in a T-cell subtype and dose-dependent manner (Glenn, Xue, & 

Whartenby, 2018; Smith, Yogaratnam, Samad, Kasow, & Dalgleish, 2021). While these and 

other chemotherapy agents have been shown to contextually promote T-cell function, it is 

important to note that chemotherapy has long been known to cause lymphopenia over time 

(Aldarouish, et al., 2019; Grossman, et al., 2015; Lissoni, Fumagalli, Paolorossi, & Mandala, 

1999; Menetrier-Caux, Ray-Coquard, Blay, & Caux, 2019; Verma, et al., 2016). Hence, the 

proper dose and duration of these and other immune-stimulating chemotherapies warrants 

continued investigation.

7 – CHEMOTHERAPY AND OTHER IMMUNE CELL POPULATIONS

While T-cells have become the primary focus in cancer immunotherapy due to their capacity 

to kill tumor cells (Coulie, Van den Eynde, van der Bruggen, & Boon, 2014; Galon, et al., 

2006), several additional leukocyte subtypes are critical for therapeutic responses. Though 

the effects of chemotherapy on these immune cell subsets are less studied than the more 

classic mediators of sterilizing immunity, emerging data suggests that several chemotherapy 

agents modulate the effects of several additional leukocytes. Much of this data pertains to 

macrophages and natural killer (NK) cells, both of which are briefly discussed below.

7.1 – Macrophage Recruitment and Polarization

Macrophages are central to therapeutic responses to immune checkpoint inhibition 

(DeNardo & Ruffell, 2019), and several recent studies now suggest that several aspects of 

macrophage biology are impacted by cytotoxic chemotherapy. Several studies have explored 

the effects of docetaxel on macrophages and myeloid-derived suppressor cells (MDSCs). 

Very early reports demonstrated that cyclophosphamide, doxorubicin, and paclitaxel 

enhance the anti-tumor immune response of GM-CSF-secreting whole-cell vaccines in 

murine models of breast cancer, in part through potentiating Th1 responses (Machiels, 

et al., 2001) that can enhance the tumoricidal effects of macrophages (T. Li, Wu, Yang, 

Zhang, & Jin, 2020). More recently, vincristine, cyclophosphamide, and doxorubicin have 

been shown to cooperate with a CD40-agonist and cytosine-phosphate-guanosine-containing 

oligodeoxynucleotide 1826 (CpG-ODN) immunotherapy regimen through the repolarization 

of tumor-associated macrophages (Buhtoiarov, et al., 2011). Similarly, incubation with 

cyclophosphamide metabolites enhanced the production of pro-inflammatory cytokines 

IL-6 and IL-12 and down-regulated the suppressive cytokines IL-10 and TGFβ in mouse 

peritoneal macrophages (Bryniarski, Szczepanik, Ptak, Zemelka, & Ptak, 2009), and 
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cyclophosphamide-educated peritoneal macrophages have been shown to protect effector 

T-cells from suppression (Majewska-Szczepanik, et al., 2018).

The effects of other chemotherapy agents on macrophage biology are highly varied and 

context-dependent. Docetaxel has several effects on monocyte-derived cell populations. 

Incubation with docetaxel re-polarized MDSCs toward an M1-like phenotype (Kodumudi, 

et al., 2010). This is consistent with other observations suggesting that docetaxel promotes 

the generation of anti-tumorigenic human macrophages, promotes the differentiation of 

immature monocytes into M1 macrophages, and increases the antigen presentation capacity 

of myeloid cells. (Millrud, Mehmeti, & Leandersson, 2018). Cisplatin also appears to 

prime peritoneal macrophages for enhanced expression of several inflammatory cytokines 

and transcription factors upon co-culture with murine fibroblasts (Chauhan, Sodhi, & 

Shrivastava, 2009).

However, taxane and non-taxane neoadjuvant chemotherapy have been shown to enhance 

the recruitment of Tie2+ macrophages in breast cancer, facilitating the entry of tumor cells 

into circulation and promoting metastasis (Karagiannis, et al., 2017). Human peripheral 

blood monocytes co-cultured with esophageal SCC cells treated with 5-FU and cisplatin 

shifted macrophages toward a more immune suppressive, CD163+ phenotype in an IL-34-

dependent mechanism (Nakajima, et al., 2021). Similarly, ovarian tumor cells treated with 

platinum-based agents also induced an immune-suppressive M2 phenotype in adjacent 

macrophages, which was reversed by either COX or IL-6 inhibition (Dijkgraaf, et al., 2013). 

Though gemcitabine can deplete MDSCs (Eriksson, Wenthe, Irenaeus, Loskog, & Ullenhag, 

2016), conditioned media from PDAC cells treated with gemcitabine shifts macrophages 

toward an M2 phenotype, characterized by increased expression of arginase-1 and TGFβ1 

(Deshmukh, et al., 2018). Thus, the effects of chemotherapy on macrophage function 

are varied, with these and other studies suggesting both immune-stimulating and immune-

suppressive effects. Given the roles of macrophages and MDSCs in cancer immunotherapy, 

this is an important area that warrants further study.

7.2 – Natural Killer Cells

Though cytotoxic T-cells are considered the main effector cells in most cancer 

immunotherapies, the importance of NK cells is now recognized (Shimasaki, Jain, & 

Campana, 2020). Several chemotherapy agents have been shown to modulate NK cell 

function, and like macrophages, the results are often contradictory and context-dependent. 

For example, gemcitabine enhances NK cell-mediated cytotoxicity (Okita, et al., 2015), 

and increases NK cell proliferation (Dammeijer, et al., 2021). Accordingly, low-dose 

gemcitabine treatment enhances NK cell-mediated anti-tumor immunity in lung cancer 

(Zhang, et al., 2020), and the combination of gemcitabine and cytokine-activated NK 

cells has shown preclinical promise in HCC (Morisaki, et al., 2011). Also supporting an 

activating role for chemotherapy, metronomic dosing with cyclophosphamide enhances NK 

cell effector function in end-stage cancer patients (Ghiringhelli, et al., 2007), and cisplatin 

appears to enhance NK cell function by enhancing tumor cell expression of MHC class I 

chain-related molecule A and B (Okita, et al., 2016).
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However, several studies have reported that chemotherapy can suppress NK cell function. 

Notable examples include the observation that paclitaxel inhibits the binding of NK cells 

to their targets through the down-regulation of adhesion molecules (Loubani & Hoskin, 

2005). Similarly, paclitaxel and vinblastine downregulate CD11a and CD54 expression in 

P815 mastocytoma cells, conferring resistance to killing by non-specific killer lymphocytes 

(Zhao, Morgan, Haeryfar, Blay, & Hoskin, 2003). Hence, this area also warrants additional 

exploration, particularly as NK cell-centric therapies advance in the clinic.

8 – CLINICAL ADVANCES IN CHEMO-IMMUNOTHERAPY

In light of the mounting preclinical evidence described above, several recent clinical 

trials have explored novel combinations of chemotherapy and ICI-based immunotherapy. 

Although a comprehensive list of these trials is beyond the scope of this review, several are 

showing considerable promise. Here we discuss select major trials in this rapidly evolving 

field, with a particular emphasis on those that have been evaluated in phase 3 trials and/or 

approved by the FDA.

8.1 – Lung Cancer

The anti-PD-1 antibody pembrolizumab has revolutionized the treatment landscape for 

NSCLC, both as a single agent for patients with high PD-L1 expression and in combination 

with chemotherapy (Reck, et al., 2016). Recent evidence has solidified the concept that 

pembrolizumab may synergize with chemotherapy in NSCLC. Based on encouraging 

phase 2 data (Langer, et al., 2016), a large phase 3 trial has recently evaluated the 

anti-PD-1 antibody pembrolizumab as a monotherapy or in combination with pemetrexed 

and platinum-based chemotherapy in untreated patients with metastatic, non-squamous 

NSCLC without sensitizing EGFR or ALK mutations. After one year, the median overall 

survival for the combination group was 69.2% compared to 49.4% for the monotherapy 

group. The survival benefit of the combination treatment was observed across all patients 

independent of PD-L1 status, with clinically meaningful improvements in median overall 

survival for patients in the combination arm (Gandhi, et al., 2018). In squamous NSCLC, 

the combination of pembrolizumab, carboplatin, and paclitaxel or nab-paclitaxel was also 

effective, independent of PD-L1 status. Combination immunotherapy led to a median 

overall survival of 15.9 months compared to 11.3 months for chemotherapy alone, 

extending median progression-free survival to 6.4 months compared to 4.8 months for 

the chemotherapy group (Paz-Ares, et al., 2018). Based on these and related studies, 

pembrolizumab, in combination with pemetrexed and platinum-based chemotherapy, was 

approved in 2018 as a first-line treatment for metastatic, non-squamous NSCLC lacking 

EGFR or ALK mutations.

Similar regimens are also under evaluation, notably the combination of carboplatin, 

pemetrexed, and the anti-PD-1 antibody camrelizumab, show promising results based 

on interim analysis in a phase 3 trial (C. Zhou, et al., 2021). Similar results have 

been observed in extensive-stage small-cell lung cancer (SCLC), where the addition of 

atezolizumab to carboplatin and etoposide resulted in significantly longer overall survival 

and progression-free survival than chemotherapy alone (Horn, et al., 2018). The combination 
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of the anti-PD-1 antibody durvalumab and platinum and etoposide chemotherapy has also 

been evaluated as a first-line treatment for extensive-stage SCLC. This approach showed 

improved overall survival compared to chemotherapy alone, extending median overall 

survival from 10.3 to 13 months (Paz-Ares, et al., 2019).

In addition to showing efficacy as a first-line therapy (Table 3), ICI-based immunotherapy is 

showing promise as a second-line treatment in NSCLC. For example, the anti-PD-1 antibody 

nivolumab has been combined with platinum-based doublet chemotherapy (cisplatin or 

carboplatin plus either gemcitabine, pemetrexed, or paclitaxel) with encouraging results 

(Rizvi, et al., 2016). The anti-PD-L1 antibody avelumab showed substantial activity in 

patients with progressive or platinum-resistant metastatic or recurrent disease. Of the 184 

patients enrolled, 22 demonstrated objective clinical responses and 70 had stable disease, 

for an overall disease control rate of 50% (Gulley, et al., 2017). Though early phase 

2 data suggested that subsequent-line avelumab may be more efficacious than docetaxel 

(Fehrenbacher, et al., 2016), more recent phase 3 data suggest that avelumab does not 

improve survival beyond docetaxel but has a favorable toxicity profile (Barlesi, et al., 2018) . 

After two years of follow-up, the authors concluded that avelumab did not significantly 

prolong overall survival compared to docetaxel in patients with platinum-treated, PD-L1-

expressing NSCLC (K. Park, et al., 2021).

The anti-PD-L1 antibody atezolizumab has also been explored in previously treated NSCLC, 

extending survival beyond that observed with second-line docetaxel (Rittmeyer, et al., 2017). 

The combination of atezolizumab, carboplatin, and nab-paclitaxel has since been evaluated 

in NSCLC as a first-line treatment, particularly for those with stage IV disease and no ALK 

or EGFR mutations. This combination showed substantial therapeutic efficacy, extending 

median overall survival to 18.6 months compared to 13.9 months with chemotherapy alone 

(H. West, et al., 2019). The combination of atezolizumab, carboplatin, and nab-paclitaxel 

has also been combined with the VEGF-inhibiting antibody bevacizumab. As a first-line 

treatment, this combination regimen led to a median overall survival of 19.2 months, 

compared to 14.7 months for bevacizumab and chemotherapy only (Socinski, et al., 

2018). In patients with baseline liver metastases, this combined regimen was similarly 

effective, extending median overall survival to 13.3 months compared to 9.4 months for 

patients receiving bevacizumab and chemotherapy only (Reck, et al., 2019). Several other 

combination strategies are also being evaluated in clinical trials for NSCLC, as well as for 

other forms of lung cancer.

8.2 – Head & Neck Cancer

Chemo-immunotherapy has been evaluated extensively in HNSCC. For example, 

pembrolizumab plus platinum-based chemotherapy and 5-FU has been highly effective in 

patients with untreated locally incurable recurrent or metastatic FINSCC. A recent phase 3 

study demonstrated that pembrolizumab and platinum plus 5-FU chemotherapy is superior 

to either single-agent pembrolizumab or cetuximab and chemotherapy. Importantly, this 

approach was non-inferior for all patients regardless of PD-L1 expression. Based on these 

data, this approach is now FDA approved and is recommended as an appropriate first-line 

treatment for PD-L1+ recurrent or metastatic HNSCC (Burtness, et al., 2019).
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Both pembrolizumab and nivolumab have also been evaluated as a second-line treatment 

option for platinum-refractory HNSCC. Pembrolizumab was explored in a single-arm 

phase 2 study for patients with platinum- and cetuximab-refractory HNSCC, showing 

clinically meaningful anti-tumor activity and an acceptable safety profile (Bauml, et al., 

2017). In a larger phase 3 study, pembrolizumab was also evaluated for HNSCC patients 

who progressed during or after treatment with platinum chemotherapy for recurrent or 

metastatic disease, demonstrating significant anti-tumor activity reflected by meaningful 

improvements in overall survival (Cohen, et al., 2019). Consequently, the FDA has approved 

pembrolizumab for use in this indication for all patients.

Similar results have been observed using nivolumab, which has also been evaluated in 

patients with recurrent or metastatic HNSCC who had experienced disease progression 

within 6 months of receiving platinum-based chemotherapy. This approach has now been 

evaluated in a phase 3 trial, where nivolumab extended median overall survival to 7.5 

months compared to 5.1 months with chemotherapy alone (Ferris, et al., 2016). Subsequent 

evaluation has confirmed that nivolumab has superior therapeutic efficacy than the previous 

standard of care chemotherapy, which was unrelated to prior cetuximab exposure (Ferris, 

et al., 2019). Based on these data, nivolumab has also been approved by the FDA for this 

indication.

Though these and other studies have shown considerable promise, others have posted 

negative results. For example, in locally advanced HNSCC, the combination of avelumab, 

cisplatin, and radiation therapy did not meet the primary objective of prolonging 

progression-free survival (N. Y. Lee, et al., 2021). Similarly, durvalumab with or without 

tremelimumab failed to improve clinical outcomes beyond cetuximab and chemotherapy 

(Ferris, et al., 2020).

8.3 – Gastro-Esophageal Cancer

Combined chemo-immunotherapy has shown rapid progress for gastro-esophageal cancers 

in recent years, with several approaches earning FDA approval. In advanced, HER2 negative 

gastric, gastro-esophageal junction (GEJ), or esophageal adenocarcinoma, nivolumab and 

FOLFOX showed superior overall survival compared to FOLFOX alone. The combination 

arm demonstrated a median overall survival of 13.1 months compared to 11.1 months 

for chemotherapy alone. As nivolumab and chemotherapy showed superior overall and 

disease-specific survival (Y. Y. Janjigian, et al., 2021), this combined regimen has now been 

FDA approved for initial treatment of advanced/metastatic gastric, GEJ, and esophageal 

adenocarcinomas, irrespective of PD-L1 expression.

Pembrolizumab has also been evaluated extensively in gastro-esophageal cancers, including 

in combination with chemotherapy. A recent phase 3 trial compared single-agent 

pembrolizumab with pembrolizumab and cisplatin plus 5-FU or capecitabine for patients 

with untreated, advanced gastric/GEJ cancers and found that pembrolizumab was non-

inferior to chemotherapy. This study determined that the combination of pembrolizumab 

and chemotherapy is not superior to pembrolizumab alone (Shitara, et al., 2020). However, 

a more recent phase 3 study determined that the combination of pembrolizumab, cisplatin, 

and 5-fluorouracil was highly effective as a first-line treatment. This approach was superior 
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to chemotherapy alone, extending median overall survival from 8.8 months to 13.9 months 

for PD-L1+ patients and from 9.8 months to 12.4 months for all randomized patients (Sun, 

et al., 2021). Based on these data, this approach has also been approved by the FDA.

Additional trials have explored similar combinations for HER2+ gastro-esophageal cancer. 

Importantly pembrolizumab is under investigation in combination with trastuzumab and 

platinum and fluoropyrimidine chemotherapy for patients with locally advanced or 

metastatic gastric or gastro-esophageal junction cancer that is not amenable to surgical 

resection or definitive chemo-radiation. Though only interim results for the first 264 patients 

have been presented, the addition of pembrolizumab improved the response rate from 52 to 

74%, with evidence of durable anti-tumor efficacy (Yelena Y. Janjigian, et al., 2021). This 

led to the accelerated FDA approval of this regimen in 2021.

Several immunotherapy approaches have been evaluated following progression on 

chemotherapy. Early data suggested that pembrolizumab has significant anti-tumor activity 

in metastatic esophageal cancer patients who have progressed on at least two prior lines 

of therapy (Doi, et al., 2018). Similar results were observed in a phase 2 trial (Shah, 

et al., 2019) , as well as in a subsequent study for previously treated advanced gastric 

or GEJ cancers (Fuchs, et al., 2018). This was confirmed in a larger phase 3 study, 

where pembrolizumab was superior to paclitaxel, docetaxel, or irinotecan as a second-line 

treatment for patients with advanced/metastatic esophageal cancer (Kojima, et al., 2020).

Nivolumab has shown similar efficacy in treatment-refractory esophageal cancer (Kudo, et 

al., 2017), as well as for advanced, treatment-refractory gastric or gastro-esophageal cancer 

(Y.-K. Kang, et al., 2017). In a phase 3 trial, nivolumab was again highly effective in 

advanced gastric or GEJ cancers refractory to at least two previous chemotherapy regimens, 

increasing 12-month overall survival from 10.9% with placebo to 26.2% (Y. K. Kang, et 

al., 2017). The combination of nivolumab and ipilimumab has also been evaluated as a 

second-line treatment in advanced gastric or GEJ cancers. This approach led to improved 

responses compared to nivolumab monotherapy, though phase 3 studies have yet to share 

results (Janjigian, et al., 2018). The anti-PD-1 antibody camrelizumab has also shown 

promise as second-line therapy for Chinese patients with metastatic esophageal cancer. This 

phase 3 trial only included patients with squamous histology, and camrelizumab led to 

significant improvements in overall survival compared to second-line chemotherapy (Huang, 

et al., 2020). Avelumab has been explored in chemotherapy-treated advanced gastric or 

GEJ cancers, particularly as first-line switch-maintenance therapy or second-line treatment. 

However, the clinical benefit achieved with avelumab has been marginal, and the approved 

treatment options are preferred (Chung, et al., 2019).

8.4 – Urothelial Cancer

In urothelial cancer, pembrolizumab is now FDA approved as a first-line treatment for 

PD-L1+ patients not eligible for platinum-based chemotherapy (Balar, Castellano, et al., 

2017). Similarly, pembrolizumab has shown promise for platinum-refractory advanced 

urothelial carcinoma, with improved survival and fewer treatment-related adverse events 

than chemotherapy with paclitaxel, docetaxel, or vinflunine (Bellmunt, et al., 2017). 

Nivolumab has shown similar efficacy as a second-line treatment irrespective of PD-L1 
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status (Sharma, et al., 2017). Atezolizumab was granted accelerated approval by the 

FDA for platinum-refractory urothelial carcinoma based on single-arm phase 2 data 

(Balar, Galsky, et al., 2017). However, subsequent phase 3 data has since demonstrated 

that atezolizumab was not associated with significantly longer overall survival than 

chemotherapy in this indication (Powles, et al., 2018). Based on these observations, the FDA 

has withdrawn approval for atezolizumab in patients with advanced, platinum-refractory 

urothelial carcinoma. Other approaches have also been explored in clinical trials, including 

avelumab for metastatic, platinum-refractory urothelial carcinoma. In this study, avelumab 

showed superior progression-free survival compared to chemotherapy alone (Patel, et al., 

2018). This led to the FDA approval for avelumab, though it is important to note that these 

conclusions were drawn from expansion cohorts of phase 1 trials and that phase 3 studies are 

still pending.

Despite these observations, progress has been difficult for chemo-immunotherapy in 

urothelial cancer. The combination of atezolizumab and platinum-based chemotherapy 

is under investigation and has shown superior progression-free survival compared to 

chemotherapy alone (Galsky, et al., 2020). However, the addition of the anti-PD-1 antibody 

pembrolizumab to first-line platinum-based chemotherapy (gemcitabine and either cisplatin 

or carboplatin) did not significantly improve clinical outcomes, and the authors suggested 

that this approach should not be adopted for the treatment of advanced urothelial carcinoma 

(Powles, et al., 2021). Hence, this area warrants continued exploration in urothelial 

carcinoma.

8.5 – Breast and Ovarian Cancers

Several trials are also evaluating chemo-immunotherapy in breast and ovarian cancers. A 

recent multicenter trial has explored the efficacy of atezolizumab and nab-paclitaxel in 

patients with unresectable, locally advanced, or metastatic triple-negative breast cancer 

(TNBC). In patients with advanced disease, this combination extended median progression-

free survival to 7.2 months compared to 5.5 months in the nab-paclitaxel group (Schmid, 

et al., 2018). In the second analysis, the addition of atezolizumab to nab-paclitaxel 

marginally improved median overall survival from 18.7 to 21 months, though for PD-L1+ 

tumors, median overall survival was 25 months compared to 18 months with placebo 

(Schmid, Rugo, et al., 2020) . Patient-reported outcomes suggest that this approach was 

reasonably well tolerated, without compromising the patients’ health-related quality of life 

(Adams, et al., 2020). However, a similar trial explored the combination of neoadjuvant 

atezolizumab with anthracycline, cyclophosphamide, and taxane-based chemotherapy in 

early-stage TNBC. In this group, 58% of patients in the combination arm had pathologic 

complete responses to treatment compared to 41% for patients with chemotherapy alone. For 

PD-L1+ tumors, 69% of patients in the combination arm had pathologic complete responses, 

as did 49% for patients receiving chemotherapy alone (Mittendorf, et al., 2020).

Importantly, pembrolizumab has been evaluated in combination with neoadjuvant paclitaxel 

and carboplatin for early-stage TNBC. At the first interim analysis, 64.8% of patients in 

the combination arm demonstrated pathologic complete responses compared to 51.2% with 

chemotherapy and placebo. After 15.5 months, 7.4% of patients in the pembrolizumab, 
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paclitaxel, and carboplatin group and 11.8% in the control group experienced disease 

progression precluding definitive surgery, demonstrated clinical recurrence, or died from 

any cause (Schmid, Cortes, et al., 2020). This led to the FDA approval of pembrolizumab 

in combination with neoadjuvant chemotherapy for early-stage TNBC in 2021. In a related 

study, pembrolizumab was administered to patients with metastatic TNBC in combination 

with nab-paclitaxel, paclitaxel, or gemcitabine and carboplatin. This study also considered 

PD-L1 expression, and the combination of pembrolizumab and chemotherapy showed 

a significant improvement in progression-free survival compared to the control group, 

particularly for PD-L1 expressing tumors (Cortes, et al., 2020). This approach was initially 

given accelerated approval by the FDA in 2020, but converted to full approval in 2021.

Though these and other important trials are encouraging, progress for immunotherapy 

in ovarian cancer has been difficult. For instance, avelumab failed to improve either 

progression-free or overall survival in platinum-resistant or platinum-refractory ovarian 

cancer, either as a monotherapy or combined with pegylated liposomal doxorubicin (Pujade-

Lauraine, et al., 2021). Additionally, avelumab failed to show significant efficacy as front-

line therapy in ovarian cancer, even when combined with carboplatin and paclitaxel (Monk, 

et al., 2021) . Pembrolizumab has shown only modest activity in monotherapy for patients 

with advanced, recurrent ovarian cancer, with higher response rates in patients with PD-L1+ 

disease (Matulonis, et al., 2019). Pembrolizumab has also been studied in combination 

with bevacizumab and oral metronomic cyclophosphamide, also in recurrent ovarian cancer, 

though early data suggests an objective response rate of 47.5% with a median progression-

free survival of 10.0 months (Zsiros, et al., 2021).

8.6 – Pancreatic Cancer

Several combinations of chemo- and immunotherapy have been explored in PDAC, in 

large part attributed to poor disease control rates using either approach alone (Principe, 

et al., 2021). For example, the combination of gemcitabine and the anti-CTLA-4 antibody 

tremelimumab showed an overall response rate of 10.5%, with 2/19 patients achieving 

a partial response and a median overall survival of 7.4 months (Aglietta, et al., 2014). 

Similarly, gemcitabine and the anti-CTLA-4 antibody ipilimumab led to a disease control 

rate was 43%, though median progression-free survival was 2.5 months, and median overall 

survival 8.5 months (Kalyan, et al., 2016). This approach has been explored in a different 

patient cohort, with similar results of a median overall survival of 6.9 months, progression-

free survival of 2.8 months, and an overall response rate was 14%. Of the three responding 

patients, one showed a complete response, with a median response duration of 11 months 

(Kamath, et al., 2019).

Similarly, a phase 1 trial explored the combination of the anti-PD-1 antibody nivolumab 

with chemotherapy. This study consisted of two arms: patients who had received one 

prior chemotherapy regimen and treatment-naïve patients. Previously treated patients were 

administered nivolumab and nab-paclitaxel, and treatment-naïve patients nivolumab, nab-

paclitaxel, and gemcitabine. In previously treated patients, 2/9 had a partial response and 4/9 

had stable disease, for a disease control rate of 66.6%. For the treatment-naïve patients, 3/6 

had a partial response and 3/6 had stable disease (Wainberg, et al., 2017). In an extended 
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Phase 1 study of a larger cohort of treatment-naïve patients, the combination of nivolumab, 

nab-paclitaxel, and gemcitabine led to 1/50 complete response, 8/50 partial responses, and 

23/50 patients with stable disease. Median progression-free survival in this group was 5.5 

months, with a median overall survival of 9.9 months. However, this combination was 

poorly tolerated, with 48/50 patients had at least 1 grade 3/4 treatment-related adverse event 

(Wainberg, et al., 2019).

Pembrolizumab has also been explored in combination with chemotherapy in PDAC. In a 

seminal study, 2/11 PDAC patients showed a partial response, with a median overall survival 

of 8.0 months (Weiss, et al., 2017). A phase 2 study from the same group evaluated the 

combination of pembrolizumab, gemcitabine, and nab-paclitaxel in patients with metastatic 

PDAC as a first-line treatment. The authors observed a disease control rate of 100%, with 

3/11 patients showing a partial response and the remaining 8/11 showing stable disease. 

Overall survival was 15.0 months and progression-free survival 9.1 months, though the 

primary endpoint of a 15% complete response rate was not met. (Weiss, et al., 2018).

Other combinations have also been evaluated, including cisplatin, gemcitabine, nab-

paclitaxel, and pembrolizumab. Of the 25 metastatic PDAC patients in this study, 15/24 

patients had a partial response and 4/24 had stable disease, with a median overall survival 

of 16.5 months. (Jameson, et al., 2017). The combination of gemcitabine, nab-paclitaxel, 

durvalumab, and tremelimumab is also showing promise, with preliminary findings from 

11 patients reporting a disease control rate of 100%, with 8/11 patients demonstrating a 

partial response. (Renouf, et al., 2018). The combination of durvalumab and the TGFβ 
receptor inhibitor galunisertib has also been evaluated in a phase 1b trial, specifically for 

patients with metastatic PDAC that have progressed on two prior lines of chemotherapy. 

This led to an overall disease control rate of 25%, and the authors suggested that this 

approach may have improved efficacy either as an earlier line of therapy or for patients 

with predictive biomarkers associated with TGFβ signaling (Melisi, et al., 2021). These 

and similar combinations continue to show promise for PDAC and other difficult to treat 

cancer types, and pending additional study, may either improve outcomes beyond the current 

standard-of-care or offer an effective treatment strategy in the second or third-line setting.

9 – SUMMARY AND FUTURE DIRECTION

Though long considered immunosuppressive, there is mounting evidence to support select 

immune-stimulating properties of cytotoxic chemotherapy. Accordingly, several chemo-

immunotherapy regimens are now regularly used in cancer therapy, with many others 

showing promise in clinical trials. Though these approaches have shown rapid progress 

for select cancers, for others, progress has been difficult. As the field has reached consensus 

regarding the promise of cancer immunotherapy for difficult-to-treat cancer histologies, the 

immunomodulatory effects of chemotherapy warrant continued investigation to design the 

most effective combination strategies.

Based on studies described in this review, it appears as though the immune-stimulating 

effects of several chemotherapy agents are often predictable, consistently directing many 

of the same immune cell processes across a wide range of tumor types. Should certain 
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chemotherapy medications indeed have predictable patterns of immune remodeling, this 

opens the possibility that these can be exploited for therapy through tailored combination 

strategies. Such approaches have already shown early promise in preclinical experiments, 

taking advantage of chemotherapy-enhanced antigen presentation and incorporating 

selective inhibition of local chemotherapy-induced immune suppression within the tumor 

microenvironment (Principe, et al., 2020). Recent evidence also supports that such 

combinations of chemo- and immunotherapy may further benefit from refinement of 

drug delivery and timing, including sequential administration with different waves, spatial 

delivery, or co-delivery strategies (Luo, Zhang, Luo, & Jiang, 2019). Hence, this area 

warrants continued investigation.

However, it important to note that select chemo-immunotherapy approaches will require 

caution when translated to patient care. Bone marrow suppression is one of the most 

important dose-limiting toxicities associated with chemotherapy (Y. Wang, Probin, & Zhou, 

2006), and the primary reason chemotherapy had previously been considered universally 

immune suppressive. Hence, as combination chemo-immunotherapy regimens advance in 

the clinic, it will be important to carefully balance the immune-stimulating effects of 

chemotherapy with the long-term negative effects on hematopoiesis, and alterations to dose 

and schedule may be indicated. Additionally, the adverse effects of immune checkpoint 

inhibitors can be severe, and in some cases, life-threatening (F. Martins, et al., 2019). 

As immune-mediated adverse events are often predictive of anti-tumor immune responses 

(Das & Johnson, 2019), the improved efficacy of combined chemo-immunotherapy may 

increase the risk of autoimmune toxicity. However, given the promise for these combination 

strategies, mechanisms of chemotherapy-induced immune remodeling warrant continued 

exploration in hopes of maximizing efficacy and improving therapeutic response rates, 

particularly in cancers for which there is currently no effective treatment.
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ABBREVIAITONS

ALK Anaplastic Lymphoma Kinase

APCs Antigen-presenting cells

BCG Bacille Calmette-Guérin

CBP CREB-binding protein

cGAS Cyclic GMP-AMP Synthase

COX Cyclooxygenase

COA-1 Cytochrome C oxidase assembly factor 1
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CTLA-4 Cytotoxic T-lymphocyte-associated protein 4

CTLs Cytotoxic T lymphocytes

CpG-ODN Cytosine-phosphate-guanosine-containing oligodeoxynucleotide 

1826

DAMPs Damage-associated molecular patterns

DCs Dendritic cells

dFdC 2′, 2′-difluoro 2′deoxycytidine

dMMR DNA mismatch repair

eIF2α Eukaryotic translation initiation factor 2α

EGFR Epidermal Growth Factor Receptor

ER Endoplasmic reticulum

ERAP ER Aminopeptidase

ERK Extracellular signal-regulated kinase

ESCC Esophageal squamous cell carcinoma

FOLFOX 5-FU, leucovorin, and oxaliplatin

FOLFIRI 5-FU, leucovorin, and irinotecan

GEJ Gastro-esophageal junction

G-CSF Granulocyte colony-stimulating factor

GM-CSF Granulocyte-macrophage colony-stimulating factor

GZMB Granzyme B

HCC Hepatocellular carcinoma

HLA-I Class I Human Leukocyte Antigen

HNSCC Head and neck squamous cell carcinoma

HMGB1 High-mobility group box 1 protein

ICIs Immune checkpoint inhibitors

IFN Interferon

IL Interleukin

MHC Major Histocompatibility Complex

MDSCs Myeloid-derived suppressor cells
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NK Natural killer

NSCLC Non small-cell lung cancer

MSI-H High microsatellite instability

PDAC Pancreatic ductal adenocarcinoma

PRF1 Perforin 1

PD-1 Programmed cell death protein 1

PD-L1 PD-1 ligand 1

PERK Protein kinase-like ER kinase

SCLC Small-cell lung cancer

sEH Soluble epoxide hydrolase

STING Stimulator of Interferon Genes

TAP Transporters associated with Antigen Processing

TCR T-cell receptor

TERT Telomerase reverse transcriptase

TGFβ Transforming Growth Factor β

TMB-H Tumor mutational burden

TME Tumor microenvironment

TLR Toll-like receptor

TNBC Triple-negative breast cancer

Tregs Regulatory T-lymphocytes

TNFα Tumor necrosis factor α

VEGF Vascular Endothelial Growth Factor

5-FU 5-fluorouracil

β2m β2-microglobulin
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Figure 1. Cyclophosphamide-mediated depletion of regulatory T-lymphocytes.
The immunogenic effects of cyclophosphamide (CP) are well documented, and much 

of the early rationale for combining chemotherapy and immunotherapy stemmed from 

observations that cyclophosphamide chemotherapy can deplete tumor-associated regulatory 

T-lymphocytes (Tregs). This specialized T-cell subpopulation acts to inhibit sterilizing 

immune responses and maintain peripheral tolerance. Tregs are highly sensitive to 

cyclophosphamide compared to effector T-cells, and cyclophosphamide has long been 

suggested as a potential means of targeting Tregs to potentiate cancer immunotherapy.
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Figure 2. Chemotherapy-induced HLA Class I expression enhances anti-tumor immune 
responses.
The loss of HLA Class I (HLA-I) is a widely utilized mechanism for immune evasion in 

cancer, impeding the ability of cytotoxic T-lymphocytes to recognize and destroy tumor 

cells. Several chemotherapy agents have been shown to augment tumor cell expression of 

HLA-I. While most studies to date have focused on platinum-based medications such as 

cisplatin and oxaliplatin, emerging data also supports a pro-antigen presentation role for 

non-platinum-based chemotherapy. Thus, by increasing the expression of HLA-I on the 

tumor cell surface, chemotherapy can potentially lead to the enhanced antigen presentation 

capacity of tumor cells, thereby allowing for more efficient priming of cytotoxic T-cells and 

improving therapeutic responses to ICI-based immunotherapy. Abbreviations: T-cell receptor 

(TCR); Granzyme B (GZMB), Perforin 1 (PRF1); Interferon γ (IFNγ).
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Figure 3. Chemotherapy-induced immunogenic cell death mobilizes tumor-antigen
In addition to enhancing HLA Class I-dependent antigen presentation, several chemotherapy 

medications can also promote immunogenic cell death. This process improves the 

availability of damage-associated molecular patterns (DAMPs) within the TME, thereby 

increasing the availability of tumor-antigen to professional antigen-presenting cells (APCs) 

and augmenting anti-tumor T-cell responses. The mechanisms through which chemotherapy 

induces immunogenic cell death are complex and, like more conventional antigen 

presentation, are best studied for platinum-based medications.
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Figure 4. Chemotherapy-induced PD-L1 expression as a means of immune escape
Though chemotherapy can enhance tumor cell immunogenicity and potentiate immune-

stimulating processes, such as antigen presentation, several chemotherapy agents can 

also enhance the expression of negative immune checkpoints, importantly PD-L1. In this 

context, PD-L1 can associate with the PD-1 receptor on effector T-cells, blunting anti-

tumor immune responses and facilitating immune escape. This ligand/receptor interaction 

is neutralized by antibodies against PD-1 (e.g., pembrolizumab and nivolumab) or PD-L1 

(e.g., atezolizumab, avelumab, and durvalumab), and several combinations of chemotherapy 

and anti-PD-1/PD-L1 antibodies are either in clinical use or under clinical evaluation. 

Abbreviations: Granzyme B (GZMB), Perforin 1 (PRF1); Interferon γ (IFNγ).
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Figure 5. Chemotherapy enhances local cytokine synthesis and can facilitate lymphocyte 
trafficking into the tumor microenvironment
Several reports suggest that various chemotherapy medications can modulate tumor 

cytokine synthesis. For many cancers, chemotherapy can increase local levels of immune-

stimulating cytokines/chemokines, thereby enhancing the recruitment of effector T-cells and 

promoting anti-tumor immunity. However, other reports suggest that chemotherapy often has 

contradictory roles regarding the local cytokine milieu and can also increase the release of 

several immune-suppressive signaling molecules. Hence, the success of future combination 

strategies may require the selective inhibition of chemotherapy-induced immune suppression 

in order to take full advantage of its immune-stimulating effects.
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Table 1.

Select studies exploring the effects of platinum-based chemotherapy on tumor cell expression of antigen 

presenting molecules

Chemotherapy Cancer Type Effect on Antigen Presentation Notes Reference

Cisplatin Breast Increased MHC class I - (Wan, et al., 2012)

Colon Increased MHC class I - (Ohtsukasa, et al., 2003).

Esophageal Increased HLA-I Combined with 5-
FU (Tsuchikawa, et al., 2012).

Head & Neck Increased MHC class I - (S. J. Park, et al., 2019).

Head & Neck Increased antigen presentation via MHC class I - (Tran, et al., 2017).

Lung Enhanced sensitivity to HLA-restricted cell death Combined with 
Vinorelbine (Gameiro, et al., 2012)

Mesothelioma Broadened the range of tumor antigens presented on 
MHC class I - (Jackaman, et al., 2012)

Plasmacytoma Increased MHC class I antigens - (Nio, et al., 2000).

Oxaliplatin Colon Increased mesothelin tumor antigens (Galaine, et al., 2019)

Colon Increased antigen processing/presentation and MHC 
class I - (Y. Zhou, et al., 2021)

Head & Neck Increased MHC class I - (S. J. Park, et al., 2019).

Liver Increased HLA-I in tumors lacking an oncogenic 
RAS mutation - (Ledys, et al., 2018)

Pancreas Increased HLA-I - (Principe, et al., 2020)

Prostate Increased antigen processing/presentation and 
expression of MHC class I - (Y. Zhou, et al., 2021)

Carboplatin Ovarian Increased HLA-I - (Alagkiozidis, et al., 2011)
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Table 2.

Select studies exploring the effects of non-platinum-based chemotherapy on tumor cell expression of antigen 

presenting molecules

Chemotherapy Cancer Type Effect on Antigen Presentation Notes Reference

Gemcitabine Breast Increased HLA-I - (W. M. Liu, et al., 2010).

Breast Increased HLA-I, Altered peptides eluted from HLA-I molecules - (Gravett, et al., 2018).

Colon Increased HLA-I - (W. M. Liu, et al., 2010).

Colon Increased HLA-I, Altered peptides eluted from HLA-I molecules - (Gravett, et al., 2018).

Lung Increased HLA-I - (W. M. Liu, et al., 2010).

Lung Increased HLA-I, Altered peptides eluted from HLA-I molecules - (Gravett, et al., 2018).

Melanoma Improved the cross-presentation efficiency of nuclear antigen - (Anyaegbu, et al., 2014)

Pancreas Increased MHC Class I in murine and HLA-I in human tumor cells - (Principe, et al., 2020).

Paclitaxel Breast Increased MHC Class I - Wan, et al., 2012)

Pancreas Increased HLA-I - (Principe, et al., 2020)

Mitoxantrone Colon Enhanced MHC class I - (Y. Zhou, et al., 2021)

Prostate Enhanced MHC class I - (Y. Zhou, et al., 2021)

5-FU Pancreas Increased HLA-I - (Principe, et al., 2020)

Etoposide Breast Increased MHC Class I - (Wan, et al., 2012)

Irinotecan Pancreas Increased HLA-I - (Principe, et al., 2020)

Topotecan Breast Increased HLA-I - (Wan, et al., 2012)

Vinblastine Breast Increased MHC Class I - (Wan, et al., 2012)
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Table 3.

Landmark clinical trials supporting chemo-immunotherapy as a first-line treatment for lung cancer patients

Cancer 
Type Chemotherapy Immunotherapy Phase Notes Ref

NSCLC Pemetrexed and Platinum-based Pembrolizumab 3 Metastatic, non-squamous, non 
EGFR- or ALK-Mutated (Gandhi, et al., 2018)

Carboplatin, and Paclitaxel/nab-
Paclitaxel Pembrolizumab 3 Squamous NSCLC only (Paz-Ares, et al., 2018)

Carboplatin and Pemetrexed Camrelizumab 3 - (C. Zhou, et al., 2021)

Carboplatin and nab-Paclitaxel Atezolizumab 3 - (H. West, et al., 2019)

SCLC Carboplatin and Etoposide Atezolizumab 3 Extensive-stage disease (Horn, et al., 2018)

Etoposide and Platinum-Based Durvalumab 3 Metastatic, non EGFR- or ALK-
mutated (Paz-Ares, et al., 2019)

Carboplatin and nab-Paclitaxel Atezolizumab 3 Included the VEGF-inhibiting 
antibody Bevacizumab (Socinski, et al., 2018)

Abbreviations: Non-Small Cell Lung Cancer (NSCLC); Small Cell Lung Cancer (SCLC); Epidermal Growth Factor Receptor (EGFR); Anaplastic 
Lymphoma Kinase (ALK); Vascular Endothelial Growth Factor (VEGF).
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